用户名: 密码: 验证码:
副溶血弧菌VI型分泌系统功能及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副溶血弧菌(Vibrio parahaemolyticus)是一种重要的食源性人兽共患病原菌,广泛存在于海洋环境,能够引起人急性肠胃炎、伤口感染和败血症,对动物主要引起水生动物疾病,如海鲷、对虾、九孔鲍、文蛤等。
     耐热直接溶血毒素(thermostable direct hemolysin, TDH)、耐热直接溶血相关毒素(TDH-related hemolysin, TRH)、Ⅲ型分泌系统1(T3SS1)和Ⅲ型分泌系统2(T3SS2)被认为是副溶血弧菌的主要致病因子。对实验室近年来保存的33株临床分离株和511株环境分离株进行tdh, trh, vcrD1(T3SS1结构蛋白基因)和vcrD2(T3SS2结构蛋白基因)的PCR检测发现它们在临床分离株中的阳性率分别为100%、9.1%、100%和87.9%,在环境分离株中的分离率分别为11.2%、19.4%、100%和1.2%。T3SS1存在于所有副溶血弧菌分离株中,这与报道相一致。tdh和T3SS2在临床分离株中的阳性率均高于环境分离株,符合致病因子的一般特征。
     Ⅵ型分泌系统(T6SS)是近年来新发现的一种分泌系统,广泛存在于革兰氏阴性菌变形菌门细菌中,能够增强细菌对外界环境的适应性,介导细菌对宿主细胞的致病力。对副溶血弧菌全基因组序列RIMD2210633分析发现,副溶血弧菌中存在两套T6SS,分别位于染色体1(T6SS1)和染色体2(T6SS2)上。T6SS1基因簇结构与霍乱弧菌的T6SS同源性较高,其结构蛋白基因icmF1在副溶血弧菌临床分离株和环境分离株中的携带率分别为90.9%和25.0%,提示T6SS1可能与副溶血弧菌的致病力密切相关;T6SS2与一些海洋细菌的T6SS具有较高的同源性,其结构蛋白基因icmF2在副溶血弧菌临床分离株和环境分离株中均为100%。
     为了验证T6SS1和T6SS2是否具有转位和分泌蛋白的功能,本研究选取副溶血弧菌临床分离株HZ为亲本菌株,构建了结构蛋白基因icmF1和icmF2,转位蛋白基因hcpl和hcp2的缺失突变株和回复突变株,并用Hcp1和Hcp2多克隆抗体检测亲本株和T6SS相关基因缺失株中Hcp1和Hcp2的表达和转位情况。缺失icmF2后,Hcp2只能在菌体沉淀中被检测到,而在培养上清中未能检出,说明T6SS2在体外培养条件下是一个功能性的分泌系统,介导蛋白转位和分泌。而Hcp1在亲本株、△icmF1和△Ahcp1的菌体沉淀和培养上清中均检测不到;互补表达的Hcp1能在菌体沉淀中被检测到,但也不存在于培养上清中;荧光定量PCR检测亲本株中icmF1、icmF2、hcp1和hcp2的基因转录水平发现,icmF1和hcpl的转录量仅为icmF2和hcp2的十七分之一和十分之一。说明T6SS1在体外是一个非活化的分泌系统,相关基因处于低表达和低转录状态。
     为了研究T6SS的生物学功能,本研究首先构建了缺失副溶血弧菌主要致病因子TDH,T3SS1和T3SS2相关基因的三缺失突变株DTTT,并以DTTT菌株为亲本,进一步缺失icmF1、icmF2、hcp1或hcp2基因,从细菌对宿主细胞的感染生物学(细胞粘附、细胞毒性、细胞自噬、细胞凋亡和红细胞溶血能力)和细菌对环境的适应性(生长特性,抗酸应激和形成生物被膜能力)两大方面展开副溶血弧菌两套T6SS的生物学活性研究。
     副溶血弧菌T6SS1和T6SS2均具有细胞粘附能力。缺失了T6SS1结构蛋白就因icmF1和转位蛋白基因hcp1的细菌,对Caco-2和HeLa细胞的粘附能力显著降低,而缺失了T6SS2结构蛋白基因icmF2和转位蛋白基因hcp2的细菌只对HeLa细胞粘附能力降低。T6SS1在体外培养条件下处于低表达和低转录状态,但在细胞粘附试验中呈现一定的活性,且该活性能被Hcpl抗体阻断。
     副溶血弧菌T6SS2具有促细胞自噬的能力。△icmF2、△hcp2和△vgrG2缺失株与小鼠巨噬细胞RAW264.7共培养4h后,细胞中LC3-Ⅰ转化为LC3-Ⅱ的量要显著低于亲本株DTTT,而△icmF1菌株与亲本株相比差异不显著。说明T6SS2可能促进RAW264.7发生自噬。副溶血弧菌感染稳定表达LC3-GFP的RAW264.7细胞,△icmF2缺失株感染的细胞中LC3-GFP的荧光斑点要显著低于亲本株DTTT,进一步证明了T6SS2促进RAW264.7自噬。
     T6SS2促进RAW264.7自噬的活性可能是通过其转位蛋白和分泌蛋白来实现的。目前T6SS2还未有分泌蛋白发现,因此我们怀疑T6SS2可能通过转位蛋白Hcp2和VgrG2介导细菌的自噬。在RAW264.7中真核表达GFP-Hcp2和口GFP-VgrG2蛋白,发现表达GFP-VgrG2的细胞LC3-Ⅱ的量要显著高于对照组(表达GFP),而表达GFP-Hcp2的细胞与对照组相比无显著差异。向培养RAW264.7的培养基中添加原核表达的Hcp2和VgrG2蛋白,也呈现类似结果:添加VgrG2蛋白后,细胞LC3-Ⅱ的量要高于对照组,添加Hcp2蛋白则变化不显著。说明T6SS2对RAW264.7细胞的自噬作用是通过其转位蛋白VgrG2来实现的。不论是细胞内源性的VgrG2,还是外源添加的VgrG2均能引起细胞自噬,推测VgrG2引起细胞自噬可能在其刺穿宿主细胞膜并进入宿主细胞的过程中,引起自噬途径相关信号的改变。
     无论是T6SS1还是T6SS2,都不具有细胞毒性和溶血活性,不诱导宿主细胞凋亡。T6SS1和T6SS2也不贡献副溶血弧菌对抗酸应激和形成生物被膜的能力。
     在T6SS2基因簇的下游,存在两个二元调控因子VPA1045和VPA1049,具有反应调节因子典型的Che-Y结构域。Vpa1045和Vpa1049基因缺失后,hcp2转录水平与亲本相比均差异不显著。免疫印迹分析发现在细菌培养上清中的Hcp2转位量显著下降,而菌体沉淀中Hcp2表达量与亲本相比均差异不显著。进一步的细胞试验发现,Vpa1045和Vpa1049的缺失也降低细菌对HeLa细胞的粘附能力。
Vibrio parahaemolyticus, a halophilic bacterium in marine environments, is a most important foodbrone pathogen in the world. It causes wound infectious, septicemia and most commonly acute gastroenteritis in humans, it also causes disease in invertebrates, including abalone, Haliotis diversicolor supertexta and shrimp.
     The major virulence factors of V. parahaemolyticus include thermostable direct hemolysin (TDH), TDH related hemolysin (TRH) and two sets of type III secretion system (T3SS). PCR identification of tdh, trh, vcrDl (structure gene of T3SS1) and vcrD2(structure gene of T3SS2) in33clinical isolates of V. parahaemolyticus and511environmental isolates stored in our lab found that the fraction of these genes were100%,9.1%,100%and87.9%respectively in clinical strains and11.2%,19.4%,100%,1.2%in environmental strains. T3SS1was present in all V. parahaemolyticus. which is consisted with previous reports.tdh and T3SS2exist higher in clinical strains than in environmental strains, which was one feather of pathogenic factors.
     Type VI secretion system, a new secretion only found in proteobacteria, devotes environment adapting and pathogenicity of bacteria. Bioinformatic analysis of whole genome of V. parahaemolyticus RIMD2210633reveals two clusters of T6SS. One is on Chromosone I, which is called T6SS1; the other is on Chromosome II, which is named T6SS2. T6SS1is identical to T6SS in Vibrio cholerae, which has90.9%possession in clinical isolates and25%in environment isolates. T6SS2, however, is identical to T6SS in those marine bacteria, which exists in all the V. parahaemolyticus isolates.
     To confirm if both T6SS1and T6SS2can translocate and secrete proteins in vitro, a lot of mutant strains target on structure proteins icmF1and icmF2, as well as translocons hcpl and hcp2was made. Hcpl and Hcp2polyclonal antibody were immunized using V. parahaemolyticus clinical strain HZ as background strain. Western blot was performed to analysis the expression and translocation of Hcpl and Hcp2in pellets and supernatants of HZ and its mutants. We found that Hcp2can only be detected in pellet, but not in supernatant after deleting icmF2, the structure gene of T6SS2. However, Hcpl can not be detected neither in pellet nor in supernatant in HZ and all its mutants. When expressed using plasmid, Hcpl can be detected in pellet but not in supernatant even in the wild-type strain. The result of real-time RT PCR revealed that the transcription of hcpl was10times lower than hcp2, and icmF1was about17times lower than icmF2. These results highly show that T6SS2is an active secretion system in vitro, which can translocate and secrete proteins. However, T6SS1is an inactive secretion system in vitro, and hcp1, even the whole genes of T6SS1cluster were in a low transcriptional and expressional level.
     To investigate the function of T6SS, icmF1, icmF2, hcp1or hcp2mutants were made based on DTTT background, a triple mutant strain void of tdh, vcrDl and vcrD2. Functional analysis targets two major parts. One is about bacteria infection, including cell adherence, cytotoxicity, autophagy, apoptosis and hemolysis. The other is about environment adapt, including growth further, acid tolerance and biofilm.
     Both T6SS1and T6SS2devote cell adherence. After deleting icmF1and hcp1, the adherence to Caco-2and HeLa cell were both decreased. However, deleting icmF2and hcp2only lead cell adherence decreasing to HeLa cell. T6SS1do play functions in cell assay, and Hcp1antibody in cell culture can decrease adherence of wild-type strain to Caco-2.
     T6SS2induces autophagy. When autophagy happened, cytosolic LC3-Ⅰ converted to membrane associated LC3-Ⅱ. In our experiment, LC3-Ⅱ was decreased when macrophage RAW264.7was infected with△icmF2,△hcp2and△vgrG2mutant strains for4h. No significant change of LC3-Ⅱ was seen when infected with△icmF1. In a cell line stably expressing a GFP-tagged LC3, LC3-Ⅱ accumulates slowly when infected with△icmF2, compared to DTTT and adding2μmol/mL Rapamycin. These results indicated that T6SS2induces autophagy of RAW264.7.
     T6SS2induces autophagy of RAW264.7through VgrG2protein, a translocon of T6SS2. In a cell line expressing GFP-tagged VgrG2, LC3-Ⅱ increased obviously in western blot. Further in a cell cultured with prokaryotic VgrG2protein, LC3-Ⅱ also accumulated quickly. No matter intracellular or extrinsic VgrG2induce autophagy, indicating that the autophagy pass-way might change in the process of the phage tail-associated protein VgrG2across into host membrane.
     Neither T6SS1nor T6SS2induce cytotoxicity, hemolysin and apoptosis. And both T6SS1and T6SS2were not involved in acid tolerance and biofilm of V. parahaemolyticus.
     In T6SS2cluster, VPA1045and VPA1049were found to contain the Che-Y domain, belonging to response regulate family of two-component regulators. Deletion of either Vpa1045or Vpa1049did not affect expression and transcription of Hcp2, but decreased translocation of Hcp2in the supernatant of V. parahaemotycus. Bacterial adherence to the HeLa monolayer was also significantly reduced infected with△Vpa1045or△Vpa1049mutant strain comparing to their parent strain. So we concluded that the two-component regulators VPA1045and VPA1049might regulate T6SS2of V. parahaemolyticus.
引文
[1]Fujino K. Discovery of Vibrioparahaemolyticus. Nippon Saikingaku Zasshi 1966; 21 (8):11.
    [2]Daniels NA, MacKinnon L, Bishop R, Altekruse S, Ray B, Hammond RM, Thompson S, Wilson S, Bean NH, Griffin PM, Slutsker L. Vibrio parahaemolyticus infections in the United States,1973-1998. J Infect Dis 2000; 181(5):1661-1666.
    [3]Su YC, Liu C. Vibrio parahaemolyticus:a concern of seafood safety. Food Microbiol 2007; 24(6):549-558.
    [4]McCarter L. The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1999; 1(1):51-57.
    [5]Baffone W, Tarsi R, Pane L, Campana R, Repetto B, Mariottini GL, Pruzzo C. Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ Microbiol 2006; 8(7):1299-1305.
    [6]Johnson CN, Flowers AR, Noriea NF,3rd, Zimmerman AM, Bowers JC, DePaola A, Grimes DJ. Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico. Appl Environ Microbiol 2010; 76(21):7076-7084.
    [7]Morris JG, Jr. Cholera and other types of vibriosis:a story of human pandemics and oysters on the half shell. Clin Infect Dis 2003; 37(2):272-280.
    [8]Boyd EF, Cohen AL, Naughton LM, Ussery DW, Binnewies TT, Stine OC, Parent MA. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 2008; 8:110.
    [9]Hurley CC, Quirke A, Reen FJ, Boyd EF. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 2006; 7:104.
    [10]Yeung PS, Boor KJ. Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis 2004; 1(2):74-88.
    [11]Gonzalez-Escalona N, Strain EA, De Jesus AJ, Jones JL, Depaola A. Genome sequence of the clinical O4:K12 serotype Vibrio parahaemolyticus strain 10329. J Bacteriol 2011; 193(13):3405-3406.
    [12]Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, lijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T. Genome sequence of Vibrio parahaemolyticus:a pathogenic mechanism distinct from that of V. cholerae. Lancet 2003; 361(9359):743-749.
    [13]Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 2007; 20(1):39-48.
    [14]Hlady WG, Klontz KC. The epidemiology of Vibrio infections in Florida,1981-1993. J Infect Dis 1996; 173(5):1176-1183.
    [15]Austin B. Vibrios as causal agents of zoonoses. Vet Microbiol 2010; 140(3-4):310-317.
    [16]Cai J, Li J, Thompson KD, Li C, Han H. Isolation and characterization of pathogenic Vibrio parahaemolyticus from diseased post-larvae of abalone Haliotis diversicolor supertexta. J Basic Microbiol 2007; 47(1):84-86.
    [17]Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquacult Soc 2006; 37(4):523-532.
    [18]Alam MJ, Tomochika KI, Miyoshi SI, Shinoda S. Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiol Lett 2002; 208(1):83-87.
    [19]Liu X, Chen Y, Wang X, Ji R. Foodborne disease outbreaks in China from 1992 to 2001 national foodborne disease surveillance system. Wei Sheng Yan Jiu 2004; 33(6):725-727.
    [20]Chiou CS, Hsu SY, Chiu SI, Wang TK, Chao CS. Vibrio parahaemolyticus serovar O3:K6 as cause of unusually high incidence of food-borne disease outbreaks in Taiwan from 1996 to 1999. J Clin Microbiol 2000; 38(12):4621-4625.
    [21]CDC. http://www.cdc.gov/nczved/divisions/dfbmd/diseases/vibriop/technical.html.
    [22]Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 2011; 13(12-13):992-1001.
    [23]Nishibuchi M, Kaper JB. Thermostable direct hemolysin gene of Vibrio parahaemolyticus:a virulence gene acquired by a marine bacterium. Infect Immun 1995; 63(6):2093-2099.
    [24]Honda T, Abad-Lapuebla MA, Ni YX, Yamamoto K, Miwatani T. Characterization of a new thermostable direct haemolysin produced by a Kanagawa-phenomenon-negative clinical isolate of Vibrio parahaemolyticus. J Gen Microbiol 1991; 137(2):253-259.
    [25]Honda T, Ni YX, Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 1988; 56(4):961-965.
    [26]Tsunasawa S, Sugihara A, Masaki T, Sakiyama F, Takeda Y, Miwatani T, Narita K. Amino acid sequence of thermostable direct hemolysin produced by Vibrio parahaemolyticus. J Biochem 1987; 101(1):111-121.
    [27]Shimohata T, Nakano M. Lian X. Shigeyama T, Iba H, Hamamoto A, Yoshida M, Harada N, Yamamoto H, Yamato M, Mawatari K, Tamaki T, Nakaya Y, Takahashi A. Vibrio parahaemolyticus infection induces modulation of IL-8 secretion through dual pathway via VP1680 in Caco-2 cells. J Infect Dis 2011:203(4):537-544.
    [28]Taniguchi H, Ohta H, Ogawa M, Mizuguchi Y. Cloning and expression in Escherichia coli of Vibrio parahaemolyticus thermostable direct hemolysin and thermolabile hemolysin genes. J Bacteriol 1985; 162(2):510-515.
    [29]Honda T, Ni Y, Miwatani T, Adachi T, Kim J. The thermostable direct haemolysin of Vibrio parahaemolyticus is a pore forming toxin. Can J Microbiol 1992; 38(11):1175-1180.
    [30]Tang G, Iida T, Yamamoto K. Honda T. Analysis of functional domains of Vibrio parahaemolyticus thermostable direct hemolysin using monoclonal antibodies. FEMS Microbiol Lett 1997; 150:289-296.
    [31]Yon M, Tang GQ, Iida T. Phosphorylation of a 25 kDa protein is induced by thermostable direct hemolysin of Vibrio parahaemolyticus. Int J Biochem Cell Biol 1996; 28(12):1365-1369.
    [32]Lang PA, Kaiser S, Myssina S, Birka C, Weinstock C, Northoff H, Wieder T, Lang F, Huber SM. Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes. Cell Microbiol 2004; 6(4):391-400.
    [33]Nishibuchi M, Taniguchi T, Misawa T, Khaeomanee-Iam V, Honda T, Miwatani T. Cloning and nucleotide sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 1989:57(9):2691-2697.
    [34]Takahashi A,Sato Y, Shiomi Y, Cantarelli VV, Iida T, Lee M, Honda T. Mechanisms of chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus in human colonic tissue and a human intestinal epithelial cell line. J Med Microbiol 2000; 49(9):801-810.
    [35]Tagomori K, Iida T, Honda T. Comparison of genome structures of vibrios, bacteria possessing two chromosomes. J Bacteriol 2002; 184(16):4351-4358.
    [36]Park KS, Ono T, Rokuda M, Jang MH, Okada K, Iida T,' Honda T. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 2004; 72(11):6659-6665.
    [37]Burdette DL, Yarbrough ML, Orvedahl A, Gilpin CJ, Orth K. Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc Natl Acad Sci U S A 2008; 105(34):12497-12502.
    [38]Caron E, Crepin VF, Simpson N, Knutton S, Garmendia J, Frankel G. Subversion of actin dynamics by EPEC and EHEC. Curr Opin Microbiol 2006;9(1):40-45.
    [39]Meador CE, Parsons MM, Bopp CA, Gerner-Smidt P, Painter JA, Vora GJ. Virulence gene-and pandemic group-specific marker profiling of clinical Vibrio parahaemolyticus isolates. J Clin Microbiol 2007; 45(4):1133-1139.
    [40]Nakano M, Takahashi A, Sakai Y, Nakaya Y. Modulation of pathogenicity with norepinephrine related to the type III secretion system of Vibrio parahaemolyticus. J Infect Dis 2007; 195(9):1353-1360.
    [41]Ono T, Park KS, Ueta M, Iida T, Honda T. Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1. Infect Immun 2006; 74(2):1032-1042.
    [42]Burdette DL, Seemann J, Orth K. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 2009; 73(4):639-649.
    [43]Matlawska-Wasowska K, Finn R, Mustel A, O'Byrne CP, Baird AW, Coffey ET, Boyd A. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis. BMC Microbiol 2010; 10:329.
    [44]Bhattacharjee RN, Park KS, Kumagai Y, Okada K, Yamamoto M, Uematsu S, Matsui K, Kumar H, Kawai T, Iida T, Honda T, Takeuchi O, Akira S. VP1686, a Vibrio type III secretion protein, induces toll-like receptor-independent apoptosis in macrophage through NF-kappaB inhibition. J Biol Chem 2006; 281(48):36897-36904.
    [45]Bhattacharjee RN, Park KS, Chen X, Iida T, Honda T, Takeuchi O, Akira S. Translocation of VP1686 upregulates RhoB and accelerates phagocytic activity of macrophage through actin remodeling. J Microbiol Biotechnol 2008:18(1):171-175.
    [46]Casselli T, Lynch T, Southward CM, Jones BW, DeVinney R. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect Immun 2008; 76(5):2202-2211.
    [47]Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 2009: 323(5911):269-272.
    [48]Kodama T, Yamazaki C, Park KS, Akeda Y, Iida T, Honda T. Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS. FEMS Microbiol Lett 2010; 311(1):10-17.
    [49]Zhou X, Shah DH, Konkel ME, Call DR. Type Ⅲ secretion system 1 genes in Vibrio parahaemolyticus are positively regulated by ExsA and negatively regulated by ExsD. Mol Microbiol 2008; 69(3):747-764.
    [50]Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 2011; 79(1):240-263.
    [51]Kodama T, Rokuda M, Park KS, Cantarelli VV, Matsuda S, Iida T, Honda T. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell Microbiol 2007; 9(11):2598-2609.
    [52]Trosky JE, Li Y, Mukherjee S, Keitany G, Ball H, Orth K. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J Biol Chem 2007; 282(47):34299-34305.
    [53]Liverman AD, Cheng HC, Trosky JE, Leung DW, Yarbrough ML, Burdette DL, Rosen MK, Orth K. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci U S A 2007; 104(43):17117-17122.
    [54]Kodama T, Hiyoshi H, Gotoh K, Akeda Y, Matsuda S, Park KS, Cantarelli VV, Iida T, Honda T. Identification of two translocon proteins of Vibrio parahaemolyticus type Ⅲ secretion system 2. Infect Immun 2008; 76(9):4282-4289.
    [55]Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park KS, Dryselius R, Akeda Y, Honda T, Iida T. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS One 2010; 5(10):e 13365.
    [56]Kodama T, Gotoh K, Hiyoshi H, Morita M, Izutsu K, Akeda Y, Park KS, Cantarelli VV, Dryselius R. Iida T. Honda T. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. PLoS One 2010; 5(l):e8678.
    [57]Krachler AM, Ham H, Orth K. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by gram-negative pathogens. Proc Natl Acad Sci U S A 2011; 108(28):11614-11619.
    [58]Ferreira RB. Antunes LC, Greenberg EP, McCarter LL. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 2008; 190(3):851-860.
    [59]Kim YK, McCarter LL. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus. J Bacteriol 2007; 189(11):4094-4] 07.
    [60]Gode-Potratz CJ, McCarter LL. Quorum sensing and silencing in Vibrio parahaemolyticus. J Bacteriol 2011; 193(16):4224-4237.
    [61]Tanabe T, Funahashi T, Nakao H. Miyoshi S, Shinoda S, Yamamoto S. Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J Bacteriol 2003; 185(23):6938-6949.
    [62]Funahashi T, Tanabe T, Shiuchi K, Nakao H. Yamamoto S. Identification and characterization of genes required for utilization of desferri-ferrichrome and aerobactin in Vibrio parahaemolyticus. Biol Pharm Bull 2009; 32(3):359-365.
    [63]O'Malley SM, Mouton SL. Occhino DA, Deanda MT, Rashidi JR, Fuson KL, Rashidi CE, Mora MY, Payne SM, Henderson DP. Comparison of the heme iron utilization systems of pathogenic Vibrios. J Bacteriol 1999; 181(11):3594-3598.
    [64]Hiyoshi H, Kodama T, Iida T, Honda T. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immun 2010; 78(4):1772-1780.
    [65]Pineyro P, Zhou X, Orfe LH, Friel PJ, Lahmers K, Call DR. Development of two animal models to study the function of Vibrio parahaemolyticus type III secretion systems. Infect Immun 2010; 78(11):4551-4559.
    [66]Cascales E. The type Ⅵ secretion toolkit. EMBO Rep 2008; 9(8):735-741.
    [67]Delepelaire P. Type Ⅰ secretion in gram-negative bacteria. Biochim Biophys Acta 2004; 1694(1-3):149-161.
    [68]Cianciotto NP. Type Ⅱ secretion:a protein secretion system for all seasons. Trends Microbiol 2005; 13(12):581-588.
    [69]Sandkvist M. Type Ⅱ secretion and pathogenesis. Infect Immun 2001; 69(6):3523-3535.
    [70]Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 2006; 9(2):207-217.
    [71]Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62(2):379-433.
    [72]Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway:the autotransporter story. Microbiol Mol Biol Rev 2004; 68(4):692-744.
    [73]Serafini A, Boldrin F, Palu G, Manganelli R. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant:essentiality and rescue by iron and zinc. J Bacteriol 2009; 191(20):6340-6344.
    [74]Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009; 9 Suppl 1:S2.
    [75]Das S, Chaudhuri K. Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 2003; 3(3):287-300.
    [76]Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis:what can be learned from available microbial genomic resources? BMC Genomics 2009; 10:104.
    [77]Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006; 103(5):1528-1533.
    [78]Shrivastava S, Mande SS. Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One 2008; 3(8):e2955.
    [79]Zheng J, Ho B, Mekalanos JJ. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 2011; 6(8):e23876.
    [80]Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 2008; 44(4):344-361.
    [81]Zheng J, Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 2007; 66(5):1192-1206.
    [82]Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006; 312(5779):1526-1530.
    [83]Pukatzki S, McAuley SB, Miyata ST. The type VI secretion system:translocation of effectors and effector-domains. Curr Opin Microbiol 2009; 12(1):] 1-17.
    [84]Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG. Structure of the cell-puncturing device of bacteriophage T4. Nature 2002; 415(6871):553-557.
    [85]Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7(1):25-37.
    [86]Ma AT, McAuley S, Pukatzki S, Mekalanos JJ. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 2009; 5(3):234-243.
    [87]Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A2007; 104(39):15508-15513.
    [88]Filloux A, Hachani A, Bleves S. The bacterial type Ⅵ secretion machine:yet another player for protein transport across membranes. Microbiology 2008; 154(Pt 6):1570-1583.
    [89]Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 2003; 16(1):53-64.
    [90]Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrazek J, Nierman WC, Deshazer D. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 2007; 64(6):1466-1485.
    [91]Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011; 475(7356):343-347.
    [92]Binnie RA, Zhang H, Mowbray S, Hermodson MA. Functional mapping of the surface of Escherichia coli ribose-binding protein:mutations that affect chemotaxis and transport. Protein Sci 1992; 1(12):1642-1651.
    [93]Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 2011;79(7):2941-2949.
    [94]De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits TH. Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hep proteins. BMC Genomics 2011; 12:576.
    [95]Shanks J, Burtnick MN, Brett PJ, Waag DM, Spurgers KB, Ribot WJ, Schell MA, Panchal RG, Gherardini FC, Wilkinson KD, Deshazer D. Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun 2009; 77(4):1636-1648.
    [96]Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK. A type Ⅵ secretion system effector protein, VgrGl, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 2010; 192(1):155-168.
    [97]de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology 2011; 157(Pt 10):2954-2962.
    [98]Blondel CJ, Yang HJ, Castro B, Chiang S, Toro CS, Zaldivar M, Contreras I, Andrews-Polymenis HL, Santiviago CA. Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One 2010; 5(7):e11724.
    [99]Wang X, Wang Q, Xiao J, Liu Q, Wu H, Xu L, Zhang Y. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol 2009; 27(3):469-477.
    [100]Rosales-Reyes R, Skeldon AM, Aubert DF, Valvano MA. The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol 2012; 14(2):255-273.
    [101]Jani AJ, Cotter PA. Type VI secretion:not just for pathogenesis anymore. Cell Host Microbe 2010; 8(1):2-6.
    [102]Parsons DA, Heffron F. sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 2005; 73(7):4338-4345.
    [103]Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 2010; 7(4):265-276.
    [104]Schwarz S, West TE, Boyer F. Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 2010; 6(8):e1001068.
    [105]Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 2011; 193(21):6057-6069.
    [106]Weber B, Hasic M, Chen C, Wai SN, Milton DL. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 2009; 11(12):3018-3028.
    [107]Bernard CS, Brunet YR, Gueguen E, Cascales E. Nooks and crannies in type Ⅵ secretion regulation. J Bacteriol 2010; 192(15):3850-3860.
    [108]Bingle LE, Bailey CM, Pallen MJ. Type VI secretion:a beginner's guide. Curr Opin Microbiol 2008; 11(1):3-8.
    [109]Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 2011; 13(12):3128-3138.
    [110]Records AR, Gross DC. Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010; 192(14):3584-3596.
    [111]Ishikawa T, Rompikuntal PK, Lindmark B, Milton DL, Wai SN. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae 01 strains. PLoS One 2009; 4(8):e6734.
    [112]Khajanchi BK, Sha J, Kozlova EV, Erova TE, Suarez G, Sierra JC, Popov VL, Horneman AJ, Chopra AK. N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology 2009; 155(Pt 11):3518-3531.
    [113]Zheng J, Tung SL, Leung KY. Regulation of a type Ⅲ and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun 2005; 73(7):4127-4137.
    [114]Suarez G, Sierra JC, Kirtley ML, Chopra AK. Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology 2010; 156(Pt 12):3678-3688.
    [115]Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 2007; 9(7):797-803.
    [116]Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 2009; 191(21):6555-6570.
    [117]Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M. Hinton JC. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2006; 2(8):e81.
    [118]Castang S, McManus HR, Turner KH, Dove SL. H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci U S A 2008; 105(48):18947-18952.
    [119]Dudley EG, Thomson NR, Parkhill J, Morin NP, Nataro JP. Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol 2006; 61(5):1267-1282.
    [120]Cathelyn JS, Crosby SD. Lathem WW, Goldman WE, Miller VL. RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 2006; 103(36):13514-13519.
    [121]Kang Y, Nguyen DT, Son MS, Hoang TT. The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology 2008; 154(Pt 6):1584-1598.
    [122]Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T. Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 2008; 76(3):1016-1023.
    [123]Chao G, Jiao X, Zhou X, Wang F, Yang Z, Huang J, Pan Z, Zhou L, Qian X. Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis 2010; 7(6):649-658.
    [124]Hondo S, Goto I, Minematsu I, Ikeda N, Asano N, Ishibashi M, Kinoshita Y, Nishibuchi N, Honda T, Miwatani T. Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus. Lancet 1987; 1(8528):331-332.
    [125]Shirai H, Ito H, Hirayama T, Nakamoto Y, Nakabayashi N, Kumagai K, Takeda Y, Nishibuchi M. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun 1990:58(11):3568-3573.
    [126]Abolmaaty A, Vu C. Oliver J, Levin RE. Development of a new lysis solution for releasing genomic DNA from bacterial cells for DNA amplification by polymerase chain reaction. Microbios 2000; 101(400):181-189.
    [127]Vongxay K, He X, Cheng S, Zhou X, Shen B, Zhang G, Zhang Y, Fang W. Prevalence of Vibrio parahaemolyticus in seafood and their processing environments as detected by duplex PCR. J Sci Food Agric 2006; 86:1871-1877.
    [128]Vongxay K, Pan Z, Zhang X, Wang S, Cheng S, Mei L, Xu C, Fang W. Occurrence of pandemic clones of Vibrio parahaemolyticus isolates from seafood and clinical samples in a Chinese coastal province. Foodborne Pathog Dis 2008; 5(2):127-134.
    [129]Caburlotto G, Gennari M, Ghidini V, Tafi M, Lleo MM. Presence of T3SS2 and other virulence-related genes in tdh-negative Vibrio parahaemolyticus environmental strains isolated from marine samples in the area of the Venetian Lagoon, Italy. FEMS Microbiol Ecol 2009; 70(3):506-514.
    [130]Park KS, Iida T, Yamaichi Y, Oyagi T, Yamamoto K, Honda T. Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus. Infect Immun 2000; 68(10):5742-5748.
    [131]Merrell DS, Falkow S. Frontal and stealth attack strategies in microbial pathogenesis. Nature 2004; 430(6996):250-256.
    [132]Wang Q, Liu Q, Ma Y, Rui H, Zhang Y. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus. J Appl Microbiol 2007; 103(5):1525-1534.
    [133]Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorum sensing and a global regulator TsrA control expression of type Ⅵ secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107(49):21128-21133.
    [134]Okada N, Iida T, Park KS, Goto N, Yasunaga T, Hiyoshi H, Matsuda S, Kodama T, Honda T. Identification and characterization of a novel type Ⅲ secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect Immun 2009; 77(2):904-913.
    [135]Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275(2):992-998.
    [136]Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol 2004; 36(12):2491-2502.
    [137]Glick D, Barth S, Macleod KF. Autophagy:cellular and molecular mechanisms. J Pathol 2010;221(1):3-12.
    [138]Swanson MS, Isberg RR. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 1995; 63(9):3609-3620.
    [139]Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 2007; 7(10):767-777.
    [140]Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1):27-42.
    [141]Park KS, Ono T, Rokuda M, Jang MH, Iida T, Honda T. Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiol Immunol 2004; 48(4):313-318.
    [142]Burdette DL, Yarbrough ML, Orth K. Not without cause:Vibrio parahaemolyticus induces acute autophagy and cell death. Autophagy 2009; 5(1):100-102.
    [143]Lemos ML, Osorio CR. Heme, an iron supply for vibrios pathogenic for fish. Biometals 2007; 20(3-4):615-626.
    [144]Cascales E, Cambillau C. Structural biology of type Ⅵ secretion systems. Philos Trans R Soc Lond B Biol Sci 2012; 367(1592):1102-1111.
    [145]Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69:183-215.
    [146]Mascher T,Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2006; 70(4):910-938.
    [147]Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 2005; 55(4):1160-1182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700