用户名: 密码: 验证码:
猪繁殖与呼吸综合征病毒重组乳酸乳球菌粘膜免疫疫苗的构建及免疫原性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黏膜免疫系统是人和动物机体整个免疫网络的重要组成部分,又是具有独特结构和功能的独立免疫系统,在抵抗感染方面起着积极重要的作用。首先,黏膜表面与外界抗原(主要指病原微生物)接触,是机体抵抗感染的第一道防线;其次,黏膜免疫系统具有共同黏膜免疫共享机制,这一机制能将全身黏膜免疫状态达成一致;再次,黏膜免疫可同时诱发黏膜免疫和系统免疫应答。因此,黏膜免疫日益受到重视,改变免疫策略,设计黏膜免疫疫苗,对预防传染病的发生具有重要意义,也是传染病预防领域的新技术热点之一
     猪繁殖与呼吸综合征(Porcine reproductive and respiratory syndrome, PRRS)一直是危害世界养猪业比较严重的疾病,给世界养猪业造成巨大的经济损失。由于其病毒的致病特点,使目前的商品化疫苗存在着缺陷,不能完全阻止经呼吸系统及胎盘传播猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)。鉴于此,本研究结合PRRSV的致病特点、免疫特性及生物学特性探索性的设计黏膜免疫新型疫苗,对预防该病具有重要意义。试验选取PRRSV的ORF6基因作为目的基因,乳酸乳球菌乳链菌肽控制表达(nisin controlled expression, NICE)系统为抗原递呈载体,构建重组乳酸乳球菌活载体疫苗,并对其免疫反应原性及佐剂效力进行评价。主要研究工作和结果如下:
     1、试验将PRRSV经Marc-145细胞培养后,进行RT-PCR扩增,获得大小为515bp的抗原基因ORF6,将其克隆到PMD19-T载体后测序,核苷酸序列未发生变异。根据测序结果和乳酸乳球菌表面表达载体PNZ8149特点,设计引物,扩增并纯化出两端含有Sac Ⅰ和NcoⅠ酶切位点的PRRSV的ORF6基因片段,将纯化后的ORF6基因与表达载体pNZ8149进行连接,连接产物采用电转化方法将其转入食品级乳酸乳球菌NZ3900细胞中构建重组菌,命名为PNZ8149/NZ3900-M/PRRS。进一步对PNZ8149/NZ3900-M/PRRS进行诱导,诱导剂乳链杆菌肽(Nisin)添加量为10ng/mL诱导时间分别为2h、4h、6h、8h、10h和12h, SDS-PAGE分析,在19KD处出现了预期的条带,表达了分子量为19KD的蛋白,诱导6h条带比较清晰,是最佳的诱导时间。间接免疫荧光实验表明,重组菌表达蛋白定位于菌体细胞表面且具有反应原性。试验结果表明,成功构建了以乳糖为选择标记的食品级重组乳酸乳球菌PNZ8149/NZ3900-M/PRRS,为开发PRRSV的乳酸乳球菌黏膜免疫疫苗奠定了理论基础。
     2、将构建的重组乳酸乳球菌PNZ8149/NZ3900-M/PRRS免疫BALB/c小鼠,将小鼠随机分成4组(n=30),组Ⅰ鼻腔免疫PBS缓冲溶液,为空白对照组;组Ⅱ鼻腔免疫空载体菌株培养液,为载体对照组;组Ⅲ鼻腔免疫重组乳酸乳球菌PNZ8149/NZ3900-M/PRRS悬浮菌液,为鼻腔免疫实验组;组Ⅳ口服免疫重组乳酸乳球菌PNZ8149/NZ3900-M/PRRS悬浮菌液,为口服免疫实验组。各组试验动物被连续免疫(即:1d,2d,3d,11d、,12d,13d,21d,22d,23d),免疫剂量为50ul,悬浮菌液细菌含量为1×1011CFU/mL。试验动物在最后一次免疫后0d、7d、14d、21d、28d分别被处死,每次每组处死6只,取血液、肠粘液、呼吸道冲洗液检测抗体,采用间接ELISA方法检测血清中特异性IgG和黏膜中s-IgA抗体含量,评价其动态变化情况,并在最后一次免疫后14d取脾脏进行细胞因子IL-2、IL-4、IL-5、IL-10IFN-γ等活性检测。
     重组乳酸乳球菌经口服免疫和鼻腔免疫后均能刺激黏膜分泌特异性s-IgA,在整个免疫测定期间内,两试验组在呼吸道黏膜及消化道黏膜产生的特异性s-IgA抗体水平均极显著高于PBS对照组和载体对照组((P<0.01),两试验组间滴鼻免疫试验组高于口服试验组,且呼吸道黏膜s-IgA抗体水平差异极显著((P<0.01),消化道黏膜s-IgA抗体水平差异不显著(P>0.05)。在整个测定期间内粘膜抗体s-IgA保持稳定趋势,可能由于抗体测定时间比较迟或测定周期相对较短;同时在最后一次免疫后14天检测小鼠脾细胞悬液IL-5的活性,重组乳酸乳球菌PNZ8149/NZ3900-M/PRRS免疫组明显高于对照组,差异极显著(p<0.01),口服免疫组和滴鼻组无显著差异(p>0.05),IL-5的活性对黏膜免疫的调节起重要作用,协同其它细胞因子(如IL-2、IL-4、IL-6等)刺激B细胞的增殖与分化,促进活化的B细胞分化成IgA+B细胞,合成分泌型IgA。
     重组菌PNZ8149/NZ3900-M/PRRS免疫小鼠后,两试验组脾细胞悬液中IL-2和IFN-γ与对照组差异极显著(p<0.01),滴鼻免疫组IL-2和IFN-γ水平高于口服免疫组,滴鼻免疫实验组IL-2和IFN-γ水平分别达到349.848pg/ml和173.276pg/ml,口服免疫实验组IL-2和IFN-γ水平分别达到335.455pg/ml和162.913pg/ml;IL-4水平在各组之间差异不显著(p>0.05),但滴鼻免疫实验组略高于口服实验组,分别为21.466pg/ml和19.799pg/ml。
     重组菌试验组血清中特异性IgG抗体水显著高于PBS对照组和载体对照组,差异极显著((P<0.01);鼻腔免疫组抗体水平在最后一次免疫后7天达到最高,在整个测定时间内维持在高水平,口服免疫组抗体水平在最后一次免疫后21天达到最高水平,然后迅速下降。
     以上结果表明,重组菌PNZ8149/NZ3900-M/PRRS经口服及鼻腔免疫后,能诱导产生粘膜免疫反应,并同时激发Thl型系统免疫应答,即体液免疫和细胞免疫应答,并且滴鼻免疫途径优于口服免疫途径。
     3、将构建的重组乳酸乳球菌PNZ8149/NZ3900-M/PRRS抗原与黏膜佐剂CpG ODN联合鼻内免疫BALB/c小鼠,评价其佐剂效应。试验选取BALB/c小鼠90只,随机分为3组(n=30),分别为重组菌对照组(组Ⅰ)、佐剂+重组菌实验组(组Ⅱ)和佐剂对照组(组Ⅲ),佐剂免疫剂量每只小鼠为10ug,重组菌免疫剂量、免疫方法及检测指标同第二部分试验。结果得出CpG ODN佐剂协同重组菌抗原组血清特异性抗体IgG高于单独佐剂组和抗原组,呼吸道和肠道黏膜s-IgA水平高于单独佐剂组和抗原组,并且呼吸道黏膜s-IgA抗体水平高于肠道黏膜抗体;最后一次免疫后14天检测脾细胞悬液中IL-2、IFN-γ、IL-4及IL-5的活性。IL-2、IFN-γ和IL-5的活性佐剂CpG ODN协同重组菌抗原组高于单独抗原组(p>0.05),显著高于单独佐剂组(P<0.01);IL-4水平在各组之间差异不显著(p>0.05)。结果表明CpG ODN能协同重组菌提高小鼠黏膜免疫和系统免疫反应,为研究安全有效的重组菌黏膜疫苗奠定了基础。
The mucosal immune system is an important part of the entire immune network in human and animal body, and it is structurally and functionally divided into sites for antigen uptake and processing at inductive sites. The mucosal immune system play an important role in resisting to infection, First of all, mucosal s-IgA can form a barrier to pathogens at the mucosal surface by preventing the initial attachment of the pathogen and its infiltration of the surface layers or by binding to and neutralizing toxins that the pathogen produces, which is the first line of defending infection; Second, the mucosal immune system has a common mucosal immune mechanism which make systemic mucosal immunity status consistent. Against, the mucosal immune system must also be capable of inducing effective cell-mediated and antibody-mediated immune responses towards selected antigens. The information indicates that the mucosal immune is an only management strategies and a one of new technologies in the field of epidemics prevention.
     Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat, causing economically significant impacts on the swine industry worldwide. However none of the current commercial vaccines is able to completely prevent respiratory infection, trans-placental transmission, pig-to-pig transmission the virus nor maintaining immune protection in sows. We share the information related to PRRSV and review the available options for PRRS control strategies based on pathogenic characteristics, the immune properties and biological characteristics of PRRSV. In this study, the Nisin controlled expression (NICE) system of Lactococcus lactis was selected as vector of recombinant protein expression to express ORF6gene, the aim was to develop the gene engineering L.1acti mucosal vaccines of PRRSV, and evaluate immune activity and adjuvant effect. The results of research are summarized as following.
     1. In this study, the ORF6structural proteins gene of PRRSV)was amplified by RT-PCR. The ORF6gene was subcloned into the vector PMD19-T and sequenced, the gene consistion of515bp and the nucleotide sequence is not mutate. One pairs of primers was designed according to the nucleotide sequence and the vector PNZ8149characteristics. The DNA of the ORF6gene was amplified by PCR using PMD19-T-M as template, the PCR product with Sac I and Nco I restriction enzyme sites was inserted into vector PNZ8149, and transformed into L.1acti NZ3900by electroporation, result in recombinant strain PNZ8149/NZ3900-M/PRRS. Then, the recombinant protein was detected by Western blot and IFA experiments after the bacteria was respectively induced2h,4h,6h,8h,10h,12h by10ng/mL Nisin. The result indicated that the molecular weight of the expressed recombinant protein was about19kDa, protein bands is relatively clear at6h, the protein maintain the antigenicity of PRRSV as expected, moreover the protein was secreted and located on the surface of the bacteria. The result showed that we successfully constructed the food-grade recombinant L.1acti PNZ8149/NZ3900-M/PRRS in which the lactose operon, Furthermore, the recombinant protein was located on the surface of the bacteria and had reactogenicity with antibody against PRRSV. The study is expected to lay a theoretical foundation on developing of the gene engineering L. lacti s mucosal vaccines.
     2. To evaluate the changes of immune response of recombinant L.1acti PNZ8149/NZ3900-M/PRRS strain that expresses ORF6gene of PRRSV, BALB/c mice were immunized with the bacterial supernatant. Six to eight week old BAI B/C mice were randomly divided into four groups (group I, Ⅱ,Ⅲand Ⅳ, respectively), with each group consists of30animals. The control group I were immunized intranasally (i.n.) with50ul PBS, the control group Ⅱ were immunized i.n.with50ul L.lactis cell suspension (1011CFU) carrying the control vector, the experimental groupⅢ were vaccinated i.n. administration of50ul recombinant L.1actis cell suspension (1011CFU), the experimental groupIV were vaccinated orally (o.r) administration of50ul recombinant L.1acti s cell suspension (10"CFU). The mice were were vaccinated on days1,2,3,11,12, and13and on days21, 22, and23.)-The mice were respectively sacrificed on day23,30,37,44, and51, respectively. Blood samples, lung lavage fluid and intestinal washes were obtained on different days after immunization, IgG in serum and s-IgA in lung lavage fluid and intestinal washes were analyzed by using a similar enzyme-linked immunosorbent assay (ELISA). For the purpose of evaluating of changes about cytokines IL-2、IL-4、IL-5、 IL-10and IFN-y, the spleen collected on day37were analyzed.
     The results clearly shows that mice immunized with recombinant strain PNZ8149/NZ3900-M/PRRS could induce remarkable special s-IgA in intestinal washes and lung lavage fluid, at the whole experimental session, compared with the control group Ⅰ and Ⅱ, the level of special s-IgA showed significantly increase ((P<0.01), the production of the s-IgA antibody in lung lavage fluid from the i.n immunized mice was higher significantly than that from the o.r immunized mice ((P<0.01), the production of the s-IgA antibody in intestinal washes from the i.n immunized mice was higher than the o.r immunized mice ((P<0.05). The s-IgA antibody from the immunized mice get it's maximum number and maintain a stable trend at the whole experimental session, it is possible that the measurement time of s-IgA is late or the detection cycle is short. Cytokines IL-5responses play an important role in inducing s-IgA antibody responses, therefore, we examined the activity of IL-5in splenocytes on day37, there was significant production of IL-5in mice administered with recombinant strain by the way of oral and intranasal, but the production of IL-5in intranasal immunized mice was no significant compared to that from the oral immunized mice ((P>0.05).
     To assess cell responses induced by recombinant L.1actis expressing ORF6gene of PRRSV, we investigated the activity of IL-2and IFN-y in splenocytes on day37. IL-2and IFN-y contents of the experimental groupIIIandIV were significant higher than those of the control group I and II (P<0.01), furthermore the i.n immunized mice was higher significantly than that from the o.r immunized mice (P<0.01), IL-2and IFN-y contents in splenocytes from mice immunized intranasally was respectively349.848pg/ml and173.276pg/ml. as well as, IL-2and IFN-y contents in splenocytes from mice immunized orally was respectively335.455pg/ml and162.913pg/ml. Notably, it is worthy to note that cytokines of IL-4contents was not different to the all groups.
     IgG anti-PRRSV was detected in serum, in contrast, the level of special IgG was higher significantly following experimental groupⅢ and Ⅳ compared to the control group Ⅰ and Ⅱ((P<0.01) at all time points the i.n immunized mice get it's maximum number on day30, which lasted at least4weeks post-immunization; as well as the o.r immunized mice get it's maximum number on day44, following decreased rapidly. Regretful, the titer of IgG was not investigated, for the reason that whether is able to resistant to the virus.
     All the results indicated that mice immunized by the recombinant L.1actis expressing ORF6gene of PRRSV can significantly induce mucosal immune responses, humoral immunity responses and enhanced Thl immunity response against the PRRSV, in contrast, Intranasal immunization is superior to oral immunization.
     3. Oligonucleotides containing CpG motifs (CpG ODN) are strong adjuvant for immune responses, particularly in mice. Recently, it has been showed that CpG ODN is a promising mucosal adjuvant, but data on mucosal immune responses induced by CpG ODN plus the recombinant L.1actis are scarce. To investigate the immune responses induced by intranasal immunization, with some doses of CpG ODN plus the recombinant L.lactis expressing ORF6gene of PRRSV antigen. Six to eight week old BAI B/C mice were randomly divided into three groups (group Ⅰ, Ⅱ, andⅢ, respectively), with each group consists of30animals. The control group Ⅰ were immunized i.n. administration of50ul recombinant L.1actis cell suspension (1011CFU), the experimental groupⅡ were immunized i.n.10ul CpG ODN plus50ul administration of recombinant L.1actis cell suspension, the control groupⅢ were vaccinated i.n.10ul CpG ODN. Immunization dose, immunological methods and indicators detected in common with the second part of the test. The results clearly show that CpG ODN promoted the induction of IgG antibody in serum and s-IgA antibody in intestinal washes and lung lavage fluid. And the production of the s-IgA antibody in lung lavage fluid of immunized mice was higher than that in intestinal washes; the activity of cytokines IL-2and IFN-γ in splenocytes on day37were investigated, in compared with the control group Ⅰ, the activity of cytokines IL-2and IFN-γ in CpG ODN plus recombinant L.1actis were increased, and higher significantly than that of the control groupⅢ(p<0.01). Results from this study indicate that stimulatory CpG ODN may be effective as a mucosal adjuvant with the recombinant L.1actis expressing ORF6gene of PRRSV antigen. The study is expected to lay a theoretical foundation on the adjuvant about recombinant strain vaccine.
引文
[1]高杰英.黏膜免疫向免疫学提出了新问题[J].上海免疫学杂志.2000,20(5):257-259.
    [2]李国平,杨恬.黏膜免疫系统的研究进展[J].细胞与分子免疫学杂志.2001,17(6):594-596.
    [3]Holmgren J, Czerkinsky C. Mucosal immunity and vaccines[J]. Nature medicine.2005,11:45-53.
    [4]Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries[J]. Vaccine.2005,23(26):3369-3385.
    [5]Paiardini M, Frank I, Pandrea I et al. Mucosal immune dysfunction in AIDS pathogenesis[J]. Aids Rev.2008,10(1):36-46.
    [6]Ashkenazi S, Vertruyen A, Aristegui J et al. Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections[J]. The Pediatric infectious disease journal.2006,25(10):870.
    [7]Chen Z, Aspelund A, Kemble G et al. Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist(?))[J]. Virology. 2006,345(2):416-423.
    [8]Fleming DM, Crovari P, Wahn U et al. Comparison of the efficacy and safety of live attenuated cold-adapted influenza vaccine, trivalent, with trivalent inactivated influenza virus vaccine in children and adolescents with asthma[J]. The Pediatric infectious disease journal.2006,25(10): 860.
    [9]Belshe R, Lee MS, Walker RE et al. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine[J]. Expert review of vaccines.2004,3(6):643-654.
    [10]Han YW, Kim SB, Rahman M et al. Systemic and mucosal immunity induced by attenuated Salmonella enterica serovar Typhimurium expressing ORF7 of porcine reproductive and respiratory syndrome virus[J]. Comparative immunology, microbiology and infectious diseases. 2011.
    [11]Organization WH. Cholera vaccines:WHO position paper[J]. Wkly Epidemiol Rec.2010,85(13): 117-128.
    [12]Lucas MES, Deen JL, Von Seidlein L et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique[J]. New England Journal of Medicine.2005,352(8):757-767.
    [13]Yang HH, Kilgore PE, Yang LH et al. An outbreak of typhoid fever, Xing-An County, People's Republic of China,1999:estimation of the field effectiveness of Vi polysaccharide typhoid vaccine[J]. Journal of Infectious Diseases.2001,183(12):1775-1780.
    [14]Svennerholm AM, Steele D. Progress in enteric vaccine development[J]. Best Practice & Research Clinical Gastroenterology.2004,18(2):421-445.
    [15]De Vos B, Vesikari T, Linhares AC et al. A rotavirus vaccine for prophylaxis of infants against rotavirus gastroenteritis[J]. The Pediatric infectious disease journal.2004,23(10):179.
    [16]Hou XL, Yu LY, Liu J. Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies[J]. Veterinary microbiology.2007,123(1):86-92.
    [17]余丽芸,赵志刚,侯喜林et al.乳酸菌表面表达PEDV S1蛋白的研究[J].黑龙江八一农垦大学学报.2008,20(4):45-47.
    [18]高慎阳,李一经.猪流行性腹泻病毒重组M蛋白膜外区原核表达IPTG最佳诱导条件的确定[J].中国畜禽种业.2008,4(007):75-76.
    [19]唐丽杰,欧笛,葛俊伟et al.表达猪传染性胃肠炎病毒S基因的重组乳酸乳球菌的构建及免疫原性分析[J].微生物学报.2007,47(2):340-344.
    [20]Pun PB, Bhat AA, Mohan T et al. Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses[J]. International immunopharmacology.2009,9(4):468-477.
    [21]Bogers WMJM, Davis D, Baak I et al. Systemic neutralizing antibodies induced by long interval mucosally primed systemically boosted immunization correlate with protection from mucosal SHIV challenge[J]. Virology.2008,382(2):217-225.
    [22]徐义刚,崔丽春,葛俊伟et al.表达猪细小病毒VP2蛋白的重组干酪乳杆菌诱导小鼠产生特异性抗体[J].中国农业科学.2008,41(3):846-851.
    [23]Velge-Roussel F, Marcelo P, Lepage A et al. Intranasal immunization with Toxoplasma gondii SAG1 induces protective cells into both NALT and GALT compartments[J]. Infection and immunity.2000,68(2):969-972.
    [24]Bonenfant C, Dimier-Poisson I, Velge-Roussel F et al. Intranasal Immunization with SAG1 and Nontoxic Mutant Heat-Labile Enterotoxins Protects Mice againstToxoplasma gondii[J]. Infection and immunity.2001,69(3):1605-1612.
    [25]何宏轩,张西臣.微小隐孢子虫CP15/60-DNA滴鼻免疫小鼠诱导的黏膜与系统免疫反应[J].中国农业大学学报.2002,7(5):112-116.
    [26]黄复深,易新元.重组日本血吸虫铁蛋白黏膜免疫诱导小鼠保护力的研究[J].中国寄生虫学与寄生虫病杂志.2003,21(1):37-41.
    [27]Baras B, Benoit MA, Poulain-Godefroy O et al. Vaccine properties of antigens entrapped in microparticles produced by spray-drying technique and using various polyester polymers[J]. Vaccine.2000,18(15):1495-1505.
    [28]Lebens M, Sun JB, Sadeghi H et al. A mucosally administered recombinant fusion protein vaccine against schistosomiasis protecting against immunopathology and infection[J]. Vaccine. 2003,21(5-6):514-520.
    [29]孟晓丽,殷国荣,张建红et al.弓形虫复合黏膜疫苗滴鼻免疫小鼠诱导的Peyer's patches持续性细胞免疫应答[J].中国病原生物学杂志.2008,3(1):27-30.
    [30]舒翠莉,高杰英.鼻黏膜相关淋巴组织的研究进展[J].免疫学杂志.2009,(z1):78-81.
    [31]Gentschev I, Dietrich G, Spreng S et al. Delivery of protein antigens and DNA by virulence-attenuated strains of< i> Salmonella typhimurium and< i> Listeria monocytogenes[J]. Journal of biotechnology.2000,83(1):19-26.
    [32]Shata MT, Reitz Jr MS, DeVico AL et al. Mucosal and systemic HIV-1 Env-specific CD8< sup>+ T-cells develop after intragastric vaccination with a< i> Salmonella Env DNA vaccine vector[J]. Vaccine.2001,20(3):623-629.
    [33]刘明秋.用沙门菌作为重组活疫苗载体的研究进展[J].国外医学:预防.诊断.治疗用生物制品分册.2001,24(4):148-151.
    [34]Thoreux K, Schmucker DL. Kefir milk enhances intestinal immunity in young but not old rats[J]. The Journal of nutrition.2001,131(3):807-812.
    [35]李芳,李永明,徐子伟et al.乳酸乳球菌作为基因工程受体菌研究进展[J].生物技术通报.2010,(005):61-64.
    [36]Wu CM, Lin CF, Chang YC et al. Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri[J]. Bioscience, biotechnology, and biochemistry.2006,70(4):757-767.
    [37]Zhou XX, Li WF, Ma GX et al. The nisin-controlled gene expression system:construction, application and improvements[J]. Biotechnology advances.2006,24(3):285-295.
    [38]Dieye Y, Usai S, Clier F et al. Design of a protein-targeting system for lactic acid bacteria[J]. Journal of bacteriology.2001,183(14):4157-4166.
    [39]Grangette C, Muller-Alouf H, Goudercourt D et al. Mucosal Immune Responses and Protection against Tetanus Toxin after Intranasal Immunization with RecombinantLactobacillus plantarum[J]. Infection and immunity.2001,69(3):1547-1553.
    [40]陈思维,钟瑾,还连栋.人胰岛素基因在乳酸菌中的表达及其对非肥胖糖尿病(NOD)小鼠的作用[J].微生物学报.2007,47(6):987-991.
    [41]Aires KA, Cianciarullo AM, Carneiro SM et al. Production of human papillomavirus type 16 LI virus-like particles by recombinant Lactobacillus casei cells[J]. Applied and environmental microbiology.2006,72(1):745-752.
    [42]Holmgren J, Adamsson J, Anjuere F et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA[J]. Immunology letters.2005,97(2):181-188.
    [43]McCluskie MJ, Weeratna RD, Davis HL. Intranasal immunization of mice with CpG DNA induces strong systemic and mucosal responses that are influenced by other mucosal adjuvants and antigen distribution [J]. Molecular Medicine.2000,6(10):867-877.
    [44]Tumpey T, Clements J, Katz J. Mucosal vaccination protects mice against influenza A heterosubtypic challenge. In; 2001:Elsevier; 2001. p.985-992.
    [45]王星,覃宗华,刘定发.大肠杆菌不耐热肠毒素的分子生物学及黏膜免疫佐剂效应[J].广东畜牧兽医科技.2005,30(004):18-21.
    [46]Pizza M, Giuliani M, Fontana M et al. Mucosal vaccines:non toxic derivatives of LT and CT as mucosal adjuvants[J]. Vaccine.2001,19(17):2534-2541.
    [47]Hacker G, Redecke V, Hacker H. Activation of the immune system by bacterial CpG-DNA[J]. Immunology.2002,105(3):245-251.
    [48]Takeshita F, Gursel I, Ishii KJ et al. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. In; 2004:Elsevier; 2004. p.17-22.
    [49]唐丽,许立博,赵玉军CpG ODN的免疫作用机制及其应用现状[J].甘肃畜牧兽医.2009,(003):40-44.
    [50]Klinman DM. Adjuvant activity of CpG oligodeoxynucleotides[J]. International reviews of immunology.2006,25(3-4):135-154.
    [51]Malanchere-Bres E, Payette P, Mancini M et al. CpG oligodeoxynucleotides with hepatitis B surface antigen (HBsAg) for vaccination in HBsAg-transgenic mice[J]. Journal of virology.2001, 75(14):6482-6491.
    [52]Lefeber DJ, Benaissa-Trouw B, Vliegenthart JFG et al. Thl-directing adjuvants increase the immunogenicity of oligosaccharide-protein conjugate vaccines related to Streptococcus pneumoniae type 3[J]. Infection and immunity.2003,71(12):6915-6920.
    [53]Mendez S, Tabbara K, Belkaid Y et al. Coinjection with CpG-containing immunostimulatory oligodeoxynucleotides reduces the pathogenicity of a live vaccine against cutaneous leishmaniasis but maintains its potency and durability[J]. Infection and immunity.2003,71(9): 5121-5129.
    [54]石艳春,杨贵贞CpG ODN对rHBsAg免疫小鼠淋巴细胞增殖反应的影响[J].中国免疫学杂志.2005,21(11):808-810.
    [55]Klinman DM, Klaschik S, Sato T et al. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases[J]. Advanced drug delivery reviews.2009,61(3):248-255.
    [56]Van der Stede Y, Verdonck F, Vancaeneghem S et al. CpG-oligodinucleotides as an effective adjuvant in pigs for intramuscular immunizations[J]. Veterinary immunology and immunopathology.2002,86(1-2):31-41.
    [57]张玲华,田兴山,邝哲师et al. CpG序列对猪伪狂犬疫苗免疫效果的影响[J].中国畜牧兽医.2004,31(003):37-39.
    [58]温建新,王金宝.含CpG序列PRRSV ORF5基因真核质粒对猪体免疫作用研究[J].中国免疫学杂志.2008,24(10):925-930.
    [59]田兴山,张玲华,周风珍.人工合成免疫刺激CpG DNA联合鸡新城疫疫苗对SPF鸡免疫应答的影响[J].中国兽医学报.2006,26(1):14-16.
    [60]Lopez A, Hecker R, Mutwiri G et al. Formulation with CpG ODN enhances antibody responses to an equine influenza virus vaccine[J]. Veterinary immunology and immunopathology.2006, 114(1):103-110.
    [61]Jenkins M, Parker C, Tuo W et al. Inclusion of CpG adjuvant with plasmid DNA coding for NcGRA7 improves protection against congenital neosporosis[J]. Infection and immunity.2004, 72(3):1817-1819.
    [62]Tighe H, Takabayashi K, Schwartz D et al. Conjugation of protein to immunostimulatory DNA results in a rapid, long-lasting and potent induction of cell-mediated and humoral immunity[J]. European journal of immunology.2000,30(7):1939-1947.
    [63]Shirota H, Sano K, Hirasawa N et al. B cells capturing antigen conjugated with CpG oligodeoxynucleotides induce Thl cells by elaborating IL-12[J]. The Journal of Immunology. 2002,169(2):787-794.
    [64]石蓉,殷国荣,管志玉et al.不同剂量CpG ODN联合STAg鼻内免疫BALB/c小鼠诱导的免疫应答[J].世界感染杂志.2006,6(2):118-121.
    [65]王冠,段广才,郗园林et al.黏膜佐剂mLT63及CpG-ODN鼻内免疫的佐剂作用[J].中国生物制品学杂志.2007,20(8):566-569.
    [66]Krieg AM. Now I know my CpGs[J]. Trends in microbiology.2001,9(6):249-252.
    [67]石蓉,殷国荣.CpG寡核苷酸作为黏膜佐剂的研究进展[J].国际医学寄生虫病杂志ISTIC.2006,33(1).
    [68]McCluskie MJ, Weeratna RD, Clements JD et al. Mucosal immunization of mice using CpG DNA and/or mutants of the heat-labile enterotoxin of Escherichia coli as adjuvants[J]. Vaccine. 2001,19(27):3759-3768.
    [69]郭桐生,冯强,郭刚et al. CpG基序对幽门螺杆菌疫苗的免疫佐剂效应实验研究[J].第三军医大学学报.2004,26(3):238-341.
    [70]Alignani D, Maletto B, Liscovsky M et al. Orally administered OVA/CpG-ODN induces specific mucosal and systemic immune response in young and aged mice[J]. Journal of leukocyte biology. 2005,77(6):898-905.
    [71]Shi T, Liu W, Gao F et al. Intranasal CpG-Oligodeoxynucleotide is a Potent Adjuvant of Vaccine against Helicobacter pylori, and T Helper 1 Type Response and Interferon-y Correlate with the Protection[J]. Helicobacter.2005,10(1):71-79.
    [72]Kwant A, Rosenthal KL. Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2[J]. Vaccine.2004,22(23-24): 3098-3104.
    [73]Harandi AM. The potential of immunostimulatory CpG DNA for inducing immunity against genital herpes:opportunities and challenges[J]. Journal of clinical virology.2004,30(3): 207-210.
    [74]Lee S, Gierynska M, Eo SK et al. Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus[J]. Microbes and infection.2003,5(7):571-578.
    [75]Eo SK, Lee S, Kumaraguru U et al. Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands[J]. Vaccine.2001,19(32): 4685-4693.
    [76]张林波.黏膜佐剂的研究进展[J].国外医学:免疫学分册.2003,26(4):169-172.
    [77]周红莉,郭丽,王健伟et al.黏膜免疫佐剂研究进展[J].中国生物工程杂志.2006,26(003): 83-88.
    [78]Peters C, Peng X, Douven D et al. The induction of HI V Gag-specific CD8+T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant Listeria monocytogenes HIV Gag[J]. The Journal of Immunology.2003,170(10):5176-5187.
    [79]Evans DT, Chen LM, Gillis J et al. Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system[J]. Journal of virology.2003,77(4):2400-2409.
    [80]Batista L, Pijoan C, Dee S et al. Virological and immunological responses to porcine reproductive and respiratory syndrome virus in a large population of gilts[J]. Canadian journal of veterinary research.2004,68(4):267.
    [81]Meng X. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development[J]. Veterinary microbiology.2000, 74(4):309-329.
    [82]Murtaugh MP, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection[J]. Viral immunology.2002,15(4): 533-547.
    [83]Blaha T. The" colorful" epidemiology of PRRS[J]. Veterinary research.2000,31(1):77-83.
    [84]Fang Y, Schneider P, Zhang W et al. Diversity and evolution of a newly emerged North American Type 1 porcine arterivirus:analysis of isolates collected between 1999 and 2004[J]. Archives of virology.2007,152(5):1009-1017.
    [85]Forsberg R. Divergence time of porcine reproductive and respiratory syndrome virus subtypes[J]. Molecular biology and evolution.2005,22(11):2131-2134.
    [86]Yuan S, Mickelson D, Murtaugh MP et al. Complete genome comparison of porcine reproductive and respiratory syndrome virus parental and attenuated strains[J]. Virus research.2001,74(1-2): 99-110.
    [87]Nielsen J, B(?)tner A, Bille-Hansen V et al. Experimental inoculation of late term pregnant sows with a field isolate of porcine reproductive and respiratory syndrome vaccine-derived virus[J]. Veterinary microbiology.2002,84(1):1-13.
    [88]Oleksiewicz M, B(?)tner A, Toft P et al. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants:correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein[J]. Virology.2000,267(2):135-140.
    [89]Oleksiewicz M, Botner A, Toft P et al. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display:the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes[J]. Journal of virology.2001,75(7):3277-3290.
    [90]Oleksiewicz MB, B(?)tner A, Normann P. Porcine B-cells recognize epitopes that are conserved between the structural proteins of American-and European-type porcine reproductive and respiratory syndrome virus[J]. Journal of General Virology.2002,83(6):1407-1418.
    [91]Dea S, Wilson L, Therrien D et al. Competitive ELISA for detection of antibodies to porcine reproductive and respiratory syndrome virus using recombinant E. coli-expressed nucleocapsid protein as antigen[J]. Journal of virological methods.2000,87(1-2):109-122.
    [92]Rodriguez MJ, Sarraseca J, Fominaya J et al. Identification of an immunodominant epitope in the C terminus of glycoprotein 5 of porcine reproductive and respiratory syndrome virus[J]. Journal of General Virology.2001,82(5):995-999.
    [93]Wissink E, Kroese M, Maneschijn-Bonsing J et al. Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GP5 for infectious virus production[J]. Journal of General Virology.2004,85(12):3715-3723.
    [94]周艳君,仇华吉.猪繁殖—呼吸综合征病毒研究进展[J].预防兽医学进展.2000,2(3):12-15.
    [95]Ostrowski M, Galeota J, Jar A et al. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain[J]. Journal of virology. 2002,76(9):4241-4250.
    [96]Lopez O, Osorio F. Role of neutralizing antibodies in PRRSV protective immunity[J]. Veterinary immunology and immunopathology.2004,102(3):155-163.
    [97]Mateu E, Diaz I. The challenge of PRRS immunology[J]. The Veterinary Journal.2008,177(3): 345-351.
    [98]侯艳红,周艳君,闫丽萍et al.猪泛素基因与PRRSV GP5基因融合表达质粒的构建及其免疫效果[J].中国兽医科学.2007,37(5):413-418.
    [99]颜其贵,张传斌,郭万柱et al.猪繁殖与呼吸综合征病毒SCQ株ORF5基因在E. coli中表达的初步研究[J].黑龙江畜牧兽医.2007,(7):29-31.
    [100]党占国,李志勇,夏平安et al.猪繁殖和呼吸综合症病毒河南地方株ORF5/6基因的克隆及真核表达[J].畜牧兽医科技信息.2008,(8):22-25.
    [101]郑其升,李鹏,曹瑞兵et al.共表达PRRSV修饰的GP5与M蛋白的重组改良型痘苗病毒安卡拉株的构建及其生物学特性[J].生物工程学报.2008,24(5):766-773.
    [102]程安春,汪铭书,陈希文et al.不同剂量猪繁殖与呼吸综合征病毒ORF5基因疫苗肌肉注射诱导仔猪细胞免疫的研究[J].中国预防兽医学报.2009,31(4):296-299.
    [103]牛登元,王一成,袁秀芳et al. PRRSV浙江株ORF5基因的原核表达与免疫原性分析[J].浙江农业学报.2009,21(002):126-129.
    [104]尹国友,孙婕,黄保续.猪繁殖与呼吸综合征病毒ORF5基因的克隆与原核表达[J].动物医学进展.2009,30(012):63-66.
    [105]Kim TS, Benfield DA, Rowland RRR. Porcine reproductive and respiratory syndrome virus-induced cell death exhibits features consistent with a nontypical form of apoptosis[J]. Virus research.2002,85(2):133-140.
    [106]Wissink E, Kroese M, Van Wijk H et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus[J]. Journal of virology.2005,79(19):12495-12506.
    [107]Delputte P, Costers S, Nauwynck H. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin[J]. Journal of General Virology.2005,86(5):1441-1445.
    [108]Delputte P, Vanderheijden N, Nauwynck H et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J]. Journal of virology.2002,76(9):4312-4320.
    [109]Yang L, Frey M, Yoon KJ et al. Categorization of North American porcine reproductive and respiratory syndrome viruses:epitopic profiles of the N, M, GP5 and GP3 proteins and susceptibility to neutralization[J]. Archives of virology.2000,145(8):1599-1619.
    [110]周艳君,田志军,刘金霞et al. 猪繁殖与呼吸综合征病毒M蛋白B细胞抗原表位的鉴定[J].中国预防兽医学报.2009,31(4):251-255.
    [111]薛江东,马国文,袁宝et al.猪繁殖与呼吸综合征病毒M蛋白基因疫苗的构建及在小鼠的免疫试验[J].内蒙古民族大学学报:自然科学版.2007,21(6):649-652.
    [112]郑其升,毕志香,李鹏et al.共表达猪呼吸与繁殖障碍综合征病毒NJ-a株ORF4,ORF5与ORF6基因重组改良型痘苗病毒安卡拉株的构建[J].微生物学报.2007,47(2):345-349.
    [113]王娇,孙继国,陈赛娟etal.猪繁殖与呼吸综合征病毒河北地方株ORF6基因的克隆及原核表达[J].中国动物检疫.2009,26(004):34-36.
    [114]陈声,杨汉春PRRS病毒M蛋白在大肠埃希氏菌中的高效表达[J].中国兽医科技.2001,31(005):6-8.
    [115]Jeong HJ, Song YJ, Lee SW et al. Comparative measurement of cell-mediated immune responses of swine to the M and N proteins of porcine reproductive and respiratory syndrome virus[J]. Clinical and Vaccine Immunology.2010,17(4):503-512.
    [116]汤景元,姜平,蒋文明et al.表达PRRSV M蛋白重组腺病毒的构建及其免疫特性研究[J].中国病毒学.2005,20(6):618-622.
    [117]张治涛,李玉峰,姜平et al. PRRSV GP5和M蛋白重组腺病毒对猪的安全性和免疫效力[J].农业生物技术学报.2006,14(003):312-318.
    [118]张治涛.猪繁殖与呼吸综合征病毒GP5和M蛋白重组腺病毒对猪体安全性和免疫效力研究:南京:南京农业大学;2006.
    [119]周井祥,薛江东,张嘉保et al.猪繁殖与呼吸综合征病毒GP5,M蛋白基因核酸疫苗表达质粒的构建及其免疫原性[J].中国生物制品学杂志.2009,22(003):217-220.
    [120]韩松,金宁一,鲁会军etal.表达猪繁殖与呼吸综合征病毒ORF5/ORF6基因重组鸡痘病毒的构建与小鼠免疫试验[J].中国兽医学报.2010,(001):1-5.
    [121]Wootton SK, Yoo D. Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages[J]. Journal of virology. 2003,77(8):4546-4557.
    [122]Lee C, Yoo D. Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity[J]. Journal of General Virology. 2005,86(11):3091-3096.
    [123]梁望旺,熊忠良,刘泽文et al.猪繁殖与呼吸综合征病毒HBKM2株ORF7基因的克隆,序列分析及原核表达[J].安徽农业科学.2009,37(035):17406-17408.
    [124]夏平安,尹彦涛,李素平et al.猪繁殖与呼吸综合征病毒重组N蛋白的高效表达及间接ELISA方法的建立[J].中国兽医学报.2009,29(005):537-541.
    [125]Brown E, Lawson S, Welbon C et al. Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types Ⅰ and Ⅱ[J]. Clinical and Vaccine Immunology.2009,16(5): 628-635.
    [126]薛强,邹明强,童光志.病毒感染的抗体依赖性增强作用及其机制[J].中国预防兽医学报.2008,30(9):743-746.
    [127]Christianson WT, Choi CS, Collins JE et al. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses[J]. Canadian journal of veterinary research.1993,57(4):262.
    [128]Mortensen S, Stryhn H, Sogaard R et al. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus[J]. Preventive veterinary medicine.2002, 53(1):83-101.
    [129]Christopher-Hennings J, Nelson EA, Althouse GC et al. Comparative antiviral and proviral factors in semen and vaccines for preventing viral dissemination from the male reproductive tract and semen[J]. Animal Health Research Reviews.2008,9(1):59-70.
    [130]Laohasittikul P, Boonarpha N, Pongprapachuen Y et al. Antigen distribution of porcine reproductive and respiratory syndrome virus (PRRSV) in Thai crossbred pigs using immunohistochemistryfJ]. Wetchasan Sattawaphaet.2004,34.
    [131]Suradhat S, Kesdangsakonwut S, Sada W et al. Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccinefJ]. Vaccine.2006,24(14):2634-2642.
    [132]Cho JG, Dee SA. Porcine reproductive and respiratory syndrome virus[J]. Theriogenology. 2006,66(3):655-662.
    [133]Kang I, Ha Y, Kim D et al. Localization of porcine reproductive and respiratory syndrome virus in mammary glands of experimentally infected sows[J]. Research in veterinary science.2010, 88(2):304-306.
    [134]Labarque GG, Nauwynck HJ, Van Reeth K et al. Effect of cellular changes and onset of humoral immunity on the replication of porcine reproductive and respiratory syndrome virus in the lungs of pigs[J]. Journal of General Virology.2000,81(5):1327-1334.
    [135]Xiao Z, Batista L, Dee S et al. The level of virus-specific T-cell and macrophage recruitment in porcine reproductive and respiratory syndrome virus infection in pigs is independent of virus load[J]. Journal of virology.2004,78(11):5923-5933.
    [136]Kimman TG, Cornelissen LA, Moormann RJ et al. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology[J]. Vaccine.2009,27(28):3704-3718.
    [137]Thanawongnuwech R, Brown G, Halbur P et al. Pathogenesis of porcine reproductive and respiratory syndrome virus-induced increase in susceptibility to Streptococcus suis infection[J]. Veterinary Pathology Online.2000,37(2):143.
    [138]Thanawongnuwech R, Thacker B, Halbur P et al. Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae[J]. Clinical and diagnostic laboratory immunology.2004,11(5): 901-908.
    [139]Kitikoon P, Vincent AL, Jones KR et al. Vaccine efficacy and immune response to swine influenza virus challenge in pigs infected with porcine reproductive and respiratory syndrome virus at the time of SIV vaccination[J]. Veterinary microbiology.2009,139(3):235-244.
    [140]Puranaveja S, Poolperm P, Lertwatcharasarakul P et al. Chinese-like strain of porcine epidemic diarrhea virus, Thailand[J]. Emerging infectious diseases.2009,15(7):1112.
    [141]Wu J, Li J, Tian F et al. Genetic variation and pathogenicity of highly virulent porcine reproductive and respiratory syndrome virus emerging in China[J]. Archives of virology.2009, 154(10):1589-1597.
    [142]Li Y, Wang X, Bo K et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China[J]. The Veterinary Journal.2007, 174(3):577-584.
    [143]Thanawongnuwech R, Suradhat S. Taming PRRSV:Revisiting the control strategies and vaccine design[J]. Virus research.2010,154(1):133-140.
    [144]Zhou L, Zhang J, Zeng J et al. The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence[J]. Journal of virology.2009,83(10):5156-5167.
    [145]Amonsin A, Kedkovid R, Puranaveja S et al. Comparative analysis of complete nucleotide sequence of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Thailand (US and EU genotypes)[J]. Virol J.2009,6:143.
    [146]Li G, Jiang P, Li Y et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine[J]. Antiviral research.2009,82(3):157-165.
    [147]Vanhee M, Delputte PL, Delrue I et al. Development of an experimental inactivated PRRSV vaccine that induces virus-neutralizing antibodies[J]. Veterinary research.2009,40(6):63-63.
    [148]Zuckermann FA, Garcia EA, Luque ID et al. Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge[J]. Veterinary microbiology.2007,123(1):69-85.
    [149]胡守萍,张卓,蔡雪辉 et al.猪繁殖与呼吸综合征病毒弱毒疫苗和变异株灭活疫苗的免疫 效果评价[J].中国预防兽医学报.2009,(005):392-396.
    [150]Luo R, Xiao S, Jiang Y et al. Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-[beta] production by interfering with the RIG-I signaling pathway[J]. Molecular immunology.2008,45(10):2839-2846.
    [151]Calzada-Nova G, Schnitzlein W, Husmann R et al. Characterization of the cytokine and maturation responses of pure populations of porcine plasmacytoid dendritic cells to porcine viruses and toll-like receptor agonists[J]. Veterinary immunology and immunopathology.2010, 135(1-2):20-33.
    [152]Charerntantanakul W. Adjuvants for porcine reproductive and respiratory syndrome virus vaccines[J]. Veterinary immunology and immunopathology.2009,129(1-2):1-13.
    [153]Kim WI, Yoon KJ. Molecular assessment of the role of envelope-associated structural proteins in cross neutralization among different PRRS viruses[J]. Virus genes.2008,37(3):380-391.
    [154]Lopez O, Oliveira M, Garcia EA et al. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRS V-neutralizing antibodies is dose dependent[J]. Clinical and Vaccine Immunology.2007,14(3):269-275.
    [155]Osorio FA, Galeota J, Nelson E et al. Passive transfer of virus-specific antibodies confers protection against reproductive failure induced by a virulent strain of porcine reproductive and respiratory syndrome virus and establishes sterilizing immunity[J]. Virology.2002,302(1): 9-20.
    [156]Diaz I, Darwich L, Pappaterra G et al. Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs[J]. Virology.2006,351(2):249-259.
    [157]万谦,曹健,吴兴泉et al.乳酸菌天然质粒提取方法的优化[J].中国生物工程杂志.2010,30(2):94-99.
    [158]张小娟,张荣光,段广才et al.乳酸乳球菌NZ3900电转化条件的优化[J].山东医药.2010,50(011):53-55.
    [159]郑其升,杨瑞锋,毕志香et al.猪繁殖与呼吸综合征病毒NJ-a株ORF6基因的表达及特异性抗体的制备[J].南京农业大学学报.2008,31(002):154-158.
    [160]Mierau I, Leij P, Van Swam I et al. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE:the case of lysostaphin[J]. Microbial Cell Factories.2005,4(1):15.
    [161]Mierau I, Olieman K, Mond J et al. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications[J]. Microbial Cell Factories.2005,4(1):16.
    [162]张光一,李树立,刘增然.食品级乳酸工程菌的研究进展[J].食品与发酵工业.2005,31(006):73-75.
    [163]唐丽杰,徐毅刚,葛俊伟et al.乳酸乳球菌NZ9000在小鼠体内的定植研究[J].中国乳品工业.2007,35(7):11-12.
    [164]S(?)rensen KI, Larsen R, Kibenich A et al. A food-grade cloning system for industrial strains of Lactococcus lactis[J]. Applied and environmental microbiology.2000,66(4):1253-1258.
    [165]朱向东,徐波.乳酸菌蛋白质分泌表达研究进展[J].中国微生态学杂志.2008,20(1):91-92.
    [166]史达,宋岩,李一经.乳酸乳球菌作为黏膜免疫活载体疫苗传递抗原的研究进展[J].微生物学报.2006,46(4):680-683.
    [167]Quigley BR, Hatkoff M, Thanassi DG et al. A foreign protein incorporated on the Tip of T3 pili in Lactococcus lactis elicits systemic and mucosal immunity[J]. Infection and immunity.2010, 78(3):1294-1303.
    [168]Neutra MR, Kozlowski PA. Mucosal vaccines:the promise and the challenge[J]. Nature Reviews Immunology.2006,6(2):148-158.
    [169]Hutchings AB, Helander A, Silvey KJ et al. Secretory Immunoglobulin A Antibodies against the σl Outer Capsid Protein of Reovirus Type 1 Lang Prevent Infection of Mouse Peyer's Patches[J]. Journal of virology.2004,78(2):947-957.
    [170]Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria[J]. Nature Reviews Microbiology.2008,6(5):349-362.
    [171]Baumann U. Mucosal vaccination against bacterial respiratory infections[J]. Expert review of vaccines.2008,7(8):1257-1276.
    [172]李晓静,夏春丽,李一经.产气荚膜梭菌a毒素在干酪乳杆菌中的诱导表达及其小鼠口服免疫力[J].微生物学报.2009,(008):1115-1120.
    [173]Haan L, Verweij WR, Holtrop M et al. Nasal or intramuscular immunization of mice with influenza subunit antigen and the B subunit of< i> Escherichia coli heat-labile toxin induces IgA-or IgG-mediated protective mucosal immunity [J]. Vaccine.2001,19(20): 2898-2907.
    [174]Roca A, Abacassamo F, Loscertales MP et al. Prevalence of respiratory syncytial virus IgG antibodies in infants living in a rural area of Mozambique[J]. Journal of medical virology.2002, 67(4):616-623.
    [175]Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration of lymphocytes[J]. Immunity.2002,16(1):1-4.
    [176]宫德正,邹原.肠黏膜免疫系统与细胞因子[J].大连医科大学学报.2002,24(001):56-60.
    [177]张安勇,赵恒梅,杨秋林.口服含pMG36E-P30重组质粒的乳酸乳球菌对小鼠免疫应答的影响[J].青岛大学医学院学报.2007,43(3):271-272.
    [178]Stumbles PA, Upham JW, Holt PG. Airway dendritic cells:Co-ordinators of immunological homeostasis and immunity in the respiratory tract[J]. Apmis.2003,111(7-8):741-755.
    [179]Hou XL, Yu LY, Liu J et al. Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria[J]. Vaccine.2007,26(1):24-31.
    [180]刘建奎,魏春华,侯喜林et al.表达ETEC F41重组干酪乳杆菌口服及滴鼻免疫效果的比较[J].微生物学报.2009,4.
    [181]Wang G, Song T, Yu Y et al. Immune responses in piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Veterinary immunology and immunopathology.2011.
    [182]刘辉,于周.猪繁殖与呼吸综合征免疫学所面临的挑战[J].国外畜牧学:猪与禽.2009,(006):35-37.
    [183]McCluskie MJ, Weeratna RD, Payette PJ et al. Parenteral and mucosal prime-boost immunization strategies in mice with hepatitis B surface antigen and CpG DNA[J]. FEMS Immunology & Medical Microbiology.2002,32(3):179-185.
    [184]McCluskie MJ, Davis HL. Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants[J]. Vaccine.2000,19(4-5):413-422.
    [185]Zhang L, Tian X, Zhou F. Intranasal administration of CpG oligonucleotides induces mucosai and systemic Type 1 immune responses and adjuvant activity to porcine reproductive and respiratory syndrome killed virus vaccine in piglets in vivo[J]. International immunopharmacology.2007,7(13):1732-1740.
    [186]Ioannou X, Gomis S, Karvonen B et al. CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein[J]. Vaccine.2002,21(1-2):127-137.
    [187]Davis HL, Suparto I, Weeratna R et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans[J]. Vaccine.2000,18(18):1920-1924.
    [188]Li WM, Bally MB, Schutze-Redelmeier MP. Enhanced immune response to T-independent antigen by using CpG oligodeoxynucleotides encapsulated in liposomes[J]. Vaccine.2001, 20(1):148-157.
    [189]Kodama S, Abe N, Hirano T et al. Safety and efficacy of nasal application of CpG oligodeoxynucleotide as a mucosal adjuvant[J]. The Laryngoscope.2006,116(2):331-335.
    [190]史彤,刘文忠,萧树东.CpG寡核苷酸可作为幽门螺杆菌疫苗的佐剂[J].中华消化杂志.2003,23(4):233-236.
    [191]张晓文,杨倩.禽流感灭活抗原与佐剂配合鼻腔免疫对鸡呼吸道抗体分泌细胞的影响[J].南京农业大学学报.2007,30(1):94-98.
    [192]Kumar S, Jones TR, Oakley MS et al. CpG oligodeoxynucleotide and Montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine[J]. Infection and immunity.2004,72(2):949-957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700