用户名: 密码: 验证码:
丁酸梭菌与肠道上皮细胞互作的分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁酸梭菌作为益生菌已被广泛的应用于治疗肠炎、改善动物的生产性能等方面,并得到了普遍的认可。但是寄主细胞识别丁酸梭菌并由此产生的益生作用的分子机制尚不明确。本论文旨在探讨丁酸梭菌的益生机制。
     试验一:用丁酸梭菌刺激HT-29细胞,然后通过测定跨膜受体TLRs(toll-like receptor)和炎性因子的表达分析丁酸梭菌诱导的信号传导途径。试验结果显示,丁酸梭菌能够显著提高TLR2mRNA的表达水平,但却没有影响TLR2、TLR4、TLR5、TLR9、MyD88(myeloid differentiation primary response protein88)的表达。同时发现,NF-κB、IL-8、TNF-α的表达量亦显著提高,说明HT-29细胞被诱导发生了免疫反应。但是与大肠杆菌相比,丁酸梭菌诱导的NF-κB (nuclear factor κB)、IL-8(interleukin-8)、TNF-α(tumor necrosis factor alpha)的表达水平却低很多。另外,丁酸梭菌能够显著提高炎性抑制因子IL-10和Hsp70(heat shock protein70)的表达量,这可能和丁酸梭菌的益生特性有关。
     试验二:分别使用TLR2和MyD88特异性siRNA (small interfering RNA)敲除HT-29细胞TLR2和MyD88基因。沉默MyD88基因对丁酸梭菌诱导的NF-κB、IL-8、IL-6、TNF-α的表达没有影响,但是沉默TLR2基因却使NF-κB、IL-8、IL-6、TNF-α的表达下降,说明TLR2是丁酸梭菌的特异性受体。因此,丁酸梭菌可激活由TLR2介导的MyD88-非依赖性信号传导通路。
     试验三:TLR2是识别丁酸梭菌的关键性受体,我们进一步分析了TLR2的结构和活性区域。首先,以鼠的TLR2晶体结构为模板,通过同源模建方法构建了人的TLR2的三维结构,然后采用分子对接技术模建了人的TLR2与脂磷壁酸(LTA)的相互作用模型,发现了TLR2受体识别LTA的关键性残基,这对进一步开展定点突变试验具有指导意义。
     试验四:用IL-10特异性siRNA (siIL-10)(?)(?)IL-10抗体处理HT-29细胞,用以敲除和中和IL-10。试验结果显示,中和或敲除IL-10促进了丁酸梭菌诱导的NF-κB的活化和IL-8的表达。另外发现IL-10被中和和敲除后,丁酸梭菌能够诱导HT-29细胞发生严重的凋亡和坏死。试验结果说明,IL-10在肠道寄主细胞识别丁酸梭菌以及丁酸梭菌调节的免疫保护方面发挥着重要作用。
     试验五:首先,测定丁酸梭菌及其SCS对EHEC(大肠杆菌)的生长、粘附的抑制作用;结果显示,丁酸梭菌及其SCS有显著抑制效果。另一方面,丁酸梭菌和其SCS能够抑制EHEC引发的CEICs(鸡胚肠道细胞)凋亡。同时发现,丁酸梭菌可通过调节XIAP(X连锁凋亡抑制蛋白)、BclXL (B-cell lymphoma-extra large)、FAS、 Bcl2(B-cell leukaemia/lymphoma-2)、BAX (Bcl2-associated X protein)、P53(Tumor protein53)的表达和抑制caspase(半胱氨酸蛋白酶)-9、caspase-3的活力缓解EHEC诱导的细胞凋亡。试验结果表明,丁酸梭菌既可直接的抑制EHEC的活力,又可间接通过调节凋亡因子的表达抑制EHEC诱导的细胞凋亡,从而发挥对EHEC诱导的肠道炎症的抑制作用;这有助于揭示丁酸梭菌的益生机理。此外,我们首次选用CEICs作为体外模型,研究丁酸梭菌对EHEC诱导的细胞凋亡的抑制作用,这为丁酸梭菌治疗鸡的大肠杆菌病提供了理论依据。
Oral administration of Clostridium butyricum as probiotics is increasingly gaining importance in the treatment of intestinal inflammations and improvement of animal performance. However, the mechanisms of host cell receptor recognition of C. butyricum and the downstream immune signaling pathways leading to these benefits remain unclear. The aim of the study was to explain the beneficial properties of C. butyricum.
     Trial1. The HT-29cells were stimulated by C. butyricum to investigate its capability to influence the innate immune response of HT-29cells. The results showed that the C. butyricum was able to stimulate TLR (toll-like receptor)2production at mRNA level, however, TLR4, TLR5, TLR9, MyD88(myeloid differentiation primary response protein88) transcription levels were not up-regulated. The NF-κB (nuclear factor κB), IL (interleukin)-8and TNF-a (tumor necrosis factor alpha) levels in response to C. butyricum were significantly increased, indicating that HT-29cells were sensitised by C. butyricum. However, compared with Escherichia coli, the levels of NF-κB, IL-8and TNF-a induced by C. butyricum were far lower. Furthermore, we observed that the C. butyricum induced a significant increase in the levels of both IL-10and Hsp70(heat shock protein70), which may be associated with the beneficial properties of C. butyricum.
     Trial2. TLR2and MyD88specific siRNA (small interfering RNA) were used to silence expression of TLR2and MyD88. Knockdown of MyD88expression using siRNA in this manner did not affect C. butyricum-induced elevated levels of NF-κB, IL-8, IL-6and TNF-α, suggesting a MyD88-independent route to TLR signaling transduction. However, a significant reduction in the levels of NF-κB, IL-8, IL-6and TNF-α was evident in the absence of TLR2expression, implying the need for TLR2in C. butyricum recognition. Hence, C. butyricum activates TLR2-mediated MyD88-independent signaling pathway in human epithelial cells.
     Trial3. The TLR2is a key receptor for recognizing C. butyricum. We next analyzed the structure of TLR2and indentified its functional domain. Based on the X-ray crystal structure of mouse TLR2, a homology model of human TLR2was constructed. The human TLR2ligand agonist LTA (lipoteichoic acid) was docked into the optimized model, and the critical amino acid residues for binding were identified, which was very important for further site-directed mutagenesis study.
     Trial4. HT-29cells were treated with anti-IL-10(IL-10antibody) or siIL-10(specific siRNA) to disrupt IL-10. In both cases, the effects of C. butyri cum-induced NF-κB activation and IL-8expression were enhanced. We also found that neutralization or knockdown of IL-10could induce apoptosis and necrosis of HT-29cells treated with C. butyricum compared with control cells. These findings show that IL-10serves an important role in C. butyricum-mediated immune protection, and in host recognition of C. butyricum.
     Trial5. We investigated the effects of C. butyricum and its SCS (spent culture supernatants) on EHEC (Escherichia coli) growth and adherence to CEICs (chicken embryo intestinal cells). Indeed, the C. butyricum and its SCS exhibited significant inhibitory activity. On the other hand, we evaluated the potential of C. butyricum to inhibit EHEC-induced apoptosis in CEICs. Also, the C. butyricum showed significant inhibitory effect on the EHEC-induced apoptosis by modulating the expression of XIAP (X-linked inhibitor of apoptosis protein), BclXL (B-cell lymphoma-extra large), FAS, Bcl2(B-cell leukaemia/lymphoma-2), BAX (Bcl-2-associated X protein), P53(Tumor protein53) and via inhibition of caspase-9and caspase-3activation. Altogether, these results indicate that the C. butyricum possesses the ability to prevent the EHEC-induced intestinal disorders both directly through inhibiting EHEC viability and indirectly via medicating EHEC-induced apoptosis, which could help to explain the beneficial properties of C. butyricum. Furthermore, this data is novel in the case of poultry and the manner in which C. butyricum prevents the EHEC-induced apoptosis provides supportive information for the treatment of colibacilliosis.
引文
Akemi I, Tatsuichiro S, Kimitoshi K, Shigeaki M, Toshiki Ua, Satoshi Mo, Hiromi S, Taeko H, Yoshinori U. Anti-inflammatory activity of probiotic Bifidobacterium:Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells [J]. World J. Gastroenterol.,2008,14(16):2511-2516.
    Akira S. TLR signaling[J]. Curr. Top. Microbiol. Immunol,2006,311:1-16.
    Akira S, Takeda K. Toll-like receptor signalling[J]. Nat. Rev.,2004,4:499-511.
    Altonsy MO, Andrews SC, Tuohy KM. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria:mediation by the mitochondrial pathway [J]. Int. J. Food. Microbiol,2010,137(2-3):190-203.
    Are A, Aronsson L, Wang SG, Greicius G, Lee YK, Gustafsson J, Pettersson S, Arulampalam V. Enterococcus faecalis from newborn babies can regulate endogenous PPAR gamma activity and IL-10 levels in colonic epithelial cells[J]. Proc. Natl. Acad. Sci. USA.,2008,105:1943-1948.
    Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut [J]. Nat. Rev. Immunol,2008,8:411-420.
    Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy-review of a new approach[J]. Pharmacol. Rev.,2003, 55:241-269.
    Backhed F, Ding H, Wang T. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc. Natl. Acad Sci. USA.,2004,101:15718-15723.
    Baekhed F, Ley RE, Sonnenburg JL. Host-bacterial mutualism in the human intestine[J]. Science,2005,307: 1915-1920.
    Bannon, C, Davies PJ, Collett A, Warhurst G. Potentiation of flagellin responses in gut epithelial cells by interferon-gamma is associated with STAT-independent regulation of MyD88 expression[J]. Biochem. J., 2009,423:119-128.
    Barnich N, Aguirre JE. Reinecker HC. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-KB activation in muramyl dipeptide recognition[J]. J. Cell. Biol,2005,170: 21-26.
    Barton GM, Medzhitov R. Toll-like receptor signaling pathways[J]. Science,2003,300:1524-1525.
    Bashir ME, Louie S, Shi HN. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy[J]. J. Immunol.,2004,172:6978-6987.
    Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling[J], Nature,2004,430: 257-263.
    Bregenholt S. Cells and cytokines in the pathogenesis of inflammatory bowel disease:new insights from mouse T cell transfer models[J]. Exp. Clin. Immunogenet.,2000,17:115-129.
    Cani PD, Delzenne NM, Amar J. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding[J]. Pathol. Biol,2008,56:305-309.
    Carpenter S, O'Neill LA. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins[J]. Biochem. J.,2009,422:1-10.
    Christensen HR, Fr(?)kiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells[J]. J. Immunol.,2002,168(1):171-178.
    Davey ME, O'toole GA. Microbial biofilms:from ecology to molecular genetics[J]. Microbiol. Mol. Biol. Rev.,2000,64:847-867.
    Ding A, Yu H, Yang J, Shi S, Ehrt S. Induction of macrophage-derived SLP1 by Mycobacterium tuberculosis depends on TLR2 but not MyD88[J]. Immunology,2005,116:381-389.
    Durand SH. Flacher V. Romeas A, Carrouel F, Colomb E, Vincent C, Magloire H, Couble ML., Bleicher F, Staquet MJ, Lebecque S, Farges JC. Lipoteichoic Acid Increases TLR and Functional Chemokine Expression while Reducing Dentin Formation in In Vitro Differentiated Human Odontoblasts[J]. J. Immunol.,2006,176: 2880-2887.
    Durand SH, Flacher V, Romeas A, Carrouel F, Colomb E, Vincent C, Magloire H, Couble ML, Bleicher F, Staquet MJ, Lebecque S, Farges JC. Lipoteichoic Acid Increases TLR and Functional Chemokine Expression while Reducing Dentin Formation in In Vitro Differentiated Human Odontoblasts[J]. J. Immunol..2006,176: 2880-2887.
    Fiorentino DF, Zlotnik A. Mosmann TR, Howard M, O'Garra A. IL-10 inhibits cytokine production by activated macrophages[J]. J. Immunol.,1991,147:3815-3822.
    Fischer J, Suire C, Hale-Donze H. Toll-like receptor 2 recognition of the microsporidia Encephalitozoon spp. induces nuclear translocation of NF-kappa B and subsequent inflammatory responses[J]. Infect. Immun.,2008, 76:4737-4744.
    Frank DN. Amand ALS. Feldman RA. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proc. Natl. Acad. Sci. USA.,2007,104:13780-13785. Friis LM, Keelan M, Taylor DE. Campylobacter jejuni Drives MyD88-Independent Interleukin-6 Secretion via Toll-Like Receptor 2[J].Infect Immun.,2009,77:1553-1560.
    Gautam JK, Ashish, Comeau LD, Krueger JK, Smith MF Jr. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling[J]. J. Biol. Chem.,2006,281(40): 30132-30142.
    Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, Muller W, Trinchieri G, Sher A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+T cells and accompanied by overproduction of IL-12, IFN-c and TNF-a[J]. J. Immunol.,1996,157:798-805.
    Gewirtz AT, Liu Y, Sitaraman SV, Madara JL. Intestinal epithelial pathobiology:past, present and future[J]. Best. Pract. Res. Clin. Gastroenterol,2002,16:851-867.
    Grover V, Ghosh S, Sharma N. Characterization of a galactose specific adhesin of enteroaggregative Escherichia coli[J]. Arch. Insect. Biochem.,2001,390:109-118.
    Haller D, Bode C, Hammes WP, Pfeifer AM, Schiffrin EJ, Blum S. Nonpathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures[J]. Gut,2000,47:79-87.
    Hattori M, Taylor TD. The Human Intestinal Microbiome:A New Frontier of Human Biology[J]. DNA. Res., 2009,16:1-12.
    Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J]. Science,2001,292:1114-1118.
    Hooper LV, Wong MH, Thelin A. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science,2001,291:881-884.
    Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J]. Science,2001,292:1114-1118. Horng T, Barton GM, Medzhitov R. TIRAP:an adapter molecule in the Toll signaling pathway[J]. Nat. Immunol.,2001,2:835-841.
    Hughes MA, Lee CW, Holm CF. Identification of entamoeba histolytica thiol-specific antioxidant as a GalNAclectin-associated protein[J]. Molecul. Biochem. Parasit.,2003,127:113-120.
    Ito 1, Hayashi T, Iguchi A, Endo H, Nakao M, Kato S, Nabeshima T, Ogura Y. Effects of administration of Clostridium butyricum to patients receiving long-term tube feeding[J]. Jpn. J. Geriat.,1997,34:298-304. Jacobs MD, Harrison SC. Structure of an IκBalpha/NF-κB complex[J]. Cell,1998,95:749-758.
    Jia W. Li H. Zhao L. Nicholson JK. Gut microbiota:a potential new territory for drug targeting[J]. Nat. Rev, Drug. Discov.,2008,7:123-129.
    Jia YD, Lin JX, Mi YL, Zhang CQ. Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles[J]. Reprod. Toxicol.,2011,31(4):477-485.
    Jin MS. Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide[J]. Cell,2007,130:1071-1082.
    Jin S, Zhang QY Kang XM, Wang JX, Zhao WH. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway[J].Ann. Oncol.,2010,21:263-268.
    Kanamaru K, Kanamaru K, Tatsuno I, Tobe T, Sasakawa C. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O 157:H7[J]. Mol. Microbiol.,2000,38:805-816.
    Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin[J]. Immunity,1999,11:115-122.
    Kelly D, Campbell JJ, King TP. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gand RelA[J]. Nat. Immunol.,2004,5:104-112.
    Kim SY, Kim JY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CE, Hong S. Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression[J]. FEBS. Lett.,2007.581:865-871.
    Kim SY, Kim JY, Kim SH. Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M. Cho JY Lee CE, Hong S:Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression[J]. FEBS. Lett.,2007,581:865-871.
    Knight P, Campbell B J, Rhodes JM. Host-bacteria interaction in inflammatory bowel disease[J]. Brit. Med. Bull.,2008,88:95-113.
    Knuefermann P, Satake Y, Scott Baker J, Huang CH, Sekiguchi K, Hardarson HS, Takeuchi O, Akira S, Vallejo JG. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart[J]. Circulation,2004,110:3693-3698.
    Kojima K, Musch MW, Ren H, Boone DL, Hendrickson BA, Ma A, Chang EB. Enteric flora and lymphocyte-derived cytokines determine expression of heat shock proteins in mouse colonic epithelial cells[J]. Gastroenterology,2003,124:1395-1407.
    Koonin EV, Aravind L. Origin and evolution of eukaryotic apoptosis:the bacterial connection[J]. Cell. Death. Differ.,2002,9:394-404.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis[J].Cell,1993,75(2):263-274.
    Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response[J]. Biochem. J.,2009,420: 1-16.
    Lander ES, Linton LM, Birren B. Initial sequencing and analysis of the human genome[J].Nature,2001,409: 860-921.
    Laskowski RA, Macarthur MW, Moss DS, Thornton JM[J]. J. Appl. Crystallogy.,1993,26:47.
    Lavasani S, Dzhambazov B, Nouri M, Fak F, Buske S, Molin G, Thorlacius H, Alenfall J, Jeppsson B, Westrom B. A novel Probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells[J]. PloS. One.,2010,5(2):e9009.
    Lee KS, Scanga CA, Bachelder EM, Chen Q, Snapper CM. TLR2 synergizes with both TLR4 and TLR9 for induction of the MyD88-dependent splenic cytokine and chemokine response to Streptococcus pneumoniae[J]. Cell. Immunol.,2007,245(2):103-110.
    Lee KH, Lee CT. Kim YW, Han SK, Shim YS, Yoo CG. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation[J]. Exp. Cell. Res.,2005,307:276-284.
    Leung DY, Kelly CP, Boguniewicz M, Pothoulakis C, Lamont JT, Flores A. T with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin[J]. Paediatr, 1991,118:633-637.
    Ley RE, Backhed F, Turnbaugh P. Obesity alters gut microbial ecology [J]. Proc. Natl. Acad. Sci. USA.,2005, 102:11070-11075.
    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell,2006,124:837-848.
    Li YY. Chang JW, Hsieh LL, Yeh KY. Neutralization of interleukin (IL)-10 released by monocytes/macrophages enhances the up-regulatory effect of monocyte/macrophage-derived IL-6 on expressions of IL-6 and MUC1, and migration in HT-29 colon cancer cells[J]. Cell. Immunol,2010,265(2): 164-171.
    Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with double-stranded RNA[J]. Science,2008,320:379-381.
    Long KZ. Rosado JL, Santos JI, Haas M, Al Mamun A. DuPont, HL, Nanthakumar NN, Estrada-Garcia T. Associations between mucosal innate and adaptive immune responses and resolution of diarrheal pathogen infections[J]. Infect. Immun.,2010,78:1221-1228.
    Lu L, Walker WA. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium[J]. Am. J. Clin. Nutr.,2001,73:1124-1130.
    Macpherson AJ, Gatto D, Sainsbury E. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria[J]. Science,2000,288:2222-2226.
    Madsen KL, Doyle JS, Jewell LD. Lactobacillus species prevents colitis in interleukin10 gene-deficientmice[J]. Gastroenterology,1999,116:1107-1114.
    Malago JJ, Koninkx JFJG, van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell. Stress. Chap.,2002,7:191-199.
    Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors [J]. BMC. Genomics.,2007,8: 124.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell,2005,122:107-118.
    Mazmanianl SK, Roundl JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature.2008,453:620-625.
    McCracken VJ, Chun T, Baldeon ME, Ahrne S, Molin G, Mackie RI, Gaskins HR. TNF-alpha sensitizes HT-29 colonic epithelial cells to intestinal lactobacilli[J]. Exp. Biol. Med.,2002,227:665-670.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J]. Nature,1997,388(6640):394-397.
    Mengheri E. Health, probiotics, and inflammation[J]. J. Clin. Gastroenterol.,2008,42:s177-178.
    Miettinen M, Veckman V, Latvala S, Sareneva T, Matikainen S, Julkunen I. Live Lactobacillus rhamnosus and Streptococcus pyogenes differentially regulate Toll-like receptor (TLR) gene expression in human primary macrophages[J]. J. Leukoc. Biol.,2008,84:1092-1100.
    Moore KW, Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor[J]. Annu. Rev. Immunol.,2001,19:683-765.
    Nanthakumar NN, Dai D, Meng D. Regulation of intestinal ontogeny:effect of glucocorticoids and luminal microbes on galactosyltransferase and trehalase induction in mice[J]. Glycobiology,2005,15(3):221-232.
    Natoli G, Saccani S, Bosisio D, Marazzi I.. Interactions of NF-kappaB with chromatin:the art of being at the right place at the right time[J]. Nat. Immunol.,2005,6:439-445.
    Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmalim V, Rao AS, Madara L. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination[J]. Science,2000,289: 1560-1563.
    Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Fnitt UJ, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR. Oscillations in NF-kB signaling control the dynamics of gene expression[J]. Science,2004,306: 704-708.
    Niers LEM, Timmerman HM, Rijkers GT, Van Bleek GM, Van Uden NOP, Knol EF, Kapsenberg ML, Kimpen JL, Hoekstra MO. Identification of strong interleukin-10 inducing lactic acid bacteria which down regulate T helper type 2 cytokines[J]. Clin. Exp. Allergy.,2005,35:1481-1489.
    O'Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. Embo. Rep.,2006,7:688-693.
    Oxman T, Shapira M, Diver A, Klein R, Avazov N, Rabinowitz B. A new method of long-term preventive cardioprotection using Lactobacillus[J]. Am. J. Physiol. Heart Circul. Physiol.,2000.278:1717-1724.
    Pan X, Wu T, Zhang L, Song Z, Tang H, Zhao Z. In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish[J]. J. Appl. Microbiol.,2008, 105:1623-1629.
    Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex[J]. Nature,2009,458:1191-1195.
    Poe JC, Wagner DH Jr, Miller RW, Stout RD, Suttles J. IL-4 and IL-10 modulation of CD40-mediated signaling of monocyte IL-1b synthesis and rescue from apoptosis[J]. J. Immunol,1997,159:846-852.
    Rennick DM, Fort MM. Lesson from genetically engineered animal models XII:IL-10-deficient mice and intestinal inflammation[J]. Am. J. Physiol,2000,278:g829-833.
    Sartor RB. Targeting enteric bacteria in treatment of inflammatory bowel diseases:why, how, and when[J]. Curr:Opin. Gastroenterol.,2003,19:358-365.
    Satta N, Kruithof EK, Reber G, de Moerloose P. Induction of TLR2 expression by inflammatory stimuli is required for endothelial cell responses to lipopeptides[J]. Mol. Immunol.,2008,46:145-147.
    Savage DC. Microbial ecology of the gastrointestinal tract[J]. Annu. Rev. Microbiol.,1977,31:107-133.
    Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI[J]. Pediatr. Int.,2003,45: 86-90.
    Shanahan F. Probiotics in inflammatory bowel disease-therapeutic rationale and role[J]. Adv. Drug. Deliv. Rev.,2004.56:809-818.
    Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno M. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion[J]. J. Dairy. Sci.,2006,89: 3306-3317.
    Smith K, Mccoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota [J]. Semin. Immunol.,2006,19:59-69.
    Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, Zaat BA, Yazdanbakhsh M, Wierenga EA, van Kooyk Y, Kapsenberg ML. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin[J]. J. Allergy. Clin. Immunol.,2005,115(6):1260-1267.
    Song ZF, Wu TX, Cai LS, Zhang LJ. Zheng XD. Effects of dietary supplementation with Clostridium butyricwn on the growth performance and humoral immune responese in Miichthys miiuy[J]. J. Zhejiang. Univ. Sci. B.,2006,7:596-602.
    Sonnenburg JL,Xu J, Leip DD. Glycan foraging in vivo by an intestine-adapted bacterial symbiont[J]. Science,2005,307:1955-1959.
    Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Kamiya S. Studies of the effect of Clostridium butyricum on Helicobacter pylori in several test models including gnotobiotic mice[J]. J. Med. Microbiol.,2000,49(7): 635-642.
    Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A, Kamiya S. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice[J]. FEMS. Immunol. Med. Mic.,2004,41(3):219-226.
    Takeda K, Akira S. Toll-like receptors in innate immunity[J]. Int. Immunol.,2005,17(1):1-14.
    Takeuchi O, Hoshino K, Akira S. Cutting Edge:TLR2-Deficient and MyD88-Deficient Mice Are Highly Susceptible to Staphylococcus aureus Infection [J]. J. Immunology., 2000,165:5392-5396.
    Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Role of toll-like receptor 1 in mediating immune response to microbial lipoproteins[J]. J. Immunol.,2002,169:10-14.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated that gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444:2027-2031.
    Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Bunonocore S, Tlaskalova-Hogenova H, Cua DJ. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology[J]. Immunity,2006,25:309-318.
    Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM. Regulation of Toll-like receptors in human monocytes and dendritic cells[J]. J. Immunol.,2001,166:249-255.
    Vizoso Pinto MG, Rodriguez Gomez M, Seifert S, Watzl B, Holzapfel WH, Franz CM. Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro[J]. Int. J. Microbiol,2009,133:86-93.
    Wang JB, Qi LL,. Zheng SD, Wang HZ, Wu TX. Curcumin suppresses PPARδ expression and related genes in HT-29 cells[J]. World. J. Gastroenterol.,2009,15:1346-1352.
    Weid T. Bulliard C, Schiffrin EJ. Induction by lactic acid bacteria of a population of CD4 T cells with low proliferative capacity that produce transforming growth factor and interleukin-10[J]. Clin. Diagn. Lab. Immunol.,2001,8:695-701.
    Werner T, Haller D. Intestinal epithelial cell signaling and chronic inflammation:From the proteome to specific molecular mechanisms[J]. Mutat. Res.,2007,622:42-57.
    Xu H, An H, Hou J, Han C, Wang P, Yu Y, Cao X. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages[J]. Mol. Immunol.,2008,45(13):3545-3552.
    Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway[J]. Science,2003,301:640-643.
    Yang X, Zhang B, Guo Y, Jiao P, Long F. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens[J]. Poultry. Sci.,2010,89:254-260.
    Yuan S, Huang S, Zhang W, Wu T, Dong M, Yu Y, Liu T, Wu K, Liu H, Yang M, Zhang H, Xu A. An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-kappaB pathway via MyD88[J]. Mol. Immunol.,2009,46:2348-2356.
    Zhang WJ, Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Xu SB, Zhang Y, Yuan J, Gerhard GS, Masker KK, Dong C, Koltun WA, Chorney MJ. IL-4-induced Stat6 activities affect apoptosis and gene expression in breast cancer cells[J]. Cytokine,2008,42(1):39.
    杜云平,周庆丰,赖万勇,梁健良,李小军,毕英佐.日粮中添加丁酸梭菌对种鸡生产性能的影响[J]. 饲料广角,2010,1:25-26.
    杜云平,周庆丰,郑泽铭,苏红英,凌森泉,毕英佐.丁酸梭菌对肉鸡生产性能的影响[J].饲料广角,2009,22:34-35.
    孔青,何国庆.丁酸梭菌培养与发酵动力学以及调节腹泻小鼠肠道菌群平衡的研究[D].浙江大学,博士学位论文.2006.
    刘婷婷,张帅,邓斐月,曹广添,陈安国,杨彩梅。谷氨酰胺与丁酸梭菌对断奶仔猪生长性能、免疫功能、小肠形态和肠道菌群的影响[J].动物营养学报,2011,23(6):998-1005.
    宋增福,吴天星.丁酸梭菌C2菌株对鮸鱼肠道微生态调控作用与机理研究[D].浙江大学,博士学位论文.2006.
    魏伟群,陆豫.丁酸梭菌的固态培养及益生效果研究[D].南昌大学,硕士学位论文.2011.
    赵恕,赵冬卉.丁酸梭菌制剂(米雅BM)治疗小儿腹泻50例[J].中国微生态学杂志,1998,4(10):1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700