用户名: 密码: 验证码:
转hpa1_(Xoo)基因棉花抗病虫防卫反应与全基因组转录谱分析及棉花角斑病菌hpa_(Xm)基因的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上重要的纤维作物,也是重要的油料来源。在许多植棉国家,棉花黄萎病、枯萎病是危害棉花的两大病害。从1993年以来,黄萎病在我国严重发生,发病面积占全国植棉面积的50%左右,每年损失皮棉约10万吨。目前尚无有效的方法控制该类病害的危害。通过植物基因工程,可以把优良抗性基因转移到植物体内,对植物进行定向改造,从而培育新的优良抗病品种,为棉花黄、枯萎病的有效防治开辟了新的防治途径。已经证明harpin是一类蛋白激发子,具有无毒、无公害和对环境友好等优点。先前研究表明喷施harpin能增强植物抗病、抗虫性,而内源表达harpin显示转基因植物(水稻、烟草、梨等)能抗多种病害。由此,通过基因工程方法将harpin编码基因hrp导入重要的经济作物棉花中,是否会使棉花获得各种抗性及其它有益表型呢?此外,harpin在分子水平上的作用机理和作用位点还不是很清楚,尤其在无胁迫下内源表达的harpin对植物的防卫、生长发育会产生怎样的影响?本研究将来自水稻白叶枯病菌的hpa1xoo基因转入棉花,使harpin的多种功能在棉花中得以表达,获得抗棉花黄、枯萎病等多种有益表型的转基因棉花株系,并力图解析harpin对植物的作用机理;与此同时,我们还从棉花角斑病菌(X. citri subsp. malvacearum)基因组中克隆了编码harpin的hpaXm基因。现将结果分述如下:
     利用含有农杆菌T-DNA区的重组质粒,结合花粉管通道技术,将hpa1xoo基因分别转化陆地棉品种中棉35(Z35)、海岛棉品种新海21等棉花品种,通过苗期的卡那霉素或除草剂筛选并结合室内和病圃枯萎病和黄萎病抗性单株筛选,获得了30份转基因材料。在卡那抗性植株筛选基础上,大部分转基因植株符合孟德尔遗传规律,即后代存在3:1或者1:3的分离。部分转基因株系到T6代就具有100%的纯合株系(如T-34部分单株株系后代)。同时采用农杆菌茎尖介导法,也获得携带有hpa1xoo基因的转基因植株。选择部分转基因植株进行加代选育,在棉花黄、枯萎病病圃进行了抗病性、农艺性状评价,以及采用生测法评价转基因植株的抗虫性。供试转基因材料中,针对棉花黄萎病,获得了抗病材料(系)8个,耐病材料(系)8个,病指范围在13.75%-38.49%,转基因材料病指均低于出发品种(Z35),Z35病指为45.34%。与Z35相比,转基因棉黄萎病平均发病率减少42.9%,病指减少7.35%-26.22%;枯萎病病指减少52.46%-59.02%;立枯病病指减少58.70%-59.24%。在抗虫性调查的初步结果中,部分转基因材料(如T-3、T-34)对棉铃虫表现出较好的抗性。饲喂T-34棉叶的棉铃虫发育明显迟缓,直至死亡,5天后棉铃虫死亡率为90.95%,而饲喂Z35棉叶的棉铃虫死亡率为12.20%。这些结果表明harpinxoo的表达赋予转hpa1xoo基因棉花抗病虫性。
     转基因抗病材料的棉铃有大、有小。生长前期,转基因植株的株高一般低于出发品种,但开花以后至成熟,转基因材料的生长逐渐与出发品种接近,与出发品种无显著性差异。转基因棉花生育期为120-121天,长于Z35(116天)。部分转基因材料在农艺性状方面优于Z35,如转基因株系T-33,在棉花吐絮期(2007),与Z35相比,无效枝数低了0.12个,有效桃数多了0.1个;转基因株系T-34果枝数比对照Z35多了0.1个。部分转基因材料田间吐絮较畅,纤维品质有所改善。2006年通过农业部棉花纤维检测中心检测,转基因材料T-33的纤维上半部平均长度为29.0mm,对照Z35的纤维长度为28.8mm;纤维整齐度方面,所有转基因材料(85%)都高于出发品种(83%);马克隆值方面,所有的转基因材料为B级,对照Z35为C级。转基因株系T-34纤维伸长率为5.8%,而对照(Z35)的纤维伸长率为5.5%。因此,综合诸多性状,我们选择转基因植株T-34(或T-33)作为本研究的主要对象。
     从PCR扩增到目的基因(hpalxoo)的阳性植株中选择了T-34和T-33,作进一步的分子鉴定。PCR Southern blot和基因组Southern blot确定了hpalxoo已经整合到棉花基因组中,且具有至少3个拷贝,提取PCR检测均为阳性的植株的可溶性蛋白,进行了Western blot分析,在PCR阳性植株中可检测到harpinxoo蛋白的表达。RT-PCR结果同样证实了hpa1xoo在转录水平的表达。采用免疫胶体金定位技术,观察到harpinxoo免疫金颗粒主要分布在植物的细胞壁上,胶体金颗粒在转基因植物细胞壁上呈10-20粒簇状特异性分布,在叶绿体或线粒体上则未见到特异性吸附,这个结果说明harpinxoo在转基因棉花中作用位点是细胞壁。同时,采用PCR和Bt蛋白检测试纸条方法检测转基因材料中是否含有Bt基因及其编码蛋白,结果表明供检测的转hpa1xoo基因棉花对棉铃虫的抗性是由于取食表达harpinxoo 6勺植株引起的,而与Bt基因无关。
     表达harpinxoo转基因棉花材料T-34在田间和室内均对棉花黄萎病表现出较好的抗性,因此,我们进一步从细胞和分子水平上验证T-34对棉花黄萎病菌的抗性机理。通过T-34悬浮细胞与棉花黄萎病菌分生孢子共培养,转基因棉花T-34的悬浮细胞的生存能力显著高于其出发品种Z35。在无病原菌侵染时,T-34叶片的H202积累高于Z35,但未观察到肉眼可见的氧爆发(reactive oxygen intermediates, ROI)现象,说明T-34较Z35更易处于一种引发状态(Priming state),一旦遭到病原菌侵染,T-34叶片中的过氧化氢酶受到抑制,在T-34叶组织中可以观察到明显的氧爆发和微过敏(Micro HR)现象,H202含量也有较高的积累,并呈现病原菌与植物非亲和互作的双峰典型特征,而在Z35叶组织中没有观察到氧爆发和微过敏。与这种现象一致,通过Real Time-PCR检测,氧爆发和微过敏的标志基因ghAOXl、hsr203J及hinl等基因的相对表达量也显著高于出发品种。这些结果证明了,由于harpinxoo在转基因植物体中的表达,激活了植株对病原菌攻击的防卫反应,harpinxoo是植物与病原菌非亲合互作中必要的激发子。
     Harpin赋予转基因棉花多种抗性和多个有益的农艺性状表型,但是在无胁迫下harpin影响植株的分子模式还不清楚。为此我们使用棉花12K cDNA芯片,采用生物芯片技术,分析了harpinxoo转基因棉花(T-34)与其出发品种(Z35)的全基因组转录谱,从而使我们能够广泛理解harpinxoo是如何在转基因棉花中调控基因表达的。结果显示,与Z35相比,在T-34叶片中存在530个差异表达基因。这些差异表达基因中很多基因涉及过敏性细胞死亡(hypersensitive cell death, HCD)、苯丙氨酸解氨酶(phenylalanine ammonia lyase, PAL)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid,JA)、生长素(auxin)、脱落酸(abscisic acid)和乙烯(ethylene, ET)等基本防卫反应途径。在转基因棉花中,Harpinxoo作为内源激发子,与受体作用或者直接作用于一些蛋白激酶,造成编码NADPH氧化酶、NAD泛素氧化还原酶、离子通道蛋白(如CLC-C)钙结合蛋白、苯丙氨酸裂解酶(PAL2)、植保素合成酶(如CHS)、MAPK激酶等蛋白酶的基因上调表达,并通过乙烯或生长素转录因子(如ERF、ARF)等进一步激活下游防卫和生长发育有关的反应。Harpinxoo在转基因棉花中调控生长素相关基因的表达符合生长素信号途径;同时,在LRR-PRKs途径中多个激酶编码基因的表达,表明LRR-PRKs在harpinxoo诱导的信号传导中也担任重要角色。通过对芯片上9个防卫相关基因采用定量或半定量PCR验证,显示芯片数据具有88.98%的可信度。经Realtime PCR检测,病原菌侵染后,6个防卫相关基因在转基因植株中超表达。这个结果进一步说明在无胁迫下harpinxoo的表达赋予转基因棉防卫水平高于其受体,并保持着基本的防卫水平,但在遭受病原菌胁迫下,harpinxoo的表达具有增强转hpalxoo基因棉防卫水平的能力。同时,差异表达基因中的共性上调和下调表达以及涉及能量产生和消耗途径的基因表达水平的提高,这些结果意味着在无胁迫下转基因植物体中维持着一种能量平衡,仅仅当病原菌侵染时才在植物体中产生高能量的需求。
     用转hpa1xoo基因棉花新鲜叶片饲喂棉铃虫,造成棉铃虫发育明显迟缓。为了更好地解析这一现象,将转基因棉花T-34和出发品种Z35叶片分别饲喂棉铃虫,提取棉铃虫幼虫RNA,利用和棉铃虫同属鳞翅目的家蚕的23K寡核苷酸(Oligo)探针,通过生物芯片技术,制作了其Oligo表达谱芯片。芯片结果显示检测到了2927个基因,T-34对Z35在转录水平上存在有872个差异表达基因,其中Ratio值大于2.0的上调表达基因有328个,Ratio值小于0.5的下调表达基因有544个。872个差异表达基因主要涉及13种生物功能,96个通路(pathway)。棉铃虫取食表达Harpinxoo的棉花叶片后,激发棉铃虫体内编码蛋白水解酶、细胞色素P450等的基因超表达,打破了离子调节体系和渗透压平衡体系,消耗棉铃虫的大量ATP,从而影响棉铃虫蛋白酶分解和合成、ATP合成等多个生物途径的正常代谢,造成棉铃虫不能很好取食。因此,采用芯片技术,通过异源家蚕oligo芯片信息的比对,初步解析了转hpalxoo棉花对棉铃虫的抗性机理,可能与棉铃虫取食后正常代谢受到干扰,影响发育有关。本研究结果为hpa1xoo,作为新的基因资源用于抗棉铃虫育种提供了初步证据,并为抗棉铃虫机理研究展示了新的途径。
     Xanthomonas campestris pv. malvacearum (E.F. Smith) Dye (Xcm)是引起棉花角斑病的病原。2006年该病菌学名更名为X. citri subsp. malvacearum nov. comb. nov. nom. nov. (Xcm)。在Xanthomonas中一些编码harpin的基因已经被克隆,但在Xcm中尚未有该基因克隆的报道。本研究首次报道了编码harpin like protein的hpaXm基因。用PCR技术从Xcm基因组中扩增了hpaXm基因。该基因具有402bp,其编码的蛋白为HpaXm,含有133个氨基酸,大小为13.3kD,GC含量为60.70%,富含甘氨酸,含量为21.80%,缺乏半胱氨酸。HpaXm的GST融合蛋白表达的最佳条件是IPTG0.05mM、37℃3h。纯化的HpaXm具有热稳定性,煮沸或未煮沸处理的HpaXm都能在烟草上激发HR.HpaXm能够增强烟草对TMV的抗病性,也能激发nprl、hsr203Jpr-la、pr-1b等防卫基因的表达。在Xcm基因组中,采用TAIL-PCR (thermal asymmetric interlaced PCR)方法,在hpaXm左翼扩增到了与X. oryzae pv. oryzae中hrcC基因具有93%同源性的1826bp序列,命名为hrcCXm,但在hrcCXm与hpaXm之间有704bp的间隔序列;在hpaXm右翼,扩增得到了与X. oryzae pv. oryzae中hpa2基因具有89%同源性的630bp序列,命名为助a2Xm。在HpaXm蛋白序列中存在有两个Alpha helix区域。HpaXm可能拥有Coiled coil区域及亮氨酸拉链。通过完整地氨基酸序列及N端a-helix中13个保守的残基(H2N-SEKQLDQLLTQLI-COOH)进化树分析,HpaXm与HpaGXac、HpaXac进化关系要比与Hpa1Xoo和Hpa1Xoc更近。我们对HpaXm N端α-helix区域中含有两个heptad的多肽(39-LDQLLTQ-LIMALLQ-52)进行合成,生物活性测定表明其能在烟草上诱导HR;改变相应残基的该多肽衍生物HpaXmAT44C和HpaXmAM48Q,显示出HR活性减弱的表型。通过信号肽软件预测和GST检测实验,在HpaXm的N端可能具有潜在的信号肽,可能以sec-dependent pathway必出胞外。
The soilborne fungal pathogen, Verticillium dahliae Kleb., is the causal agent of Verticillium wilt in a wide range of crops including cotton. This fungal pathogen is commonly present in many cotton-growing areas and has been considered as a major threat to the production of cotton worldwide. The traditional breeding for cotton varieties resistant to Verticillium wilt has not yet succeeded due to the lack of genetic resources for the resistance capable of providing high level of protection against Verticillium wilt. The genetic engineering utilizing plant defense-related genes has been considered to be an alternative to generate crops with improved resistance against plant pathogens, insects or herbicides. HarpinXoo encoded by hpalXoo in hrp cluster from Xanthomonas oryzae pv. oryzae is capable of inducing defense responses including hypersensitive reactions (HR) in non-host plants.
     By using recombination plasmid containing T-DNA region (ligated with hpalXoo) from Agrobacterium, and companying with the pollen-tube pathway transformation method, the 30 transgenic harpinXoo plants were obtained, containing a selectable 'marker' gene, neomycin phosphotransferaseⅡ(nptⅡ), or bar gene respectively.The genes confers resistance to the antibiotics kanamycin or herbicide glufosinate-ammonium, allowing selection of the transgenic plants from untransformed plants during growth in tissue culture and field. In the meantime, the transgenic hpalxoo plant were generated using the stem apexes as explants by Agrobacterium-mediated transformation method. By resistance screening in Verticillium wilt nursery, it were obtained for some resistant transgenic cotton plants to Verticillium dahliae, including to 8 resistant plants,8 tolerance plants, the idex of disease was arranged from 13.75% to 38.49%. The transgenic cotton plants proved to be highly resistant to cotton Verticillium wilt, average disease index of the plants to the disease reduced 7.35%-26.22%, compared with untransformed plant Z35. In addition, the transgenic plants also were obtained the higher resistance to Fusarium oxysporum f.sp. vansifectum, Rhizoctonia solani, and cotton bollworm (Helicoverpa armigera). The disease index of the plants to the two pathogens were reduced 52.46%-59.02%and 58.70%-59.24%respectively. The boll size of transgenic cotton was smaller than that of its receipt variety Z35, its height also was shorter than Z35 in the front development stage. But the whole development stages of transgenic plants were longer than that of untransformed cotton Z35. The result also showed that the expression of harpinxoo in transgenic plants promoted the fibre quality.
     The fresh and unwounded leaves from independent plants at the 6-7-leaf stage were collected and used for feeding 25 Helicoverpa armigera larvae. After 5 days, we investigated the larval development and the leaf damage. The T-34 and GK22 lines showed higher resistance to H. armigera; the corrected mortality of H. armigera larvae fed on T-34 leaves (LFT-34) was approximately 90.95%higher than that of the larvae fed on leaves of the untransformed cotton line Z35 (LFZ35). The development of LFT-34 slowed down, eventually leading to larval death. The 340-bp-long Cry1Ac was amplified only in the GK22 genome, while the 420-bp-long hpalxoo was amplified only in the T-34 genome, and both hpalxoo and CrylAc were not amplified in the Z35 genome. These results indicated that the resistance of the hpalxoo-expressing cotton line T-34 to H. armigera could be attributed to the expression of harpinxoo in the T-34 plants instead of the Bt proteins encoded by CrylAc.
     Three positive bands were obtained in each T-34 and T-33 sample, located at about 4kb, 6kb and 10kb in Southern blot pattern. The pattern suggests that T-34 incorporates the hpalxoo transgene at different chromosomal locations. Western blot analysis showed the harpinxoo protein to be constitutively expressed in the transgenic lines, whereas it was barely detectable in Z35. The molecular analysis of the transgenic cotton plants demonstrated that the coding sequence of harpinxoo was present in the recipient genome, the transgenic cotton plants had at least three copies of the hpalxoo transgene. By using Immuno-gold localization method, The special distribution of harpinxoo with gold labeled immunosorbent was only observed in the walls of leave and stem apexes cells in transgenic cotton T-33 and T-34 at 5-6 leaves stage. Although we also found gold particles in cell membrane and Chloroplast, only a few gold particles were observed in it, and it should belong to non special distribution. No any gold particles was observed in the cell walls of untransformed cotton Z35. we were not able to find any gold particles in the mitochondrial of T-34, including leave and stem apexes tissues in T-33 and Z35 plants. The distribution pattern of immunogold labeling for harpinxoo in leaves or stem apexes tissue from T-33 and T-34, was different from that for other protein in plant tissue, it mostly showed us 10-20 gold particles gathered in the cell walls of T-34 leave and stem apexes tissues. It was easy for us to observe 10-20 gold particles gathered among three cell walls in stem apexes of T-34 compared with one or two cell walls in leave or stem apexes of T-34.
     Hpalxoo expressed and located at in transgenic cotton cell wall, as a cell wall endogenous elicitor, triggers the generation of H2O2 in plant, H2O2 content in T-34 keeps the higher level than that in the receiptor variety Z35, T-34 plant is a priming state for avoiding the putative pathogen attack. Although the higher accumulation of H2O2 in transgenic hpalxoo plant, it is not enough to trigger the generation of reactive oxygen intermediates (ROI) in plant without pathogen attack, the expression of ROI marker gene ghAOXl in T-34 is slightly induced compared with Z35. After pathogen attack, H2O2 in T-34 is rapidly accumulated, and DAB dyeing indicates reddish spot in the plant tissue and ROI production, and thus micro HR also is induced. Two peak values of H2O2 content at 0-8h were found in T-34 rather than that in Z35, which is the character of incompatible interaction between pathogen and plant. These evidences suggest ROI and HR are directly related to the interaction of harpinxoo and pathogen. Whereas ROI and HR in transgenic hpalxoo tobacco are not found. In addition, different from transgenic hpalxoo tobacco, the expressions of hinl and hsr203J are induced in transgenic hpalxoo cotton T-34. This results are consistent with transgenic hpaGEP tobacco. However, the expression of nprl in T-34 is only slightly highter than that in Z35, nprl is induced in transgenic hpalxoo tobacco, but not in transgenic hpaGEp tobacco. The difference between transgenic hpalxoo cotton and tobacco may be caused by the different transformed receiptor of hpalxoo or the different insert sites of hpalxoo in plant genome. These evidences suggested that the successful transformation of hpalxoo into Z35 resulted in an altered regulation of genes involved not only in disease resistance but also in several other metabolic pathways.
     Harpinxoo, like other harpins, is able to elicit disease and insect resistance in plants, induce many plant-reaction phenotypes, and promote plant growth in yield and quality. However, the mode of action of harpin at the molecular level is not well understood. By analysis of globe transcriptome profile of transgenic harpinxoo cotton T-34 vs untransformed cotton Z35(Gossypium hirsutum L), using the customized 12K cDNA cotton microarrays, we were able to understand broadly how harpinXoo regulated the globe transcription expression of genes in transgenic harpinxoo plants. Totally,530 genes in leaves were deregulated in transgenic cotton compared with that in untransformed one. The differentially expressed genes in harpinxoo-transgenic cotton was significantly enriched in programmed cell death (PCD), phenylalanine ammonia lyase (PAL), salicylic acid (SA), jasmonic acid (JA), Auxin, abscisic acid (ABA) and ethylene (ET) pathways, as basic defense responses. Harpinxoo induced the expression of ERF related to ethylene or ARF related to auxin. Harpinxoo not only activated the genes involved in LRR-PRKs pathway which played an important role in development and defense pathways but also used MAPK pathway kinases to activate downsteam defense responses. By validating the microarray data,8 of 9 data points were consistent with the Real Time-PCR assay. In the meantime, the expression of 6 genes, which were related to defense response, was induced to be over-upregulated after challenged by Verticillium dahliae conidia. These evidences suggested two different defense pathways or abilities were adopted in T-34 while pathogen attack or not. In addition, Up-and down-regulation simultaneously in differential expressed genes and increased expression of both genes encoding energy producing and consuming pathways suggested the energy balance was maintain in the genetic modified cotton without biotic stress. High-energy demand would only occur when infected with pathogen.
     The silkworm genome-wide microarray was used to compare the global transcriptomic profile of the H. armigera larvae fed on T-34 leaves (LFT-34) with that of the larvae fed on leaves of the untransformed cotton line Z35 (LFZ35). The microarray data indicated that 872 genes in LFT-34 were totally deregulated, in comparison with their expression in LFZ35. Among these 872 genes,328 genes were upregulated (LFT-34/LFZ35 ratio,>2.0), and 544 genes were downregulated (LFT-34/LFZ35 ratio,<0.5). All the differentially expressed genes can be classified and related to 13 biological functions and were involved in 96 biological pathways. Harpinxoo confers T-34 with resistance to H. armigera and influences multiple metabolic pathways in H. armigera larvae. These results also showed that the silkworm microarray can be used as a new approach to analyze the genome-wide transcriptional expression of H. armigera and the interaction between H. armigera and plants or other organisms.
     Xanthomonas campestris pv. malvacearum (E.F. Smith) Dye (Xcm) is a bacteria blight pathogen. It causes cotton bacteria blight. In 2006, X. campestris pv. malvacearum (E.F. Smith) was renamed X. citri subsp. malvacearum nov. comb. nov. nom. nov. (Xcm, Schaad et al.2006). A novel harpin-like protein, HpaXm, was described from Xcm. Like harpins from other plant bacteria, HpaXm encoded by the hrp gene is a glycine-rich, cysteine lacking, heat-stable protein with the ability to induce the hypersensitive reaction and the enhanced expression of defense-related genes in tobacco leaves. hpaXm was found to be localized between hrp2 and hrcC by TAIL-PCR (thermal asymmetric interlaced PCR) technology. A phylogenetic analysis of the complete amino acid sequence or solely the 13 highly conserved residues H2N-SEKQLDQLLTQLI-COOH in the N-terminal a-helix indicate that HpaXm is evolutionarily closer to HpaGXag and HpaXac than to HpalXoo and HpalXoc. The synthesized peptide containing two heptads,39-LDQLLTQ-LIMALLQ-52, from the N-terminal a-helical region of HpaXm displayed a comparable activity in inducing HR, but other two synthesized derivatives, HpaXmAT44C and HpaXmAM48Q showed a reduced activity of HR. A signal peptide was predicted to exist in the 15 leading amino acids of the N-terminus. The data from a GST trap test suggests that the signal peptide may function to release HpaXm into the extracellular medium and the sec-dependent pathway may associate with HpaXm during secretion.
引文
Alfano JR, Collmer A. (2004) Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense. Annual Review of Phytopathology 42:385-414
    Adam AL, Pike S, Hoyos ME, Stone JM, Walker JC, Novacky A. (1997) Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiology 115:853-861
    Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, and Solano R. (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665-1681
    Ahn IP, Kim S, Lee YH, Suh SC. (2007) Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology 143:838-848
    Ahn IP, Lee SW, Suh SC. (2007) Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Molecular Plant-Microbe Interactions 20:759-768
    Alfano JR, Bauer DW, Milos TM, Collmer A. (1996) Analysis of the role of the Pseudomonas syringae pv. syringae hrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally nonpolar hrpZ deletion mutations, truncated hrpZ fragments, and hrmA mutations. Molecular Microbiology 19:715-728
    Allison DB, Cui X, Page GP, Sabripour M. (2006) Microarray data analysis:from disarray to consolidation and consensus. Nat. Rev. Genet.7(1):55-65
    Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715):176-180
    Amano T, Hirasawa K, O'Donohue MJ, Pernole JC, and Shioi Y. (2003) A versatile assay for the accurate, time-resolved determination of cellular viability. Anal. Biochem.314:1-7
    Arai M, Okumura K, Satake M, Shimizu T. (2004) Proteome-wide functional classification and identification of prokaryotic transmembrane proteins by transmembrane topology similarity comparison. Protein Sci.13:2170-83
    Arlat M, Van Gijsegem F, Huet JC, Pernollet JC, Boucher CA. (1994) PopA1, a protein which induces a hypersensitivity like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J.13:543-553
    Asselbergh B, Vleesschauwer DD, and Hofte M. (2004) Global Switches and Fine-Tuning—A BA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions 21(6):709-719
    Badescu GO and Napier RM. (2006) Receptors for auxin:will it all end in TIRs? TRENDS in Plant Science 11(5):217-223
    Baker CJ, Orlandi EW, Mock NM. (1993) Harpin, An Elicitor of the Hypersensitive Response in Tobacco Caused by Erwinia amylovora, Elicits Active Oxygen Production in Suspension Cells. Plant Physiology 102:1341-1344
    Barrow JR. (1970) A genetic analysis of Verticillium wilt tolerance in cotton. Proceedings Beltwide Cotton Conferences 68
    Bauer DW, Wei ZM, Beer SV, Collmer A. (1995) Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Molecular Plant-Microbe Interactions 8:484-491
    Belbarhi LB, Boucher C, Candresse T, Nicole M, Ricci P, Keller H. (2001) A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible. The Plant Journal 28:419-430
    Bell AA. (1992) Verticillium wilt. Pages 87-126 in:Cotton Disease. Hillocks RJ, ed. C.A.B. International, Wallingford, U.K.
    Bendahmane A, Kanyuka K, Baulcombe DC. (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell.11:781-792
    Berrocal-Lobo M, Molina A, Solano R. (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 29:23-32
    Bertsova YV, Bogachev AV, and Skulachev VP. (1998) Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. Biochim. Biophys. Acta 1363: 125-133
    Bevan M, Bancroft I, Bent K, et al. (1998) Analysis of 1.9Mb contiguous sequence from chromosome 4 of Arbidopsis thaliana. Nature 391:485-488
    Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Weller U, Kehoe M, Palmer M. (1996) Staphylococcal alpha-toxin, streptolysin-o, and Escherichia coli hemolysin:prototypes of pore-forming bacterial cytolysins. Archives of Microbiology 165:73-79
    Blume B, Nu《nberger T, Nass N and Scheel D. (2000) Receptor-Mediated Increase in Cytoplasmic Free Calcium Required for Activation of Pathogen Defense in Parsley. Plant Cell 12:1425-1440
    Bogdanove AJ, Beer SV, Bonas U, Boucher CA, Collmer A, Coplin DL, Cornelis GR, Huang HC, Hutcheson SW, Panopoulos NJ, Van Gijsegem F. (1996) Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol.20:681-688
    Bolton MD, Kolmer JA, Xu W, Garvin DF. (2008) Lr34-Mediated Leaf Rust Resistance in Wheat: Transcript Profiling Reveals a High Energetic Demand Supported by Transient Recruitment of Multiple Metabolic Pathways. Molecular Plant-Microbe Interactions 21:1515-1527
    Borejsza-Wysocka E, Kader AA, Norelli JL, Bauer DW, Garr ER, Beer SV, and Aldwinckle HS. (2000) Effect of expressing hrpN in apple on resistance to Erwinia amylovora. In Vitro Cell Dev. Biol. (Anim.) 34:1023
    Bouchez D, Hofte H. (1998) Functional genomics in plants. Plant Physiology 118:725-732
    Boyes DC, Nam J, Dangl JL. (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl. Acad. Sci.95:15849-15854
    Brown IR, Mansfield JW, Taira S, Roine E, and Romantschuk M. (2001) Immunocytochemical Localization of HrpA and HrpZ Supports a Role for the Hrp Pilus in the Transfer of Effector Proteins from Pseudomonas syringae pv. tomato Across the Host Plant Cell Wall. Molecular Plant-Microbe Interactions 14(3):394-404
    Caldo RA, Nettleton D, Peng J, and Wise RP. (2007) Stage-Specific suppression of basal defense discriminates barley plants containing fast-and delayed-acting Mla powdery mildew resistance alleles. Molecular Plant-Microbe Interactions 19(9):939-947
    Candole BL, and Rothrock CS. (1998) Using marked strains to assess the effect of hairy vetch amendment on the inoculum densities of Thielaviopsis basicola, Pythium ultimum and Rhizoctonia solani. Soil. Biol. Biochem.30:443-448
    Cessna SG, Messerli MA, Robinson KR, Low PS. (2001) Measurement of stress-induced Ca2+pulses in single aequorin-transformed tobacco cells. Cell Calcium 30:151-156
    Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A. (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol.180:5211-5217
    Chen CH, Lin HJ and Feng TY. (1998) An amphipathic protein from sweet pepper can dissociate harpinPss multimeric forms and intensify the harpinPss-mediated hypersensitive response. Physiological and Molecular Plant Pathology 52:139-149
    Chen Z, Silva H, Klessig DF. (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883-1886
    Cheng Y, Qin G, Dai X, Zhao Y. (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis, Proc. Natl. Acad. Sci.104(47):18825-18829
    Choma CT, Surewicz WK, Carey PR, Pozsgay M, Raynor T, Kaplan H. (1990) Unusual proteolysis of the protoxin and toxin of Bacillus thuringiensis-structural implication. Eur. J. Biochem.189:523-527
    Collazo P, Montoliu L, Puigdomenech P, Rigau J. (1992) Structure and expression of the lignin O-methyltransferase gene from Zea mays. Plant Molecular Biology 20:857-867
    Collinge DB, Slusarenko AJ. (1987) Plant gene expression in response to pathogens. Plant Molecular Biology 4:389-410
    Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B. (2006) Priming:getting ready for battle. Molecular Plant-Microbe Interactions 19:1062-1071
    Conrath U, Pieterse CM, Mauch-Mani B. (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210-216
    Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ. (2004) Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. The Plant Journal 40:225-237
    Cornelis GR, Van Gijsegem F. (2000) Assembly and function of type Ⅲ secretory systems. Annu. Rev. Microbiol.54:735-774
    Cornelis GR. (2006) The type Ⅲ secretion injectisome. Nature 4:811-825
    Cramer CL, Bell JN, Ryder TB, Bailey JA, Schuch W, Bolwell GP, Robbins MP, Dixon RA, Lamb CJ. (1985) Co-ordinated synthesis of phytoalexin biosynthetic enzymes in biologically-stressed cells of bean (Phaseolus.ulgaris L.). EMBO J.4:285-289
    Cui Y, Bell AA, Joost O, Magill C. (2000) Expression of potential defense response genes in cotton. Physiological and Molecular Plant Pathology 56:25-31
    Dangl JL, Dietrich RA and Richberg MH. (1996) Death don't have no mercy:Cell death programs in plant-microbe interactions. Plant Cell 18:1793-1807
    David R, Cecile F, Joel B, Bernadette B, Sandrine L, Jean-Pierre R, Marie-Anne B, Francois B. (2007) The HrpNea Harpin from Erwinia amylovora Triggers Differential Responses on the Nonhost Arabidopsis thaliana Cells and on the Host Apple Cells. Molecular Plant-Microbe Interactions 20(1): 94-100
    Davies PJ. (1987) The plant hormones:Their nature, occurrence,and functions. In Plant Hormones and Their Role in Plant Growth and Development P.J. Davies, ed (Boston:Martinus Nijhoff) pp.1-12
    Desaizieu A, Certa U, Warrington J, Gray C, Keck W, Mous J. (1998) Bacterial transcrip timmaging by hybridization of total RNA to oligonucleotide arrays. Nat. Biotechnol.16:45-48
    Desikan R, Clarke A, Atherford P, Hancock JT and Neill SJ. (1999) Harpin induces mitogen-activated protein kinase activity during defence responses in Arabidopsis thaliana suspension cultures. Planta 210:97-103
    Desikan R, Hancock JT, Co(?)ey MJ and Neill SJ. (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett.382:213-217
    Deyholos M, Wang H and Galbraith D. (2001) Microarrays for Gene Discovery and Metabolic Pathway Analysis in Plants. Life Science 2 (1):2-4
    Dharmasiri N, Dharmasiri S, Estelle M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445
    Dharmasiri N. and Estelle M. (2004) Auxin signaling and regulated protein degradation. TRENDS in Plant Science 9(6):302-308
    Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl J. (1994) Programmed cell death in plants:A pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551-563
    Dievart A and Clark SE. (2004) LRR-containing receptors regulating plant development and defense. Development 131:251-261
    Dilks K, Rose RW, Hartmann E, Pohlschroder M. (2003) Prokaryotic utilization of the twin-arginine translocation pathway:a genomic survey. J. Bacteriol.185:1478-1483
    Doke N. (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol.23:345-357
    Dominique P, Maurice T, Peter R, Eric L, and Dominique R. (1998) Activation of hsr 203, a Plant Gene Expressed During Incompatible Plant-Pathogen Interactions, Is Correlated with Programmed Cell Death. Molecular Plant-Microbe Interactions 11(6):544-554
    Dong H, Delaney TP, Bauer DW, Beer SV. (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIMI gene. The Plant Journal 20:207-15
    Dong H., Peng J, Bao Z, Meng X, Bonasera J, Chen G, Beer S, and Dong H. (2004) Downstream divergence of the ethylene signaling pathway for Harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology 136:3628-3638
    Dong X. (1998) SA, JA, ethylene, and disease resistance in plants. Cur. Opin. Plant Biol.1:316-323
    Dong X. (2001) Genetic dissection of systemic acquired resistance. Cur. Opin. Plant Biol.4:309-314
    Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR. (2003) MAPPFinder: usingGene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol.4(1):R7
    Dultz E, Hildenbeutel M, Martoglio B, Hochman J, Dobberstein B and Kapp K. (2008) The signal peptide of the mouse mammary tumor virus Rem protein is released from the endoplasmic reticulum membrane and accumulates in nucleoli. J. Biol. Chem.283 (15):9966-76
    Ebel J. (1986) Phytoalexin synthesis:the biochemical analysis of the induction process. Annual Review of Phytopathology 24:235-264
    El-Maarouf H, Barny MA, Rona JP, Bouteau F. (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett.497:82-84
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc.2:953-971
    Fodor SPA. (1997) DNA sequencing:massively parallels genomics. Science 227:393-395
    Galan JE, Collmer A. (1999) Type Ⅲ secretion machines:bacterial devices for protein delivery into host cells. Science 284:1322-1328
    Galan JE, Wolf-Watz H. (2006) Protein delivery into eukaryotic cells by type Ⅲ secretion machines. Nature 444:567-573
    Ge X, Dietrich C, Matsuno M, Li G, Berg H & Xia Y. (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO reports 6(3):282-288
    Gopalan S. (2008) Reversal of an immunity associated plant cell death program by the growth regulator auxin. BMC Research Notes 1:126 (Nature Precedings:doi:10.1038/npre.2007.1347.1:Posted 18 Nov 2007)
    Gophna U, Ron EZ, Graur D. (2003) Bacterial type Ⅲ secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151-163
    Gough CL, Genin S, Lopes V, and Boucher CA. (1993) Homology between the HrpO protein of Pseudomonas solanacearum and bacterial proteins implicated in a signal peptide-independent secretion mechanism. Mol. Gen. Genet.239:378-392
    Gould JH, Zhou Y, Magallanesm E, Ratnayka I, Shen Y, Newton RJ. (1997) Geno type-independent transformation of pine, cotton and corn using Agrobacterium in vitro. Biology Congress, Society for in vitro Biology, Meeting. Washington, DC. June:14-18
    Grant JJ and Loake GJ. (2000) Role of reactive oxygen intermediates and cognate radix signalling in disease resistance. Plant Physiology 124:21-29
    Gray GR, Maxwell DP, Villarimo AR, Mclntosh L. (2004) Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep.23:497-503
    Greenberg JT and Yao N. (2004) The role and regulation of programmed cell death in plant-pathgen interactions. Cellular Microbiology 6(3):201-211
    Gue'neron M, Timmers ACJ, Boucher CA, and Arlat M. (2000) Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the Hrp-secretion apparatus of Ralstonia solanacearum. Mol. Microbiol.36: 261-277
    Guermeur Y. (1997) Combinaison de classifieurs statistiques, Application a la prediction de structure secondaire des proteines. PhD thesis, Universite de Paris 06
    Guo Y, Guo H, Zhang L, Xie H, Zhao X, Wang F, Li Z, Wang Y, Ma S, Tao J, Wang W, Zhou Y, Yang W, and Cheng J. (2005) Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J. Virol.79:14392-14403
    Giirlebeck D, Thieme F, Bonas U. (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology 163: 233-255
    Guy de C, Beer SV. (2003) Pre-and post-harvest harpin treatments of apples induce resistance to blue mold. Plant Disease 87:39-44
    Hagen G and Guilfoyle T. (2002) Auxin-responsive gene expression:genes, promoters and regulatory factors. Plant Molecular Biology 49:373-385
    Haider MZ and Ellar DJ (1987) Analysis of the molecular basis of insecticidal specificity of Bacillus thuringiensis 8-endotoxins. J. Biochem.248:197-201
    Ham K, Kauffmann S, Albersheim P, Darvill AG. (1991) Host-pathogen interaction XXXIX. A soybean pathogenesis-related protein with b-l,3-glucanase activity release phytoalexin elicitor-active heat-stable fragments from fungal walls. Molecular Plant-Microbe Interactions 4:545-552
    Hammond-Kosack KE, Jones DA, Jones J DG. (1994) Identification of two genes required in tomato for full Cf-9 dependent resistance to Cladosporium fulvum. Plant Cell 6:361-374
    Hanson LE. (2000) Reduction of Verticillium Wilt Symptoms in Cotton Following Seed Treatment with Trichoderma virens. The Journal of Cotton Science 4:224-231
    Hardtke CS, Berleth T. (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J.17:1405-1411
    Hayat E, Marie AB, Jean PR, Franc°is B. (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Letters 497:82-84
    He SY, Bauer DW, Collmer A, Beer SV. (1994) Hypersensitive response elicited by Erwinia amylovora harpin requires active plant metabolism. Molecular Plant-Microbe Interactions 7:289-292
    He SY, Huang HC, Collmer A. (1993) Pseudomonas syringae pv. syringae harpinPss:A protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255-1266
    Head SR, Parikhk, Rogers YH., Bishai W, Goelet P, Boyce-Jacino MT. (1999) Solid-phase sequence scanning for drug resistance detection in tuberculosis. Molecular and Cellular Probes 13(2):81-87
    Hegde RS and Bernstein HD. (2006) The surprising complexity of signal sequences. Trends Biochem Sci 31(10):563-71
    Hillocks RJ. (1992) Cotton Disease. C.A.B. International, Wallingford, U.K.
    Hofiusa D, Tsitsigiannis DI, Jones JDG, Mundy J. (2007) Inducible cell death in plant immunity. Seminars in Cancer Biology 17:166-187
    Hoyos AE, Stanley CM, He SY, Pike S, Pu XA and Novacky A. (1996) The interaction of harpinPss with plant cell walls. Molecular Plant-Microbe Interactions 9:608-616
    Huang J, Li H, Yuan H. (2006) Effect of organic amendments on Verticillium wilt of cotton. Crop Protection 25:1167-1173.
    Hurwitz N, Pellegrini-Calace M, Jones DT. (2006) Towards genome-scale structure prediction for transmembrane proteins. Phil. Trans. R. Soc. B.361:465-75
    Hwang D, Schmitt WA, Stephanopoulos G, Stephanopoulos G. (2002) Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics 18(9): 1184-1193
    Information for contributors (2007) Molecular Plant-Microbe Interactions 20(11):1457-1458
    Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J, Germino G, Griffin C, Hilmer SC, Hoffman E, Jedlicka AE, Kawasaki E, Martinez-Murillo F, Morsberger L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson M, Yang Y, Ye SQ, Yu W. (2005) Multiple-laboratory comparison of microarray platforms. Nat. Methods 2(5):345-350
    Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and 02-from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94:4800-4805
    Jian Gui-liang, Sun Wen-ji, Ma Cun. (2001) A New Method for identifying the Verticillium Wilt resistance:Sprinkle the Strain Suspension on Root in Non bottom Plastic Film Bottle. Cotton Science 13 (2):67-69. (In Chinese with English abstract)
    Jiang M, Zhang J. (2001) Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol.42:1265-1273
    Johansson A, Staal J and Dixelius C. (2006) Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA-and ET-associated signals via cytosolic NPR1 and RFO1. Molecular Plant-Microbe Interactions 19:958-969
    Joost O, Bianchini G, Bell AA, Benedict CR and Magill CW (1995) Differential induction of 3-hydroxy-emethylglutaryl CoA reductase in two cotton species following inoculation with Verticillium. Molecular Plant-Microbe Interactions 8:880-885
    Justin L, Daniel FK, Thorsten N. (2001) A Harpin Binding Site in Tobacco Plasma Membranes Mediates Activation of the Pathogenesis-Related Gene HIN1 Independent of Extracellular Calcium but Dependent on Mitogen-Activated Protein Kinase Activity. Plant Cell 13:1079-1093
    Kay S, Hahn S, Marois E, Hause G, Bonas U. (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648-651
    Kendziorski CM, Zhang Y, Lan H, Attie AD. (2003) The efficiency of pooling mRNA in microarray experiments. Biostatistics 4(3):465-477
    Kepinski S, Leyser O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446-451
    Kim JF, Beer SV. (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol.180:5203-5210
    Kim JG, Jeon E, Oh J, Moon S, Hwang I. (2004) Mutational analysis of Xanthomonas harpins HpaG identifies a key functional region that elicits the hypersensitive esponse in nonhost plants. J. Bacteriol. 186:6239-6247
    Kim JG, Park B, Yoo C, Jeon E, Oh J, Hwang I. (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island. J. Bactiriol.185:3155-3166
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL. (2001) Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes. J. Mol. Biology 305: 567-580
    Lamb CJ, Lawton MA, Dron M, Dixon RA. (1989) Signal and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56:215-224
    Lamb CJ, Ryals JA, Ward ER, Dixon RA. (1992) Emerging strategies for enhancing crop resistance to microbial pathogens. Biotechnology 10:1436-1444
    Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J. (2005) Independence and reproducibilityacross microarray platforms. Nat. Methods 2 (5):337
    Lee J, Klessig D F, Nurnberger T. (2001) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HINI independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-1093
    Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Noller J, Weiler EW, Cornelis GR, Mansfield JW, Nurnberger T. (2001) HrpZ (Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ionconducting pore in vitro. Proc. Natl. Acad. Sci. USA 98:289-294
    Lee T ML, Kuo FC, Whitmore GA, Sklar J. (2000) Importance of replication in microarray gene expression studies:statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97(18):9834-9839
    Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS. (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep.22: 465-470
    Levine A, Tenhaken R, Dixon R, Lamb C. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593
    Levy R, Wiedmann M, Kreibich G. (2001) In Vitro Binding of Ribosomes to the β Subunit of the Sec61p Protein Translocation Complex. The J. Biol. Chemistry 276:2340-2346
    Li CM, Haapalainen M, Nurnberger T, Romantschuk M, Taira S. (2005) Harpin of Pseudomonas syringae pv. phaseolicola harbors a protein binding site. Molecular Plant-Microbe Interactions 18: 60-66
    Li F, Zhang Y, Wang M, Zhang Y, Wu X, Guo X. (2008) Molecular cloning and expression characteristics of alternative oxidase gene of cotton (Gossypium hirsutum). Mol. Biol. Rep.35:97-105
    Li P, Long JY, Huang YC, Zhang Y, Wang JS. (2004) avrXa3:A novel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function. Process in Natural Sciences 14(9):767-773
    Li P, Lu XZ, Shao M, Long JY, Wang JS. (2004) Genetic diversity of Harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Science in China Ser. C Life Sciences 47(5):461-469
    Li R, Fan Y. (1999) Reduction of lesion growth rate of late blight plant disease in transgenic potato expressing harpin protein. Sci. China (Ser. C) 42:96-101
    Li YE, Jiao GL, Wu JH, Shi XJ, Wu X, Fan XP, Meng JH, Li SJ, Chen ZX, Guo SD, Zhu ZH, Tian YCH (2000) High efficient transformation system mediated by Agrobacterium tumeficiens of cotton. China Cotton 27(5):10-11.
    Liang H, Yao N, Song JT, Luo S, Lu H, and Greenberg JT. (2003) Ceramides modulate programmed cell death in plants. Genes Dev.17:2636-2641
    Lipka V, Dittgen J, Bednarek P, Bhat RA, Stein M, Landtag J, Brandt W, Scheel D, Llorente F, Molina A, Wiermer M, Parker J, Somerville SC, Schulze-Lefert P. (2005) Pre-and post-invasion defenses both contribute to non-host resistance in Arabidopsis. Science 310:1180-1183
    Liu WT, Mirzabekov AD, Stahl DA. (2001) Optimization of an oligonucleatide microchip for microbial identification studies:a non-equilibrium dissociation approach. Environ. Microbial.3:619
    Liu YG, Huang N. (1998) Efficient amplification of Insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol. Biol. Reporter 16:175-181
    Liu J, Benedict CR, Stipanovic RD, Magill CW, Bell AA. (2002) Cloning and expression of desoxyhemigossypol-6-O-methyltransferase from cotton(Gossypium barbadense). J. Agric. Food Chem.50:3165-3172
    Livak KJ, and Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Methods 25:402-408
    Lori to M, Scala F. (1999) Microbial genes expressed in transgenic plants to improve disease resistance. J. Plant Pathology.81 (2):73-88
    Lupas A, Van Dyke M, Stock J. (1991) Predicting coiled coils from protein sequences. Science 24(252): 1162-1164
    Malnoy M, Venisse JS, Chevreau E. (2005) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet. Genomes 1:41-49
    Mao X, Cai T, Olyarchuk JG,& Wei L. (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787-3793
    Martoglio B and Dobberstein B. (1998) Signal sequences:More than just greasy peptides. Trends Cell Biol.8 (10):410-5
    Masseroli M, Galati O, Pinciroli F. (2005) GFINDer:genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res.33:717
    Mehdy MC. (1994) Active oxygen species in plant defense against pathogens. Plant Physiology 105: 467-472
    Miao WG and Hillocks RJ. (2004) Management on cotton Fusarium and Verticillium wilts and new symptom of Fusarium wilt in Xinjiang. Plant Protection Towards the 21st century-Proceedings of the 15th International plant protection congress, Foreign Languages Press, Beijing, P.392
    Mittler R., Vanderauwera S., Gollery M. and Van Breusegem F. (2004) Reactive oxygen gene network of Plants. TRENDS in Plant Science 9(10):1360-1385
    Molen TA, Rosso D, Piercy S, Maxwell DP. (2006) Characterization of the alternative oxidase of Chlamydomonas reinhardtii in response to oxidative stress and a shift in nitrogen source. Physiologia plantarum 127:74-86
    Natale P, Bruser T, Driessen AJ (2008) Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—Distinct translocases and mechanisms. Biochimica et Biophysica Acta 1778: 1735-1756
    Nimchuk Z, Eulgem T, Holt III BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu. Rev. Genet.37:579-609
    Noel L, Thieme F, Gabler J, Buttner D, Bonas U. (2003) XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J. Bacteriol.185:7092-102
    Noel L, Thieme F, Nennstiel D, Bonas U. (2002) Two novel type Ill-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol.184: 1340-1348
    Oh CS, Beer SV. (2007) AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology 145:426-436
    On~ate-Sa'nchez L, Anderson JP, Young J, and Singh KB. (2007) AtERF14, aMember of the ERF Family of Transcription Factors, Plays a Nonredundant Role in PlantDefense. Plant Physiology 143: 400-409
    Ouakfaoui SE and Miki B. (2005) The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptll and uidA. The Plant Journal 41:791-800
    Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu T, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang L, Hurba P, Longueville Fd, Fuscoe JC, Tong W, Shi L, Wolfinger RD. (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat. Biotechnol.24:1140-1150
    Paustian M.L., May B.J., Kapur V. (2001) Pasteurella Multocida gene expression in response to iron limitation. Infect Immun.69(6):4109-4115
    Pavlidis P, Li Q, Noble WS. (2003) The effect of replication on gene expression microarray experiments. Bioinformatics 19(13):1620
    Pegg GF. (1989) Pathogenesis in vascular disease of plants, p.51-94. In E. C. Tjamos and C. Beckman (ed.), Vascular wilt diseases of plants. Springer, Berlin, Germany
    Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS.2004. Expression of harpin in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048-1055
    Perino C, Gaudriault S, Vian B and Barny MA. (1999) Visualization of harpin secretion in planta during infection of apple seedlings by Erwinia amylovora. Cellular Microbiology 1(2):131-141
    Phipps RH and Park JR. (2002) Environmental Benefits of Genetically Modified Crops:Global and European Perspectives on Their Ability to Reduce Pesticide Use. Journal of Animal and Feed Sciences 11:1-18
    Pike SM, Adam AL, Pu XA, Hoyos ME, Laby R, Beer SV and Novacky A. (1998) Effects of Erwinia amylovora harpin on tobacco leaf cell membranes are related to leaf necrosis and electrolyte leakage and distinct from perturbations caused by inoculated E. amylovora Physiol. Mol. Plant Pathol.53: 39-60
    Pontier D, Godiard L, Marco Y, and Roby D. (1994) hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. The Plant Journal 5: 507-521
    Popham PL, Pike SM, Novacky A. (1995) The effect of harpin from Erwinia amylovora on the plasmalemma of suspension-cultured tobacco cells. Physiol. Mol. Plant Pathol.47:39-50
    Punja ZK. (2001) Genetic engineering of plants to enhance resistance to fungal patnogens-a review of progress and future prospects. Can J. Plant Pathol.23:216-235
    Racape J, Belbahri L, Engelhardt S, Lacombe B, Lee J, Lochman J, Marais A, Nicole M, Nurnberger T, Parlange F, Puverel S, Keller H. (2005) Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco. Mol. Microbiol.58:1406-1420
    Ramos AR. (2004) Hrp proteins and harpins:defining their roles in the type III protein secretion system in Pseudomonas syringae. PhD thesis. Cornell University, Ithaca, NY
    Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona J, Barny M, Bouteau F. (2007) The HrpNea Harpin from Erwinia amylovora Triggers Differential Responses on the Nonhost Arabidopsis thaliana Cells and on the Host Apple Cells. Molecular Plant-Microbe Interactions 20(1):94-100
    Robert C L,Staten G. (1972) Heritability of Verticillium wilt tolerance in crosses of American Upland cotton. Crop Science 12:63-66
    Robinette D, Matthysse AG. (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola. J. Bacteriol.172:5742-5749
    Romano CP, Cooper ML, Klee HJ.1993 Uncoupling auxin and ethylene effects in transgenic tobacco and Arabidopsis plants. Plant Cell 5:181-189.
    Romano CP, Hein MB, Klee HJ. (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev 5:438-446
    Ronchi P, Colombo S, Francolini M, Borgese N (2008) Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. The Journal of Cell Biology 181:105-118
    Rothrock CS, Kirkpatrick TL. (2001) Compendium of Cotton Diseases (second edition), APS
    Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. (2003) TM4:a free, open-source system for microarray data management and analysis. Biotechniques 34 (2):374-378
    Sambrook J, Russell DW. (2001) Molecular cloning:a Laboratory manual,3rd edn. Cold Spring Harbor Laboratory Press. New York
    Schaad NW, Postnikova E, Lacy G, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, and Vidaver AK. (2006) Emended classification of xanthomonad pathogens on citrus. Syst. Appl. Microbiol.29: 690-695 [No abstract available.] (Note:Erratum to Schaad et al.2005.)
    Schaad NW, Postnikova E, Lacy GH, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, Vidaver AK. (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb, nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb, nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al,1989 sp. nov. nom. rev. comb, nov.; X. campestris pv malvacearum (ex Smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones,1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al,1935) sp. nov. nom. rev.; and "var. fuscans" of X. campestris pv. phaseoli (ex Smith,1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Syst. Appl. Microbiol.28:494-518
    Scheel D. (1998) Resistance response physiology and signal transduction. Current Opinion in Plant Biology 1:305-310
    Schena M, Shalon D, Davis RW, Brown PO. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470
    Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci.USA 97(21):11655-11660
    Schnathorst WC. (1981) Life cycle and epidemiology of Verticillium, p.81-111. In M. A. Mace, A. A. Bell, and C. H. Beckman (ed.), Fungal wilt diseases of plants. Academic Press, New York, N.Y. secondaire des proteines. PhD Thesis
    Selinger DW. (2000) RNA expression analysis using a 30 base pair resolution Escherichia coli genomic array. Nat. Biotechnol.18(12):1262-1268
    Sewalt VJH, Ni W, Jung HG, Dixon RA. (1997) Lignin impact on fiber degradation:Increased enzymatic digestability of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem.45:1977-1983
    Shao M, Li L, Mu DS, Xiao SS, Yang XL, Wang HL, Liu XM, Wang JS. (2006) HarpinXoo expression in transgenic rice plants enhances resistance to bacterial leaf blight. Chinese Journal of Biological Control 22 (2):133-136. (In Chinese with English abstract)
    Shao M, Wang JS, Dean RA, Lin YG, Gao XW and Hu SJ. (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnology Journal 6: 73-81
    Shao M, Wang JS. (2004) Transformation of rice with hrfAXoo gene and resistance of transgenic plants to bacterial leaf blight. Journal of Nanjing Agricultural University 27 (4):36-40 (In Chinese with English abstract)
    Sharon LF, Jeanette MQ, Stacie SN, Page MD, Gohre V, Moseley JL, Kropat J, Merchant S. (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryotic Cell 1:736-757
    Shi Y, Zhu S, Mao X, Feng J, Qin Y, Zhang L, Cheng J, Wei L, Wang Z, Zhu Y. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651-664
    Shiu SH and Bleecker AB. (2001a) Plant receptor-like kinase gene family:diversity, function, and signaling. Sci. STKE 2001, re22
    Shiu SH and Bleecker AB. (2001b) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98:10763-10768
    Shiu SH and Bleecker AB. (2002) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology 132:530-543
    Slot JW & Geuze HJ. (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Europ. J. Cell Biol.38:87-93
    Sohn S, Kim Y, Kim B, Lee S, Lim CK, Hur JH, and Lee J. (2007) Transgenic tobacco expressing the hrpNEP gene from Erwinia pyrifoliae triggers defense responses against Botrytis cinerea. Mol. Cells 24(2):232-239
    Somerville C, Somerville S. (1999) Plant functional genomics. Science 28 (16):380-383
    Somssich IE and Hahlbrock K. (1998) Pathogen defence in plants-a paradigm of biological complexity. Trends Plant Sci.3:86-90
    Spyropoulos IC, Liakopoulos TD, Bagos PG, Hamodrakas SJ (2004) TMRPres2D:high quality visual representation of transmembrane protein models. Bioinformatics 20:3258-3260
    Steven JC and Anddrew FB. (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16(6):735-743
    Storey JD, Taylor JE,& Siegmund D. (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates:A unified approach. Journal of the Royal Statistical Society, Series B 66:187-205
    Strobel RN, Gopalan JS, Kuc JA, He SY. (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZpss protein. The Plant Journal 9:431-439
    Sturn A, Quackenbush J, Trajanoski Z. (2002) Genesis:clusteranalysis of microarray data, Bioinformatics 18(1):207-208
    Sun Y, Meng QY. (1998) Transformation method of upland cotton. Xinjiang Agricultural Sciences 4: 157-159
    Tampakaki AP, Panopoulos NJ. (2000) Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Molecular Plant-Microbe Interactions 13:1366-1374
    Thilmony R, Underwood W, and He SY. (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. The Plant Journal 46:34-53
    Thimm O, Blasing O,Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. (2004) MAPMAN:a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37:914-939
    Thordal-Christensen H, Zhang Z, Wei Y and Collinge DB. (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barleypowdery mildew interaction. The Plant Journal 11:1187-1194
    Tilstone C. (2003) DNA microarrays:vital statistics. Nature 424(6949):610
    Tinker AV, Boussioutas A, Bowtell DD. (2006) The challenges of geneexpression microarrays for the study of human cancer. Cancer Cell 9(5):333
    Trujillo M, Kogel K, and Hiickelhoven R. (2004) Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis. Molecular Plant-Microbe Interactions 17(3):304-312
    Tuteja R. (2005) Type I signal peptidase:An overview. Archives of Biochemistry and Biophysics 441: 107-111
    Verhal EN LM, Brinkerhott LA, Fun KC, Morrison WC. (1971) A quantitative genetic study of Verticillium wilt resistance among selected lines of upland cotton. Crop Science 11:407-412
    von Heijne G.1983 Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem.133 (1):17-21
    Wang KL, Li H, Ecker JR. (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131-151.
    Wang XY, Song CF, Miao WG, Ji ZL, Wang XB, Zhang Y, Zhang JH, Hu JS, Borth W, Wang JS. (2008) Mutations in the N-terminal coding region of the harpin protein Hpal from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl. Microbiol. Biotechnol.81:359-369
    Wei ZM and BEER SV. (1993) HrpI of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J. Bacteriol.175(24):7958-7967
    Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Beer SV. (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88
    Wei ZM, Qiu D, Kropp MJ, and Schading RL. (1998) Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. (Abstr.) Phytopathology 88:S96
    Wen W, Wang J. (2001) Cloning and expressing a harpin gene from Xanthomonas oryzae pv. oryzae. Acta Phytopathologica Sinica 31:295-300 (In Chinese with English abstract)
    White CA and Salamonsen LA. (2005) A guide to issues in microarray analysis:application to endometrial biology. Reproduction 130:1-13
    Wihelm S, Sagen JE, Tietz H. (1974) Resistance to Verticillium wilt in cotton:source, techniques of identification, inheritance trends, and the resistance potential of multiline cultivars. Phytopathology 64: 924-931
    Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the Small GTPase OsRacl in Rice. Plant Physiology 135:1447-1456
    Wooldridge K. (2009) Bacterial Secreted Proteins:Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press, xii+512 pp
    Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Zhao P, Zha XF,Cheng TC, Chai CL, Pan GQ, Xu JS, Liu C, Lin Y, Qian JF, Hou Y,Wu ZL, Li GR, Pan MH, Li CF, Shen YH, Lan XQ, Yuan LW, Li T, Xu HF, Yang GW, Wan YJ, Zhu Y, Yu MD, Shen WD, Wu DY,Xiang ZH, Yu J, Wang J, Li RQ, Shi JP, Li H, Li GY, Su JN, Wang XL, Li GQ, Zhang ZJ, Wu QF, Li J, Zhang QP, Wei N, Xu JZ, Sun HB, Dong L, Liu DY, Zhao SL, Zhao XL, Meng QS, Lan FD, Huang XG, Li YZ, Fang L, Li CF, Li DW, Sun YQ, Zhang ZP, Yang Z, Huang YQ, Xi Y, Qi QH, He DD, Huang HY, Zhang XW, Wang ZQ, Li WJ, Cao YZ, Yu YP, Li JH, Ye JH, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li ST, Ni PX, Zhang JG, Zhang Y, Zheng HK, Mao BY, Wang W, Ye C, Li SG, Wang J, Wong GKS, Yang HM. (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937-1940
    Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z, He N, Zhang L, Xiang Z. (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol.8:R162
    Xia QZ, Zhang XL, Nie YC, Guo XP. (2005) Establishment of cotton embryogenic suspension cultures and analyses of the affecting factors. Cotton Science 17(1):12-17. (In Chinese with English abstract)
    Xia XH, Xie Z. (2001) AMADA:analysis ofmicroarray data. Bioinformatics 17(6):569-570
    Xie, Z and Chen, Z. (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Molecular Plant-Microbe Interactions 13(2):183-190
    Yang JY, Yang MQ, Dunker AK, Deng Y, Huang X. (2008) Investigation of transmembrane proteins using a computational approach. BMC Genomics 9 (Suppl 1):S7
    Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. (2002) Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res.30:e15
    Ying G, Wu W, He CZ. (2002) Cloning of Xanthomonas campestris pv. campestris pathogenicity-related gene sequences by TAIL-PCR. Chinese Journal of Biotechnology 18:182-186
    Zhang S, Klessig DF. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci. (6):520-527
    Zhao MQ, Wang L, Zhang B, Wang JS, Chen GY. (2006) HarpinXooc, a Proteineous Elicitor of Xanthomonas oryzae pv. oryzicola, Triggering hypersensitive response in tobacco and inducing disease resistance in rice. Chinese Journal of Biological Control 22 (4):283-289 (In Chinese with English abstract)
    Zhou G, Weng J, Zeng Y, Huang J, Qian S, Liu G. (1983) Introduction of exogenous DNA ionto cotton embryos. Methods in Enzymology 101:433-488
    Zhu W, Magbanua MM, White FF. (2000) Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol.182:1844-1853
    Zitter, TA, and Beer, SV. (1998) Harpin for insect control. (Abstr.) Phytopathology 88:S104
    敖琳, 高利宏, 胡冉, 曾志雄, 方志俊, 曹佳, 杨梦苏 (2006)小鼠毒理基因芯片的可靠性验证.癌变·畸变·突变02:61
    陈其煐, 籍秀琴, 孙文姬(1985)我国棉枯萎镰刀菌生理小种研究.中国农业科学6:1-6
    陈旭升, 狄佳春, 刘剑光, 许乃银, 肖松华(2002)转基因棉花育种进展及其产业化前景分析.中国农业科学18(2):72-74
    戴广辉, 刘俊芳,李延增,刘克明,魏建昆(1989)棉花黄萎病抗病性鉴定新方法探讨.华北农学报4(4):92-97
    邓德旺, 郭三堆, 杨志民(1999)棉花花粉管通道法转基因的分子细胞学机理研究.21世纪农业生物技术展望论坛文集P63
    狄佳春, 陈旭升, 刘剑光, 肖松华, 许乃银(2004)黄萎病发病级别对高品质棉渝棉一号的影响. 江苏农业科学1:32-34
    杜娟, 王萍(2000)植物遗传转化育种技术的研究进展及评价.吉林农业科学5:23-27
    范江明, 李金渠, 黄勇, 张良文(2004)中棉所35棉种混杂退化的原因及对策.中国棉花40
    方宣钧, 贾士荣(1999)中国转基因抗虫棉产业化进展.生物技术通报02:9-11
    丰嵘, 张宝红, 郭香墨(1996)外源Bt基因对棉花产量性状及抗虫性的影响.棉花学报8(1):10-13
    甘莉, 吕金殿, 汪沛洪(1995)棉花黄萎病菌分泌的糖蛋白毒素与其致病力的关系.中国农业科学28(02):58-65
    高永成(1985)棉花枯萎病抗性的定向培育和定向变异.棉花学报(1):106-114
    顾本康, 马存(1996) 中国棉花抗病育种.江苏科学技术出版社
    郭三堆(1995)植物Bt抗虫基因工程研究进展.中国农业科学28(05):8-13
    郭万峰,滕光菊,王升启(2004)几种基因芯片技术的比较.中国生物工程杂志(05):15-19
    郝联芳,刘养浩(1997)陆地棉基因转移技术研究初报.陕西师范大学学报(自然科学版)25(1):15-19
    何剑星(2005)马克隆值是棉花质量的重要参数.中国棉花加工3:25-26
    贺晨霞,夏光敏(1999)农杆菌介导单子叶植物基因转化研究进展.植物学通报5:10-18
    洪丽亚, 黄儒珠(2002)基因芯片技术及其在植物上的应用.生物技术通报4:30-33
    侯成林, 徐卫华(2007)棉铃虫促前胸腺激素的表达模式与发育调节.科学通报52(11)1269-1273
    胡延佳, 翦新春(2007)基因芯片数据分析过程: 从原始数据到生物学意义.生物技术通讯18(2):333-335
    黄骏麒,钱思颖,刘桂铨, 薛达元,应苗成, 洪爱华, 周光宇,翁坚, 曾以中, 龚蓁蓁,王自芳,杨晓霞(1986)外源抗枯萎病棉DNA导入感病棉的抗性转移.中国农业科学3:32-36
    黄骏麒, 钱思颖, 刘桂玲, 翁坚, 曾以申, 周光宇(1981)外源海岛棉DNA导致陆地棉性状的变异.遗传学报8(1):56-62
    黄迎春,孙春昀,冯红(2003)利用基因芯片检测转基因作物.遗传25(3):307-310
    贾士荣, 郭三堆, 安道昌(2001)转基因棉花.北京科学出版社
    James Clive,孙国凤(2007)2006年转基因作物商业化的全球态势.生物技术通报(02): 159-162
    简桂良,邹亚飞, 马存(2003) 棉花黄萎病连年流行的原因及对策.中国棉花30(3)13-14
    简桂良, 马存, 陈其煐(1995)豫北棉区气温与湿度对黄萎病发生的关系分析.植物病理学报25(1):17-22
    李达模,周建林,李绍清, 李阳生(1997)植物遗传转化与分子育种技术研究进展.湖南农业科学4:15-20
    李付广,崔金杰,刘传亮, 武芝霞, 李凤莲, 周勇, 李秀兰, 郭三堆, 崔洪志(2000)双价基因抗虫棉及其抗虫性研究.中国农业科学1:23-26
    李妙,徐荣旗,王校栓(1995)不同黄萎病级对棉花产量及纤维品质的影响.棉花学报7(3):189-192
    李卫,董文,周菲, 郭光沁, 郑国錩(2003)参与在农杆菌介导遗传转化过程中的植物因子研究进展.中国生物工程杂志(12):33-35
    李云锋,王振中,贾显禄(2004)稻瘟菌糖蛋白激发子诱导的水稻叶片膜脂过氧化及过敏性反应.植物生理与分子生物学学报20(2):147-152
    李子银,胡会庆(1998)农杆菌介导的植物遗传转化进展.中国生物工程杂志1:58-62
    刘传亮,武芝霞,张朝军,李凤莲,王玉芬,李付广(2004)农杆菌介导棉花大规模高效转化体系的研究.西北植物学报24(5):768-775
    刘剑光, 肖松华, 狄佳春, 陈旭升, 许乃银, 黄骏麒(2003)Bt基因导入对棉花农艺性状的影响.中国棉花30(3):15-17
    刘占国, 马峙英, 张桂寅, 吴立强(2000)发病时间和发病速度对棉花黄萎病的影响.华北农学报15(1):71-75
    陆家芸, 佘长夫, 鞠理红, 方中达(1983)江苏省棉花黄萎病菌(Verticillium dahliae)致病力分化.南京农学院学报1:36-43
    马存,简桂良,孙文姬(1999)我国棉花品种抗黄萎病鉴定存在的问题及对策.棉花学报11(3):163-166
    马伯军,徐根娣,袁妙葆(1994)高等植物遗传转化的研究进展.浙江师范大学报(自然科学版)17(4):243-246
    马存,简桂良(1997)我国棉花抗黄萎病育种现状、问题及对策.中国农业科学30(2)58-64
    马存,简桂良,郑传临(2002)中国棉花抗枯、黄萎病育种50年.中国农业科学35(5)508-513
    马存, 石磊岩, 陈其煐, 简桂良, 王波, 宋建军(1994) 1993年棉花黄萎病大发生 的原因及防治措施.中国农学通报10(3):33-35
    马平,Huang HC,李社增, 唐文华(2004)一种新的棉花黄萎病快速接种技术及其在病原菌致病力和寄主抗病性鉴定上的应用.植物病理学报34(6):536-541
    马峙英, 王省芬, 张桂寅, 李兴红, 刘叔倩, 吴立强, 刘占国(1997)河北省棉花黄萎病菌致病性的研究.棉花学报9(1):15-20
    马峙英(1997)河北省棉花黄萎病菌分化和棉花抗性遗传研究.华中农业大学博十学位论文
    孟凡宏,宋从凤,纪兆林, 王金生(2007)表达全长与截短HarpinXoo对转基因烟草抗病性的影响.南京农业大学学报30(3):47-52
    孟欣(2008)生物芯片在临床医学上的应用.中国社会医学杂志25(3):186-188
    倪万潮,郭三堆,贾士荣(2000)花粉管通道法介导的棉花遗传转化.中国农业科技导报2:29-31
    潘家驹, 张天真, 蒯本科,郭小平,王谥(1994)棉花黄萎病抗性遗传.南京农业大学学报17(3):8-18
    史大刚, 田逢秀, 宋天风, 徐孝华(1991)棉花枯萎镰刀菌致病力变异的研究Ⅱ.生Ⅱ、Ⅲ型菌系异核现象的研究.植物病理学报21(2):145-150
    宋晓轩, 王树民(2001)近20年我国棉花生产主栽品种概况及其评价.棉花学报13(5)315-320
    孙善君, 李仕贵, 朱生伟, 孙敬三, 卢亚(2005)植物遗传转化方法及其在棉花品质改良育种中的应用.分子植物育种2:18-23
    孙善君(2005)转双价抗虫基因棉花的获得、检测和基因表达研究.四川农业大学硕十论文
    孙文姬, 简桂良(1997)用相对抗性指数评价棉花种质抗病性.植物保护23(3):36-37
    孙严, 孟庆玉(1998)陆地棉遗传转化技术.新疆农业科学4:38-41
    陶均, 李玲(2002)农杆菌转化的分子生物学.植物生理学通讯6:22-28
    王关林, 方宏筠(1998)植物基因工程原理与技术.北京:科学出版社67-71
    王金生(2001)分子植物病理学.北京:中国农业出版社
    王省芬, 马峙英(2002)一种新的棉花黄萎病抗性鉴定方法.棉花学报14(4):231-233
    王振山,马峙英, 曲健木(1989)棉花枯、黄萎病的抗性基因效应分析.河北农业大学学报12(2):21-25
    魏兆军, 洪桂云, 姜绍通, 鲁成(2008)家蚕脑核蛋白抽提及其与PTTH基因启动子的凝胶阻滞分析.中国农业科学41(1):265-271
    魏兆军,魏洪义, 洪桂云, 李娟, 姜绍通, 罗建平(2007)亚洲玉米螟神经肽羽化激素基因cDNA的克隆及组织表达.昆虫学报50(4):323-329
    吴献忠, 李凤玲, 郑长英, 王贻勇, 朱有钊(1995) 山东棉花黄萎病菌致病力分化的研究. 植物保护21(6):2-5
    吴征彬,李冬波,余敦智,陈鹏(2003)棉花对枯黄萎病的抗性鉴定及病害对产量的影响.作物学报29(6):947-950
    向阳, 朱冬雪, 夏雨, 吕立堂,赵德刚(2003)植物基因工程中Ti质粒的研究与应用进展.生物学通报38(2):135-140
    校白才(1985)陆地棉抗病枯、黄萎病性状配合力、遗传力的初步研究.作物学报4:267-273
    徐春晖, 夏光敏, 贺晨霞(2002)农杆菌转化系统研究进展.生命科学4:5-7
    许爱玲(2006) 山西省棉花黄萎病菌致病力分化研究.山西农业科学34(1):58-60
    杨可胜, 产焰坤, 陈军, 郑曙峰, 朱加保, 关文健, 刘方志, 胡积送, 江本利, 路曦结,唐胜(2002)棉花抗虫性鉴定技术研究.安徽农业科学30(2):193-194
    杨亦桦(2005)棉铃虫对拟除虫菊酯氧化代谢抗性的生化与分子机理.南京农业大学博士论文
    于加勇, 丁晓娟(2004)棉纤维长度整齐度与成纱质量的关系.棉纺织技术33(7):411-413
    于娅,刘传亮, 马峙英, 李付广,王省芬(2003)基因枪转化技术在棉花遗传转化上的应用.棉花学报4:106-110
    甑丽红, 夏玻(2001)转基因农产品的研究及前景.山东农业1:35
    翟俊辉, 郭兆彪, 宋亚军,王津, 张敏丽, 杨瑞馥, 韩俊(2002) 16SrRNA基因芯片检测临床感染性细菌.临床检验杂志20(3):133-136
    张天真, 周兆华, 闵留芳, 郭旺珍, 潘家驹, 何金龙, 纵瑞收, 汤杰珍, 郭小平, 蒯本科, 王谧, 朱协飞, 陈兆夏, 唐灿明, 刘康, 孙敬, 惠书勤, 黄在进(2000)棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术.作物学报26(6):673-680
    章元寿,王建新(1991)用棉花黄萎病菌毒素检测棉花抗病性的研究.植物保护17(4):2-4
    中纤局棉花质量监督处(2008)2006/2007年度中国棉花质量分析报告.中国纤检8:10-16
    周荣荣, 卫军霞, 王亚辉, 张亮, 程京, 周玉祥(2006)一种用于基因芯片可靠的双轮RNA线性扩增技术.中国生物化学与分子生物学报22(6):498-507
    周晓罡,丁玉梅,张绍松,孙茂林,李建平(2008)马铃薯青枯病(Ralstonia solanacearum)质粒基因组分泌蛋白信号肽初步分析.云南大学学报(自然科学版)30(S1):36-42
    朱荷琴, 宋晓轩, 孙君灵, 苗子胜(1999)棉花黄萎病菌安阳菌系致病类型变异研究.棉花学报11(6):312-317
    祝水金, 季道藩(1996)棉花抗虫基因工程研究进展.生物工程进展16(1):55-58
    邹立扣,王红宁(2003)基因芯片检测细菌耐药性的研究进展.微生物学杂志23(1):30-32
    邹亚飞,简桂良,李华荣,马存, 田东兰(2001)棉花黄萎病菌分子生物学研究新进展.棉花学报13(4):254-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700