用户名: 密码: 验证码:
高级氧化工艺降解水溶液中氯贝酸的影响因素及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物及个人护理产品(Pharmaceuticals and personal care products, PPCPs)是一类普遍存在于环境中的微量有机污染物,其浓度常在ng/L-μg/L水平。由于个人和畜牧业中大量而频繁的使用,导致其在环境中形成假性持续性现象。众多的研究结果表明,在低浓度药物中长期暴露是导致微生态动植物基因改变、造成细菌耐药性及形成水环境中内分泌干扰作用的重要原因。由于PPCPs在污水厂中不能完全被去除,导致其通过污水排放或污水回用进入到自然环境当中,因此,有必要寻求一种高效经济的新工艺或新技术以提高PPCPs的去除效率。
     本论文以目前发现的在环境中存在最为持久的药物之一氯贝酸(降血脂药物的有效成分及代谢产物)为研究对象,比较了同样条件ultraviolet (UV)、vacuum ultraviolet (VUV)、UV/H2O2、VUV/H2O2工艺的降解效果,考察了H202投加量、氯贝酸初始浓度、溶液初始pH值、阴离子(Cl-、SO42-、NO3-、HCO3-)和有机质(腐殖酸)等的影响。以UV/H2O2工艺为对象,主要研究了温度在氯贝酸去除过程中所起的作用。研究了夏季及冬季solar/TiO2、solar/ZnO工艺对氯贝酸的去除,考察了温度、太阳光照强度、外加氧化剂H202、有机物质、NO3-、HCO3等因素的影响。最后通过GC-MS分析鉴定氯贝酸在不同工艺中的降解中间产物,并利用发光菌毒性试验对处理前后反应溶液毒性变化进行了评价。主要研究结论如下:
     (1) UV、UV/H2O2、VUV、VUV/H2O2工艺降解氯贝酸过程遵循准一级反应动力学模型。氯贝酸在UV/H2O2、VUV/H2O2工艺中可通过直接光降解和·OH间接氧化去除,并以后者为主,而在VUV工艺中则是以直接光解为主。UV工艺中因不产生自由基,故氯贝酸的去除仅是直接光氧化作用的结果,其中溶液过酸或过碱均不利于氯贝酸的光解过程。当有腐殖酸有机质(20 mg/L)存在时可严重抑制氯贝酸的光降解。在UV工艺中,阴离子对氯贝酸降解有促进作用;其他工艺中均表现为基本无作用或有明显的抑制作用,且Cl-、SO42对降解过程的影响比NO3-、HCO3小。污水厂出水中复杂的成分可严重抑制氯贝酸的降解,与超纯水体系相比,表观速率常数降低1.8-4.9倍。四种工艺中,VUV/H2O2是去除超纯水及污水中氯贝酸最有效的工艺。同样达到99%以上去除率,VUV/H2O2、VUV、UV/H2O2、UV工艺去除污水中氯贝酸所需时间分别为40、80、80、240 min。
     (2)在考察温度对UV/H2O2降解氯贝酸过程的影响时发现,升高温度(10℃—30℃)均能大大强化超纯水及污水厂二级处理出水中氯贝酸的去除效果。当氯贝酸初始浓度为10 mg/L时,同样达到99%以上的去除率,T1 (9.0-11.5℃)、T2 (19.0-21.0℃)、T3 (29.0-30.0℃)条件下污水中氯贝酸降解所需的反应时间分别为80、40、15 min。添加腐殖酸抑制了超纯水中氯贝酸的降解,且温度越低,影响越显著。低温条件下无论是低浓度还是高浓度,HC03-均表现为明显的抑制效应;当温度升高后,抑制作用减弱,且低浓度的抑制效应可忽略。三个温度条件下高浓度的NO3-均明显抑制了氯贝酸的降解,且随着温度的升高,抑制作用减弱;而T1(9.0-11.5℃)时低浓度N03-没有明显影响,但随着温度升高,表现出略微的促进作用。
     (3)夏季及冬季氯贝酸在solar/TiO2、solar/ZnO工艺中的降解效果差异很大。两种阴离子(N03-和HC03-)的投加均抑制了氯贝酸的光催化降解过程,在高浓度HCO3-(0.1 mol/L)存在时尤为明显。夏季时,在solar/TiO2工艺中加入0.5 mg/L的腐殖酸能略微促进氯贝酸的降解,而冬季时,腐殖酸(20 mg/L)的投加严重抑制了氯贝酸的去除过程。在solar/ZnO工艺中,投加20 mg/L的腐殖酸同样起到严重抑制作用,但抑制程度在两个季节没有明显差别。在solar/TiO2工艺中,H202的添加没有明显促进氯贝酸的降解;而在solar/ZnO工艺中,添加100 mg/L H2O2则明显抑制了氯贝酸的去除。污水厂出水中氯贝酸的光催化降解速率常数明显低于超纯水体系。
     (4)通过GC-MS分析,鉴定出了UV、UV/H2O2、VUV、VUV/H2O2、solar/TiO2工艺降解氯贝酸过程中产生的11种中间产物,其中只有3种化合物在以往文献中报道过。结合氯贝酸降解过程中溶解性有机碳(DOC)、Cl以及特征紫外吸光度(SUVA254)的变化情况,可推断在solar/TiO2工艺中首先发生的是苯环开环反应,而其他工艺中首先发生的是脱氯过程,且芳香类中间产物在溶液中存在累积现象。明亮发光杆菌毒性试验结果初步表明,溶液毒性增强主要是由芳香类中间产物引起的,而solar/TiO2工艺中的开环反应是降低毒性的一条有效途径。
Pharmaceuticals and personal care products (PPCPs) have been frequently detected at ng/L-μg/L levels (trace concentration) worldwide in the environment. Due to the large consumption of human and veterinary medicines, these compounds can be persistent in aquatic environment. Numerous researches showed that the long-term exposure to low concentration of pharmaceutical compounds has been regarded as the main reason to the change of genes in aquatic organisms, development of bacterial resistance to antibiotics and formation of endocrine disruption. Because of their incomplete removal in WWTPs, PPCPs can enter the aquatic environment through the discharge or reuse of wastewater treatment plants (WWTP) effluents, therefore, it is necessary to explore some new ways to promote their removal efficiency.
     Clofibric acid (CA) is a metabolite of several lipid regulators consumed by human beings suffered angiocardiopathy problems and is believed as one of the most persistent pharmaceuticals in the environment. CA removal performances under the same experimental conditions by ultraviolet (UV), vacuum ultraviolet (VUV), UV/H2O2 and VUV/H2O2 processes were compared in this study. The influences of various factors including H2O2 amount, initial CA concentration, initial solution pH, anions (Cl-,SO42-, NO3-, HCO3-) and organic matters (humic acid, HA) on CA degradation were performed. In addition, the effect of temperature on CA removal was specially investigated in UV/H2O2 process. The performance of CA degradation in solar/TiO2 and solar/ZnO processes was studied in summer and winter seasons and the effects of temperature, solar light intensity, NO3- and HCO3-, HA and H2O2 on CA photo-catalysis were evaluated. Finally the intermediates in CA degradation during UV, UV/H2O2, VUV, VUV/H2O2 and solar/TiO2 processes were identified by GC-MS and the toxicity of these by-products also assessed. The key findings were summarized as below.
     (1) All the experimental data well fitted the pseudo-first-order kinetic model. Direct oxidation was the main process in VUV irradiation despite the slight generation of hydroxyl radicals (·OH). In contrast, indirect oxidation of CA by generated OH was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2. CA photodegradation was negatively influenced in both low and high pH conditions. The addition of 20 mg/L HA could significantly inhibit CA degradation, whereas anions (1.0×10-3 and 0.1 mol L-1) showed inhibitive or insignificant effects on CA degradation in all processes except in UV irradiation where they could increase the apparent reaction rate constants. The effects of Cl- and SO42-were less obvious than NO3- and HCO3- anions.The degradation rate decreased 1.8-4.9 folds when these processes were applied to real WWTP effluent due to the complex constituents. In all of the four, VUV/H2O2 showed the most effective process and the CA removal efficiency reached over 99% after 40 min in contrast to 80min in both UV/H2O2 and VUV processes and 240 min in UV process.
     (2) Higher temperature (10℃-30℃) would favor CA degradation in UV/H2O2 process. When using a real WWTP effluent spiked with 10 mg/L CA over 99% of CA removal could be achieved under T3 (29.0-30.0℃) within only 15 min compared with 40 and 80 min under T2 (19.0-21.0℃) and T1 (9.0-11.5℃), respectively. HA had negative effect on CA degradation in Milli-Q water and this effect was much more apparent under low temperature condition. In addition, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. On the other hand, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions.
     (3) Significant difference in CA degradation in two seasons was observed both in solar/TiO2 and solar/ZnO processes. The two anions (NO3- and HCO3-) adversely affected CA degradation, particularly at high HCO3- concentration. CA degradation slightly increased with 0.5 mg L-1 HA in solar/TiO2 in summer, but significantly inhibited in winter at 20 mg L-1 HA. However, the inhibitive effect of 20 mg L-1 HA on CA removal in solar/ZnO had no remarkable difference in two seasons. The degradation in solar/TiO2/H2O2 was similar to that in solar/TiO2, but inhibited obviously in solar/ZnO/H2O2. When applying photo-catalytic process into WWTP effluent degradation rates were apparently lower comparing to Milli-Q water.
     (4) Eleven intermediates were detected by GC/MS, of which only three compounds have been reported before by other researchers. Combining with the evolution of the dissolved organic carbon (DOC), Cl- and specific ultraviolet absorption at 254 nm (SUVA254), it could be proposed that cleavage of aromatic ring followed by dechlorination was the mechanism in solar/TiO2 process, while dechlorination happening first and aromatic intermediates accumulated in other processes. The acute toxicity was evaluated by means of P. phosphoreum (T3, spp.) bioassay. It was believed that aromatic intermediates enhanced the solution toxicity and the ring-opening pathway in solar/TiO2 process could reduce the acute toxicity.
引文
[1]J. Radjenovic, M. Petrovic, F. Ventura, et al. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment [J]. Water Research,2008,42 (14):3601-3610.
    [2]K. Fent, A. A. Weston, D. Caminada. Ecotoxicology of human pharmaceuticals [J]. Aquatic Toxicology,2006,76 (2):122-159.
    [3]C. Hignite, D. L. Azarnoff. Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent [J]. Life Science, 1977,20 (2):337-341.
    [4]H. J. Stan, T. Heberer, M. Linkerhagner. Occurrence of clofibric acid in the aquatic system- is the use in human medical care the source of the contaminantion of surface ground and drinking water [J]. Vom Wasser,1994,83:57-68.
    [5]W. W. Buchberger. Current approaches to trace analysis of pharmaceuticals and personal care products in the environment [J]. Journal of Chromatoraphy A,2011,1218 (4): 603-618.
    [6]D. W. Kolpin, E. T. Furlong, M. T. Meyer, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams,1999-2000:a national reconnaissance [J]. Environmental Science & Technology,2002,36 (6):1202-1211.
    [7]K, Kummerer. Pharmaceuticals in the environment [M].2n ed., Berlin:Springer Verlag, 2004.
    [8]K, Kummerer. Pharmaceuticals in the environment [M].3nd ed., Berlin:Springer Verlag, 2007.
    [9]T. A. Ternes, A. Joss. Human pharmaceuticals, hormones and fragrances:the chellenge of micropollutants in urban water management [M]. London:IWA Publishing,2006.
    [10]M. Petrovic, D. Barcelo. Analysis, fate and removal of pharmaceuticals in the water cycle [M]. Amsterdam:Elsevier,2007.
    [11]T. A. Ternes. Occurrence of drugs in German sewage treatment, plants and rivers [J]. Water Research,1998,32 (11):3245-3260.
    [12]S. A. Snyder, P. Westerhoff, Y. Yoon, et al. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry [J]. Environment Engineering Science,2003,20 (5):449-469.
    [13]M. Stumpf, T. A. Ternes, R. D. Wilken, et al. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil [J]. Science of the Total Environment,1999, 225(1-2); 135-141.
    [14]J. Radjenovic, M. Petrovic, D. Barcelo. Analysis of pharmaceuticals in wastewater and removal using amembrane bioreactor [J]. Analytical and Bioanalytical Chemistry,2007, 387(4):1365-1377.
    [15]K. Kumar, S. Gupta, S. K. Baidoo, et al. Antibiotic uptake by plants from soil fertilized with animal manure [J]. Journal of Environment Quality,2005,34 (6):2082-2085.
    [16]C. A. Kinney, E. T. Furlong, S. L. Werner, et al. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water [J]. Environmental Toxicology & Chemistry,2006,25 (2):317-326.
    [17]E. Huertas, M. Salgot, J. Hollender, et al. Key objectives for water reuse concepts [J]. Desalination,2008,218 (1-3):120-131.
    [18]J. A. Pedersen, M. Soliman, I. H. Suffet. Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater [J]. Journal of Agricultural and Food Chemistry,2005,53 (5):1625-1632.
    [19]D. R. Lapen, E. Topp, C. D. Metcalfe, et al. Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids [J]. Science of the Total Environment,2008,399 (1-3):50-65.
    [20]U. Hammesfahr, H. Heuer, B. Manzke, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils [J]. Soil Biology and Biochemistry,2008,40 (7):1583-1591.
    [21]R. Gibson, J. C. Duran-Alvarez, K. L. Estrada, et al. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico [J]. Chemosphere,2010,81 (11):1437-1445.
    [22]M. Qadir, B. R. Sharma, A. Bruggeman, et al. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries [J]. Agricultural Water Management,2007,87 (1):2-22.
    [23]B. Jimenez, A. Chavez. Low cost technology for reliable use of Mexico City's wastewater for agricultural irrigation [J]. Technology Journal of the Franklin Institute,2002,9 (1-2): 95-108.
    [24]I. Kim, N. Yamashita, H. Tanaka. Performance of UV and UV/H2O2 processes for removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan [J]. Journal of Hazardous Materials,2009,166 (2-3):1134-1140.
    [25]D. Herren, D. Berset. Nitro musk amino metabolites and polycyclic musks in sewage sludges:quantitative determination by HRGC-ion-trap-MS/MS and mass spectral characterization of the amino metabolites [J]. Chemosphere,2000,40 (5):565-574.
    [26]C. G. Daughton, T. A. Ternes. Pharmaceuticals and personal care products in the environment:agents of subtle change? [J]. Environmental Health Perspectives,1999,107 (Suppl.6):907-938.
    [27]J. L. Oaks, M. Gilbert, M. Z. Virani, et al. Diclofenac residues as the cause of vulture population decline in Pakistan [J]. Nature,2004,427 (6975):630-633.
    [28]Health, United States,2007 with chartbook on trends in the health of Americans [M]. Huntsville:National Center of Health Statistics,2008.
    [29]P. Pfluger, D. R. Dietrich. Pharmaceuticals in the environment-an overview and principle considerations. In:K. Kummerer. Phamaceuticals in the environment [M]. Heidelberg, Germany:Springer Verlag,2001.
    [30]H. R. Buser, M. D. Muser, N. Theobald. Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecocrop in various Swiss lakes and in the North Sea [J]. Environmental Science and Technoology,1998,32 (1):188-192.
    [31]E. Zuccato, D. Calamari, M. Natangelo, et al. Presence of therapeutic drugs in the environment [J]. The Lancet,2000,355 (9217):1789-1790.
    [32]A. Tauxe-Wuersch, L. F. Alencastro, D. Grandjean, et al. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment [J]. Water Research. 2005,39(9):1761-1772.
    [33]J. B. Quintana, J. Carpinteiro, I. Rodriguez. Analytisis of acidic drugs by gas chromatography. In:M. Petrovic, D. Barcelo. Analysis, fate and removal of pharmaceuticals in the water cycle. Comprehensive analytical chemistry [M]. Amsterdam: Elsevier,2007.
    [34]M. Carballa, F. Omil, J. M. Lema, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Research,2004,38 (12):2918-2926.
    [35]T. A. Ternes, M. Meisenheimer, D. Mcdowell. Removal of pharmaceuticals during drinking water treatment [J]. Environmental Science & Technology,2002,36 (17): 3855-3863.
    [36]J. A. Pedersen, M. A. Yeager, I. H. Suffet. Xenobiotic organic compounds in runoff from fields irrigated with treated wastewater [J]. Journal of Agricultural and Food Chemistry, 2003,51 (5):1360-1372.
    [37]T. Heberer. Occurrence, fate and removal of pharmaceutical residues in the aquatic environment:a review of recent research data [J]. Toxicology Letters,2002,131 (1-2): 5-17.
    [38]D. Barcelo, M. Petrovic. Pharmaceuticals and personal care products (PPCPs) in the environment [J]. Analytical and Bioanalytical Chemistry,2007,387 (4):1141-1142.
    [39]O. A. H. Jones, N. Voulvoulis, J. N. Lester. Human pharmaceuticals in the aquatic environment-a review [J]. Environmental Technology,2001,22 (12):1383-1394.
    [40]D. Fatta, A. Nikolaou, A. Achilleos, et al. Analytical methods for tracing pharmaceutical residues in water and wastewater [J]. TrAC Treads in Analytical Chemistry,2007,26 (6): 515-533.
    [41]M. Kostopoulou, A. Nikolaou. Analytical problems and the need for sample preparation in the determination of pharmaceuticals and their metabolites in aqueous environmental matrices [J]. Trends in Analytical Chemistry,2008,27 (11):1023-1035.
    [42]石璐,周雪飞,张亚雷,等.环境中药物及个人护理品(PPCPs)的分析测试方法[J].净水技术,2008,27(5):56-63.
    [43]S. S. Verenitch, C. J. Lowe, A. Mazumder. Determination of acid drugs and caffeine in municipal wastewater and receiving waters by gas chromatography-ion trap tandem mass spectrometry [J]. Journal of Chromatography A,2006,1116 (1-2):193-203.
    [44]S. J. Oilers, H. Singer, Ph. Fassler, S. R. Muller. Simultaneous quantification of neutral and acidic pharmaceuticals and pesticide at the low-ng/L level in surface and waste water [J]. Journal of Chromatography A,2001,911 (2):225-234.
    [45]F. Sacher, F. Lange, H. Brauch, I. Blankenhorn. Pharmaceuticals in groundwaters-analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany [J]. Journal of Chromatography A,2001,938 (1):199-210.
    [46]U. Jux, R. Banginski, A. H. Gunter, et al. Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings [J]. International Jounrnal of Hygiene and Environmental Health,2002,205 (5):393-398.
    [47]R. Anderozzi, M. Raffaelea, P. Nicklas. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment [J]. Chemosphere,2003,50 (10):1319-1330.
    [48]V. Koutsouba, Th. Heberer, B. Fuhrmann, et al. Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry [J]. Chemosphere, 2003,51 (2):69-75.
    [49]S. Weigel, R. Kallenborn, H. Huhnerfuss. Simultaneous solid-phase extraction of acidic, neutral and basic pharmaceuticals from aqueous samples at ambient (neutral) pH and their determination by gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2004,1023 (2):183-195.
    [50]W. C. Lin, H. C. Chen, W. H. Ding. Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivation with gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2005,1065 (2): 279-285.
    [51]A. Togola, H. Budzinski. Multi-residue analysis of pharmaceutical compounds in aqueous samples [J]. Journal of Chromatography A,2008,1177(1):150-158.
    [52]M. D. Hernando, M. Petrovic, A. R. Fernandez-Alba, et al. Analysis by liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Journal of Chromatography A,2004,1046 (1-2):133-140.
    [53]S. Castiglioni, R. Bagnati, D. Calamari, et al. A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters [J]. Journal of Chromatography A,2005,1092 (2):206-215.
    [54]M. J. Hilton, K. V. Thomas. Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospay tandem mass spectrometry [J]. Journal of Chromatography A,2003,1015(1-2):129-141.
    [55]D. Ashton, M. Hilton, K. V. Thomas. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom [J]. Science of the Total Environment, 2004,333(1-3):167-184.
    [56]P. H. Roberts, K. V. Thomas. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment [J]. Science of the Total Environment,2006,356 (1-3):143-153.
    [57]R. Gibson, E. Becerril-Bravo, V. Silva-Castro, et al. Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2007,1169 (1-2):31-39.
    [58]K. Ikehata, N. J. Naghashkar, M. G. El-Din. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes:a review [J].2006,28 (6):353-414.
    [59]A. B. A. Boxall, P. A. Blackwell, P. Kay, et al. Veterinary medicines in the environment [J]. Reviews of Environmental Contaminationg and Toxicology,2004,180:1-91.
    [60]C. A. Kinney, E. T. Furlong, S. D. Zaugg, et al. Survey of organic wastewater contaminats in biosolids destined for land application [J]. Environmental Science & Technology,2006, 40(23):7207-7215.
    [61]C. A. Kinney, E. T. Furlong, D. W. Kolpin, et al. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms form agricultural soil amended with biosolid or swine manure [J]. Environmental Science & Technology,2008,42 (6): 1863-1870.
    [62]E. Topp, S. C. Monteiro, A. Beck, et al. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field [J]. Science of the Total Environment,2008,396 (1):52-59.
    [63]A. W. Garrison, J. D. Pope, F. R. Allen. Analysis of organic compounds in domestic wastewater. In:C. H. Keith. Identification and Analysis of Organic Pollutants in Water [M]. Michigan, USA:Ann Arbor Science,1976.
    [64]M. L. Richardson, J. M. Bowron. The fate of pharmaceutical chemicals in the aquatic environment [J]. Journal of Pharmacy and Pharmacology,1985,37 (1):1-12.
    [65]I. H. Rogers, I. K. Birtwell, G. M. Kruznyski. Organic extractables in municipal wastewater of Vancouver, British Columbia [J]. Water Pollution Research Journal of Canada,1986,21 (2):187-204.
    [66]D. Ashton, M. Hilton, K. V. Thomas. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom [J]. Science of the Total Environment, 2004,333(1-3):167-184.
    [67]S. Wiegel, A. Aulinger, R. Brockmeyer, et al. Pharmaceuticals in the river Elbe and its tributaries [J]. Chemosphere,2004,57 (2):107-126.
    [68]D. Calamari, E. Zuccato, S. Castiglioni, et al. Strategic survey of therapeutic drugs in the Rivers Po and Lambro in Northern Italy [J]. Environmental Science & Technology,2003, 37(7):1241-1248.
    [69]B. Gross, J. Montgomery-Brown, A. Naumann, et al. Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland [J]. Environmental Toxicology and Chemistry,2004,23 (9):2074-2083.
    [70]P. D. Thaker. Pharmaceutical data elude researchers [J]. Environmental Science & Technology,2005,139(9):193A-194A.
    [71]T. Ternes, M. Bonerz, T. Schmidt. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of Chromatography A,2001,938(1-2):175-185.
    [72]J. V. Holm, K. Rugge, P. L. Bjerg, et al. Occurrence and distribution of pharmaceutical organic-compounds in the groundwater downgradient of a landfill (Grindsted, Denmark) [J]. Environmental Science and Technology,1995.29 (5):1415-1420.
    [73]K. Reddersen, T. Heberer. Multi-compound methods for the detection of pharmaceutical residues in various waters applying solid phase extraction (SPE) and gas chromatography with mass spectrometric (GC-MS) detection [J]. Journal of Separation Science,2003.26 (15-16):1443-1450.
    [74]H. J. Stan, T. Heberer. Pharmaceuticals in the aquatic environment [J]. Analusis,1997,25 (7):M20-M23.
    [75]C. Tixier, H. P. Singer, S. Oellers, et al. Occurrence and fate of carbamazepine. clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters [J]. Environmental Science & Technology,2003,37 (6):1061-1068.
    [76]B. Kasprzyk-Hordern, R. M. Dinsdale, A. J. Guwy. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionization tandem mass spectrometry [J]. Journal of Chromatography A,2007,1161 (1-2): 132-145.
    [77]M. J. Hilton, K. V. Thomas. Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of Chromatography A,2003,1015(1-2):129-141.
    [78]M. Gros, M. Petrovic, D. Barcelo. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters [J]. Talanta,2006,70 (4):678-690.
    [79]S. Castiglioni, R. Bagnati, D. Calamari, et al. A multriresidue analytical method using solid-phase extraction and high-pressure liquid chromatography-tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters [J]. Journal of Chromatography A,2005,1092 (1):206-215.
    [80]S. Zhang, Q, Zhang, S. Darisaw, et al. Simultaneous quantification of polycyclic aromatic hydrocarbon (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA [J]. Chemosphere,2007,66 (6):1057-1069.
    [81]K. Kimura, H. Hara, Y. Watanabe. Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors [J]. Environmental Science & Technology,2007,41 (10):3708-3714.
    [82]G. R. Boyd, H. Reemtsma, D. A. Grimm, et al. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada [J]. Science of the Total Environment,2003,311 (1-3):135-149.
    [83]V. Koutsouba, T. Heberer, B. Fuhrmann, et al. Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry [J]. Chemosphere, 2003,51 (2):69-75.
    [84]S. Weigel, J. Kuhlmann, H. Huhnerfuss. Drugs and personal care products as ubiquitous pollutants:occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea [J]. Science of the Total Environment,2002,295 (1):131-141.
    [85]X. Peng, Y. Yu, C. Tang, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China [J]. Science of the Total Environment,2008,397 (1-3):158-166.
    [86]J. L. Zhao, G. G. Ying, L. Wang, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry [J]. Science of the Total Environmental,2009,407 (2):962-974.
    [87]L. Wang, G. G. Ying, J. L. Zhao, et al. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China [J]. Science of the Total Environment,2010,408 (16):3139-3147.
    [88]F. Chen, G. G. Ying, L. X. Kong, et al. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soil in Hebei, China [J]. Environmental Pollution,2011,159 (6):1490-1498.
    [89]H. C. Chen, P. L. Wang, W. H. Ding. Using liquid chromatography-ion trap mass spectrometry to determine pharmaceutical residues in Taiwanese rivers and wastewaters [J]. Chemosphere,2008,72 (6):863-869.
    [90]A. Y. C. Lin, T. H. Yu, C. F. Lin. Pharmaceutical contamination in residential, industrial, and agricultural waste streams:risk to aqueous environments in Taiwan [J]. Chemosphere, 2008,74(1):131-141.
    [91]J. J. Pignatelo, B. Xing. Mechanism of slow sorption of organic chemicals to natural particles [J]. Environmental Science & Technology,1996,30(1):1-11.
    [92]D. Loffler, J. Rombke, M. Meller, et al. Environmental fate of pharmaceuticals in water/sediment systems [J]. Environmental Science & Technology.2005.39 (14): 5209-5218.
    [93]C. F. Williams, C. F. Williams, F. H. Adamsen. Sorption-desorption of carbamazepine from irrigated soils [J]. Journal of Environmental Quality,2006,35 (5):1779-1783.
    [94]P. A. Blackwell, P. Kay, A. B. A. Boxall. The dissipation and transport of veterinary antibiotics in a sandy loam soil [J]. Chemosphere,2007,67 (2):292-299.
    [95]Y. Seol, L. S. Lee. Coupled effects of treated effluent irrigation and wetting drying cycles on transport of triazines through unsaturated soil columns [J]. Journal of Environmental Quality,2001,30 (5):1644-1652.
    [96]K. U. Totsche, I. Kogel-Knabner. Mobile organic sorbent affected contaminant transport in soil:numerical case studies for enhanced and reduced mobility [J]. Vadose Zone Journal,2004,3 (2):352-367.
    [97]J. Oppel, G. Broil, D. Loffler, et al. Leaching behaviour of pharmaceuticals in soil-testing-systems:a part of an environmental risk assessment for groundwater protection [J]. Science of the Total Environment,2004,328 (1-3):265-273.
    [98]P. Drillia, K. Stamatelatou, G. Lyberatos. Fate and mobility of pharmaceuticals in solid matrices [J]. Chemosphere,2005,60 (8):1034-1044.
    [99]J. Xu, L. S. Wu, A. C. Chang. Degradation and adsorption of seleted pharmaceuticals and persona] care products (PPCPs) in agricultural soil [J]. Chemosphere,2009,77 (10): 1299-1305.
    [100]R. G. Zepp, T. V. Callaghan, D. J. Erickson. Effects of increased solar ultraviolet radiation on biogeochemical cycles [J]. Ambio,1995,24(3):181-187.
    [101]T. Mill. Predicting photoreaction rates in surface waters [J]. Chemosphere,1999,38 (6):1379-1390.
    [102]H. D. Burrows, L. M. Canle, J. A. Santaballa, et al. Reaction pathways and mechanisms of photodegradation of pesticides [J]. Journal of Photochemistry and Photobiogy B:Biology,2002,67 (2):71-108.
    [103]J. Tolls. Sorption of veterinary pharmaceuticals in soils:a review [J]. Environmental Science & Technology,2001,35 (17):3397-3406.
    [104]R. Andreozzi, M. Raffaele. P. Nicklas. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment [J]. Chemosphere,2003,50 (10): 1319-1330.
    [105]J. L. Packer, J. J. Werner, D. E. Latch, et al. Photochemical fate of pharmaceuticals in the environment:naproxen, diclofenac, clofibric acid, and ibuprofen [J]. Aqutic Science, 2003,65 (4):342-351.
    [106]T. E. Doll, F. H. Frimmel. Fate of pharmaceuticals photodegradation by simulated solar UV-light [J]. Chemosphere,2003,52 (10):1757-1769.
    [107]M. W. Lam, K. Tantuco, S. A. Mabury. Photofate:a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters [J]. Environmental Science & Technology,2003,37 (5):899-907.
    [108]A. L. Boreen, W. A. Arnold, K. McNeill. Photodegradation of pharmaceuticals in the aquatic environment: a review [J]. Aquatic Science,2003,65 (4):320-341.
    [109]M. Winkler, J. R. Lawrence, T. R. Neu. Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems [J]. Water Research,2001,35 (13): 3197-3205.
    [110]V. Matamoros, J. Puigagut, J. Garcia, et al. Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands:a preliminary screening [J]. Chemosphere,2007,69 (9):1374-1380.
    [111]V. Matamoros, A. Caselles-Osorio, J. Garcia, et al. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment [J].2008,394 (1):171-176.
    [112]A. V. Dordio, C. Duarte, M. Barreiros, et al. Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.-potential use for phytoremediation [J]. Bioresource Technology,2009,100 (3):1156-1161.
    [113]A. Dordio, A. J. Palace Carvalho, D. M. Teixeira, et al. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA [J]. Bioresource Technology,2010,101 (3):886-892.
    [114]B. W. Brooks, C. K. Chambliss, J. K. Stanley, et al. Determination of select antidepressants in fish from an effluent-dominated stream [J]. Environmental Toxicology and Chemistry,2005.24 (2):464-469.
    [115]J. Schwaiger, H. Ferling, U. Mallow, et al. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I. Hisopathological alterations and bioaccumulation in rainbow trout [J]. Aquatic Toxicology.2004.68 (2):141-150.
    [116]J. Yang, D. Metcalfe. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids [J]. Science of the Total Environment,2006,363 (1-3):149-165.
    [117]T. Yamagishi, T. Miyazaki, S. Horii S, et al. Identification of musk xylene and musk ketone in freshwater fish collected from the Tama River [J]. Tokyo Bulletin Environmental Contamination and Toxicology,1981,26 (1):656-662.
    [118]A. Ginebreda, I. Munoz, M. L. de Alda, et al. Environmental risk assessment of Pharmaceuticals in rivers:relationships between hazard indexes and aquatic macroinvertebrate diversity idexes in the Llobregat River (NE Spain) [J]. Environmental International,2010,36 (2):153-162.
    [119]B. Halling-Soensen, S. Nors Nielsen, P. F. Lanzky, et al. Occurrence, fate and effects of pharmaceuticals substances in the environment- a review [J]. Chemosphere,1998,36 (2):357-393.
    [120]M. Crane, C. Watts, T. Boucard. Chronic aquatic environmental risk from exposure to human pharmaceuticals [J]. Science of the Total Environment,2006,367 (1):23-41.
    [121]代朝猛,周雪飞,张亚雷,等.环境介质中药物和个人护理品的潜在风险研究进 展[J].环境污染与防治,2009,31 (2):77-80.
    [122]J. P. Nash, D. E. Kime, L. T. M. Van der Ven, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish [J]. Environmental Health Perspective,2004,112(1):1725-1733.
    [123]M. Han, K. Park, S. Baek, et al. Inhibitory effects of caffeine on hippocampal neurogenesis and function [J]. Biochemical Biophysical Research Communications,2007, 356 (4):976-980.
    [124]R. Schreurs R, E. Sonneveld, J. Jansen. et al. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), and rogen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays [J]. The Journal of Toxicological Sciences,2005, 83 (2):264-272.
    [125]A. Gies, G. Neumeier. M. Rappolder, et al. Risk assessment of dioxins and dioxin-like PCBs in food:comments by the German Federal Environmental Agency [J]. Chemosphere,2007,67 (9):S344-S349.
    [126]R. Triebskorn, H. Casper, A. Heyd, et al. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac:part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology,2004,68 (2): 151-166.
    [127]T. Smital, T. Luckenbach, R. Sauerborn, et al. Emerging contaminants-pesticides, PPCPs, microbial degradation products and natural substances as inhibitor of multixenobiotic defense in aquatic organisms [J]. Mutation Research,2004,552 (1-2): 101-117.
    [128]F. F. Reinthaler, J. Posch, G. Feierl, et al. Antibiotic resistance of E. coli in sewage and sludge [J]. Water Research,2003,37 (8):1685-1690.
    [129]M. Cleuvers. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects [J]. Toxicology Letters,2003,142 (3):185-194.
    [130]R. Rosal, I. Rodea-Palomares, K. Boltes, et al. Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms [J]. Environmental Science and Pollution Research,2010,17(1):135-144.
    [131]K. P. Henschel, A. Wenzel, M. Diedrich, et al. Environmental hazard assessment of pharmaceuticals [J]. Regulatory Toxicology and Pharmacology,1997,25 (3):220-225.
    [132]B. Ferrari, N. Paxeus, R. L. Giudice, et al. Ecotoxicological impact of pharmaceuticals found in treated wastewaters:study of carbamazepine, clofibric acid, and diclofenac [J]. Ecotoxicology and Environmental Safety,2003.55 (3):359-370.
    [133]M. E. DeLorenzo, J. Fleming. Indicidual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella teriolecta [J]. Archives of Environmental Contamination and Toxicology, 2008,54 (2):203-210.
    [134]R. Triebskorn, H. Casper, V. Scheil, et al. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout(Oncorhynchus mykiss) and common carp (Cyprinus carpio) [J]. Analytical and Bioanalytical Chemistry, 2007,387(4):1405-1416.
    [135]B. Nunes, F. Carvalho, L. Guilhermino. Acute toxicity of widely used pharmaceuticals in aquatic species:Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii [J]. Ecotoxicology and Environmental Safety,2005,61 (3):413-419.
    [136]T. J. Runnalls, D. N. Hala, J. P. Sumpter. Preliminary studies into the effects of the human pharmaceutical clofibric acid on sperm parameters in adult Fathead minnow [J]. Aquatic Toxicology,2007,84(1):111-118.
    [137]S. Schnell, N. C. Bols, C. Barata, et al. Single and combined toxicity of Pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1 [J]. Aquatic Toxicology,2009,93 (4):244-252.
    [138]F. Pomati, S. Catiglioni, E. Zuccato, et al. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells [J]. Environmental Science & Technology,2006,40 (7):2442-2447.
    [139]C. M. Flaherty, S. I. Dodson. Effects of Pharmaceuticals on Daphnia survival, growth, and reproduction [J]. Chemosphere,2005,61 (2):200-207.
    [140]N. Paxeus. Removal of selected NSAIDs, gemfibrozil, carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environement [J]. Water Science and Technlogy,2004.50 (5):253-260.
    [141]T. Ternes, A. Jos, H. Siegrist. Peer review:scrutinizing pharmaceutical and personal care products in wastewater treatment [J]. Environmental Science & Technology,2004, 38 (20):392A-399A.
    [142]T. Urase, T. Kikuta. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process [J]. Water Research,2005.39 (7):1289-1300.
    [143]E. M. Golet. A. C. Alder, W. Giger. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley watershed, Switzerland [J]. Environmental Science & Technology,2002,36 (17): 3645-3651.
    [144]T. A. Ternes, H. Andersen, D. Gilberg, et al. Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS [J]. Analytical Chemistry,2002.74 (14): 3498-3504.
    [145]N. Kreuzinger, M. Clara, B. Strenn, et al. Relevance of the sludge rentention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater [J]. Water Sciecne and Technology,2004, 50(5):149-156.
    [146]C. D. Metcalfe, B. G. Koenig, D. T. Bennie, et al. Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants [J]. Environmental Toxicology and Chemistry,2003,22 (12):2872-2880.
    [147]C. D. Metcalfe, X. S. Miao, B. G. Koenig, et al. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada [J]. Environmental Toxicology and Chemistry,2003,22 (12):2881-2889.
    [148]S. Zorita, L. Martensson, L. Mathiasson. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden [J]. Science of the Total Environment,2009,407 (8):2760-2770.
    [149]C. Zwiener, F. H. Frimmel. Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac [J]. Science of the Total Environment,2003,309 (1):201-211.
    [150]T. Heberer, K. Reddersen, A. Mechlinski. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas [J]. Water Science and Technology,2002,46 (3):81-88.
    [151]N. Lindqvist, T. Tuhkanen, L. Kronberg. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters [J]. Water Research,2005,39 (11): 2219-2228.
    [152]P. M. Thomas, G. D. Foster. Determination of nonsteroidal anti-inflammatory drugs, caffeine, and triclosan in wastewater by gas chromatography-mass spectrometry [J]. Journal of Environmental Science and Health, Part A,2004,39 (8):1969-1978.
    [153]T. Ternes, R. Hirsch. Occurrence and behavior of X-ray constrast media in sewage facilities and the aquatic environment [J]. Environmental Science & Technology,2000, 34 (13):2741-2748.
    [154]P. H. Roberts, K. V. Thomas. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment [J]. Science of the Total Environment.2006,356 (1-3):143-153.
    [155]P. Westerhoff, Y. Yoon, S. Snyder, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes [J]. Environmental Sciecne & Technology,2005,39 (17):6649-6663.
    [156]M. C. Huber, S. Canonica, G. Y. Park, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation peocesses [J]. Environmental Science & Technology, 2003,37(5):1016-1024.
    [157]M. C. Huber, S. Korhonen, T. A. Ternes, et al. Oxidation of pharmaceuticals during water treatment with chlotine dioxide [J]. Water Research,2005,39 (15):3607-3617.
    [158]K. Kimura, G. Amy, J. E. Drewes, et al. Rejected of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes [J]. Journal of Membrance Science,2003,227 (1-2): 113-121.
    [159]C. Zwiener. Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment [J]. Analytical and Bioanalytical Chemistry,2006, 387(4):1159-1162.
    [160]D. C. McDowell, M. C. Huber, M. Wanger, et al. Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products [J]. Environmental Sciecne & Technology,2005,39 (20):8014-8022.
    [161]M. C. Dodd, C. H. Huang. Transfrmation of the antibacterial agent sulfamethoxazole in reactions with chlorine:kinetics, mechanisms, and pathways [J]. Environmental Science and Technology,2004,38 (21),5607-5615.
    [162]M. Petrovic, S. Gonzalez, D. Barcelo. Analysis and removal of emerging contamiants in wastewater and drinking water [J]. TrAC Trends in Analytical Chemistry,2003,22 (10):685-696.
    [163]A. B. C. Alvares, C. Diaper, S. A. Parsons. Partial oxidation by ozone to remove recalcitrance from wastewaters-a review [J]. Environmental Technology,2001,22 (4): 409-427.
    [164]T. A. Ternes. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples [J]. TrAC Trends in Analytical Chemistry,2001,20 (8):419-434.
    [165]J. Dolanta, A. Kot-Wasik. J. Namiesnik. Fate and analysis of pharmaceutical residues in the aquatic environment [J]. Critical Review in Analytical Chemistry,2004,34 (1): 51-67.
    [166]R. Andreozzi, V. Caprio, R. Marotta, et al. Ozonation and H2O2/UV treatment of clofibric acid in water:a kinetic investigation [J]. Journal of Hazardous Materials,2003, 103 (3):233-246.
    [167]W. Gebhardt, H. Fr. Schroder. Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation [J]. Journal of Chromatography A,2007,1160 (1-2):34-43.
    [168]V. J. Pereira, H. S. Weinberg, K. G. Linden, et al. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm [J]. Environmental Science & Technology,2007,41 (5): 1682-1688.
    [169]V. J. Pereira, K. G. Linden, H. S. Weinberg. Evaluation of UV irradiation for photolytic and oxidation degradation of pharmaceutical compounds in water [J]. Water Research,2007,41 (19):4413-4423.
    [170]M. Canterino, R. Andreozzi, V. Caprio, et al. Removal of organic pollutants from soil: the ozonation of clofibric acid in aqueous slurries [J]. Ozone Science & Engineering, 2006,28(1):47-52.
    [171]R. Rosal, M. S. Gonzalo, A. Rodriguez, et al. Ozonation of clofibric acid catalyzed by titanium dioxide [J]. Journal of Hazardous Materials,2009,169 (1-3):411-418.
    [172]R. Rosal, M. S. Gonzalo, K. Boltes, et al. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid [J]. Journal of Hazardous Materials,2009,172 (2-3):1061-1068.
    [173]C. Zwiener, F. H. Frimmel. Oxidative treatment of pharmaceuticals in water [J]. Water Research,2000,34 (6):1881-1885.
    [174]H. Krause, B. Schweiger, J. Schuhmacher, et al. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water [J]. Chemosphere,2009,75 (2):163-168.
    [175]1. Sires, P. L. Cabot. F. Centellas. et al. Electrochemical degradation of clofibric acid in water by anodic oxidation comparative study with platinum and boron-doped diamond electrodes [J]. Electrochimica Acta,2006,52 (1):75-85.
    [176]I. Sires, C. Arias, P. L. Cabot, et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectron-Fenton [J]. Chemosphere,2007,66 (9): 1660-1669.
    [177]I. Sires, F. Centellas, J. A. Garrido, et al. Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts [J]. Applied Catalysis B:Environmental,2007,72 (3-4): 373-381.
    [178]T. E. Doll, F. H. Frimmel. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways [J]. Water Research,2004, 38 (4):955-964.
    [179]T. E. Doll, F. H. Frimmel. Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water [J]. Catalysis Today,2005,101 (3-4):195-202.
    [180]T. E. Doll, F. H. Frimmel. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV 100 in the presence of natural organic matter (NOM) and other organic water constituents [J]. Water Research,2005,39 (2-3): 403-411.
    [181]M. M. Huber, A. Gobel, A. Jass, et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents:a pilot study [J]. Environmental Science & Technology, 2005,39 (11):4290-4299.
    [182]T. A. Ternes, J. Stuber, N. Hermann, et al. Ozonation:a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater [J]. Water Research,2003,37 (8):1976-1982.
    [183]R. Andreozzi, L. Campanella, B. Fraysse, et al. Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals [J]. Water Science and Technology,2004,50 (5):23-28.
    [184]T. E. Doll, F. H. Frimmel. Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-term stability of the photocatalytic activity of TiO2 [J]. Water Research,2005,39 (5):847-854.
    [185]R. Molinari, F. Pirillo, V. Loddo, et al. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor [J]. Catalysis Today,2006,118 (1-2):205-213.
    [186]I. Kim, H. Tanaka. Photodegradation characteristics of PPCPs in water with UV treatment [J]. Environment International,2009,35 (5):793-802.
    [187]M. V. Ngouyap Mouamfon, W. Z. Li, S. G. Lu, et al. Photodegradation of sulphamethoxazole under UV-light irradiation at 254 nm [J]. Environmental Technology, 2010,31 (5):489-494.
    [188]D. Vogna, R. Marotta, R. Andreozzi, et al. Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine [J]. Chemosphere,2004,54 (4): 497-505.
    [189]Y. Lester, D. Avisar, H. Mamane. Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process [J]. Environmental Technology,2010,31 (2):175-183.
    [190]A. G. Trovo, S. A. S. Melo, R. F. P. Nogueira. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process-application to sewage treatment plant effluent [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,198 (2-3):215-220.
    [191]T. Oppenlander. Photochemical Purification of Water and Air [M]. Weinheim. Germany:Wiley-VCH,2003.
    [192]M. G. Gonzalez, E. Oliveros, M. Worner, et al. Vacuum-ultraviolet photolysis of aqueous reaction system [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2004,5 (3):225-246.
    [193]K. Kutschera, H. Bornick, E. Worch. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light [J]. Water Research, 2009,43 (8):2224-2232.
    [194]P. L. Miller, Y. P. Chin. Indirect photolysis promoted by natural and engineered wetland water constituents:processes leading to alachlor degradation [J]. Environmental Science & Technology,2005,39 (12):4454-4462.
    [195]A. T. Halle, C. Richard. Simulated solar light irradiation of mesotrione in natural waters [J]. Environmental Science & Technology,2006,40 (12):3842-3847.
    [196]S. Halladja, A. Amine-Khodja, A. T. Halle, et al. Photolysis of fluometuron in the presence of natural water constituents [J]. Chemosphere,2007,69 (10):1647-1654.
    [197]S. H. Hilal, S. W. Karickhoff, L. A. Carreira. A rigorous test for SPARC'S chemical reactivity models:estimation of more than 4300 ionization pKa's [J]. Quantitative Structure-Activity Relationships,1995,14 (4):348-355.
    [198]I. Nicole, J. De Laat, M. Dore, et al. Use of UV radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry [J]. Water Research, 1990,24(22):157-168.
    [199]A. H. Richard, H. J. B. Benon. Photochemical generation of superoxide radical in aqueous solution [J]. Journal of the American Chemical Society,1978,100 (18): 5796-5800.
    [200]T. M. Elmorsi, Y. M. Riyad, Z. H. Mohamed, et al. Decolorization of mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment [J]. Journal of Hazardous Materials,2009,174 (1-3):352-358.
    [201]K. Li, D. R. Hokanson, J. C. Crittenden, R. R. Trussell, et al. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal:effect of pretreatment options and light sources [J]. Water Research,2008,42 (20):5045-5053.
    [202]T. M. El-Morsi, M. M. Emara, H. M. G. Abd-El-Bary, et al. Homogeneous degradation of 1,2,9,10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light [J]. Chemosphere,2002,47 (3):343-348.
    [203]W. Abdel-Alim Sadik, A. W. Nashed. UV-induced decolourization of acid alizarine violet N by homogeneous advanced oxidation processes [J]. Chemical Engineering Journal,2008,137 (5):525-528.
    [204]D. Jiraroj, F. Unob, A. Hagege. Degradation of Pb-EDTA complex by a H2O2/UV process [J]. Water Research,2006,40 (1):107-112.
    [205]J. H. Baxendale, J. A. Wilson. The photolysis of hydrogen peroxide at high light intensities [J]. Transactions of the Faraday Society,1957,53:344-356.
    [206]C. Lee, T. Winston, A. Unni, et al. Photoinduced electron-transfer chemistry of 9-methylanthracene-substrate as both electron-donor and acceptor in the presence of the 1-ethyl-3-methylimidazolium ion [J]. Journal of the American Chemical Society,1996, 118 (21):4919-4924.
    [207]E. Reisz, W. Schmidt, H. Schuchmann, et al. Photolysis of ozone in aqueous solution in the presence of tertiary butanol [J]. Environmental Science and Technology,2003,37 (9):1941-1948.
    [208]A. J. Elliot, A. S. Simsons. Rate constants for reactions of hydroxyl radicals as a function of temperature [J]. Radiation Physics and Chemistry (1977),1984,24 (2): 229-231.
    [209]M. I. Stefan, J. Mack, J. R. Bolton. Degradation pathways during the treatment of methyl tert-butyl ether by the UV/ H2O2 process [J]. Environmental Science & Technology,2000,34 (4):650-658.
    [210]J. Kiwi, A. Lopez, V. Nadtochenko. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl-) [J]. Environmental Science & Technology,2000,34 (11):2162-2168.
    [211]A. Marcinek, J. Zielonka, J. Gebicki, et al. Ionic liquids: novel media for characterization of radical ions [J]. Journal of Physical Chemistry A,2001,105 (40): 9305-9309.
    [212]G. P. Anipsitakis, D. D. Dionysiou. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science and Technology.2004,38 (13): 3705-3712.
    [213]Y. Maegawa, K. Sugino, H. Sakurai. Identification of free radical species derived from caffeic acid and related polyphenols [J]. Free Radical Research,2007,41 (1): 110-119.
    [214]B. Subramanian, Q. L. Yang, Q. J. Yang, et al. Photodegradation of pentachlorophenol in room temperature ionic liquids [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,192(2-3):114-121.
    [215]常晓珺,张彭义.真空紫外光降解五氯酚钠以及过硫酸盐对反应的促进作用[J].环境工程学报,2007,1(4):34-37.
    [216]B. Xu, N. Y. Gao, H. F. Cheng, et al. Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process [J]. Journal of Hazardous Materials,2009,162 (2-3): 954-959.
    [217]X. Y. Hu, J. Yang, C. Z. Yang, et al. UV/H2O2 degradation of 4-aminoantipyrine:a voltammetric study [J]. Chemical Engineering Journal,2010,161 (1-2):68-72.
    [218]胡俊生,李春荣,徐志荣,等UV/H2O2法降解水中阴离子表面活性剂[J].沈阳建筑大学学报,2007,23(4):639-642.
    [219]M. I. Stefan, A. R. Hoy, J. R. Bolton. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide [J]. Environmental Science and Technology,1996,30 (7):2382-2390.
    [220]W. B. Zhang, X. M. Xiao, T. C. An, et al. Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process [J]. Journal of Chemical Technology & Biotechnology,2003,78 (7):788-794.
    [221]S. H. Hilal, S. W. Karickhoff, L. A. Carreira, et al. Estimation of carboxylic acid ester hydrolysis rate constants [J]. QSAR & Combinatorial Science,2004,22 (9-10):917-925.
    [222]T. S. Whiteside, S. H. Hilal, L. A. Carreira. Estimation of phosphate ester hydrolysis rate constants I. alkaline hydrolysis [J]. QSAR & Combinatorial Science,2006,25 (3): 123-133.
    [223]R. G. Zepp, J. Hoigne, H. Bader. Nitrate-induced photooxidation of trace organic chemicals in water [J]. Environmental Science & Technology,1987,21 (5):443-450.
    [224]D. P. Hessler. V. Gorenflo, F. H. Frimmel. UV degradation of atrazine and metazachlor in the absence and presence of H2O2, bicarbonate and humic substances [J]. Journal of Water Supply:Research and Technology-AQUA,1993,42 (1):8-12.
    [225]L. Truong, J. D. Laat, B. Legube. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2 [J]. Water Research,2004,38 (9):2384-2394.
    [226]黎雷,高乃云,胡玲,等.阴离子对UV/H2O2/微曝气工艺降解双酚A的影响[J].中国环境科学,2008,28(3):233-236.
    [227]V. Nadtochenko, J. Kiwi. Primary photochemical reactions in the photo-Fenton system with ferric chloride. I. a case study of xylidine oxidation as a model compound [J]. Environmental Science & Technology,1998,32 (21):3273-3281.
    [228]V. Nadtochenko, J. Kiwi. Photoinduced mineralization of xylidine by the Fenton reagent.2. implications of the precursors formed in the dark [J]. Environmental Science & Technology,1998,32 (21):3282-3285.
    [229]G. V. Buxton, C. L. Greenstock, W. P. Helman, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. Journal of Physical and Chemical Reference Data,1988,17 (2): 513-886.
    [230]C. H. Liao, S. F. Kang, F. A. Wu. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process [J]. Chemosphere,2001,44 (5):1193-1200.
    [231]N. Y. Gao, Y. Deng, D. D. Zhao. Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2O2) treatment [J]. Journal of Hazardous Materials,2009, 164 (2-3):640-645.
    [232]M. Neamtu, D. M. Popa, F. H. Frimmel. Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol [J]. Journal of Hazardous Materials,2009,164 (2-3): 1561-1567.
    [233]L. Chen, H. Y. Zhou, Q. Y. Deng. Photolysis of nonylphenol ethoxylates:the determination of the degradation kinetics and the intermediate products [J]. Chemosphere, 2007,68 (2):354-359.
    [234]李海波,潘晶,张阳,等.UV/H2O2工艺降解水中双酚A影响因素的研究[J].环境污染与防治,2008,30(5):22-25.
    [235]X. Zhao, X. Quan, H. Zhao, et al. Different effects of humic substances on the photodegradation of p,p'-DDT on soil surface in the presence of TiCh under of UV and visible light [J]. Journal of Photochemistry and photobiology A, Chemistry,2004,167 (2-3):177-183.
    [236]M. Zhan, X. Yang, Q. Xian, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances [J]. Chemosphere, 2006,63 (3):378-386.
    [237]K. Kalbitz, S. Geyer, W. Geyer. A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances [J]. Chemosphere,2000,40(12):1305-1312.
    [238]P. S. Huovinen, H. Penttila, M. R. Soimasuo. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland [J]. Chemosphere,2002,51 (3):205-214.
    [239]M. Thomsen, P. Lassen, S. Dobel, et al. Characterisation of humic materials of different origin:a multivariate approach for quantifying the latent properties of dissolved organic matter [J]. Chemosphere,2002,49 (10):1327-1337.
    [240]G. S. Zhai, J. F. Liu, B. He, et al. Ultraviolet degradation of methyltins:elucidating the mechanism by identification of a detected new intermediary product and investigating the kinetics at various environmental conditions [J]. Chemosphere,2008,72 (3):389-399.
    [241]J. R. Garbin, D. M. B. P. Milori, M. L. Simoes, et al. Influence of humic substances on the photolysis of aqueous pesticide residues [J]. Chemosphere,2007,66 (9): 1692-1698.
    [242]J. Hoigne. Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In: J. Hubrec. The Handbook of Environmental Chemistry Quality and Treatment of Drinking Water [M]. Berlin:Springer, 1998.
    [243]I. Kim, N. Yamashita, H. Tanaka. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments [J]. Chemosphere,2009,77 (4): 518-525.
    [244]M. A. Behnajady, N. Modirshahla, M. Shokri. Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2:influence of operational parameters [J]. Chemosphere,2004,55 (1):129-134.
    [245]S. Mozia, M. Tomaszewska, A. W. Morawski. Photocatalytic degradation of azo-dye of Acid Red 18 [J]. Desalination,2005,185 (1-3):449-456.
    [246]Y. S. Cao, J. X. Chen, L. Huang, et al. Photocatalytic degradation of chlorfenapyr in aqueous suspension of TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2005,233 (1-2):61-66.
    [247]S. J. Stangroom, C. L. Macleod, J. N. Lester. Photosensitized transformation of the herbicide 4-chloro-2-methylphenoxy acetic acid (MCPA) in water [J]. Water Research. 1998,32 (3):623-632.
    [248]H. Gao. R. G. Zepp. Factors influencing photoreaction of dissolved organic matter in a coastal river of the Southeastern United States [J]. Environmental Science & Technology,1998,32 (19):2940-2946.
    [249]W. R. Haag, J. Hoigne. Singlet oxygen in surface waters.3. photochemical of formation and steady-state concentrations in various types of waters [J]. Environmental Science & Technology,1986,20 (4):341-348.
    [250]R. G. Zepp, P. F. Schlotzauer, R. M. Sink. Photosensitized transformations involving electronic energy transfer in natural waters:role of humic substances [J]. Environmental Science & Technology,1985,19(1):74-81.
    [251]S. Canonica, U. Jans, K. Stemmler, et al. Transformation kinetics of phenol in water: photosensitization by dissolved natural organic material and aromatic ketones [J]. Environmental Science & Technology,1995,29 (7):1822-1831.
    [252]R. G. Zepp, G. L. Baughman, P. F. Schlotzhauer. Comparison of photochemical behaviour of various humic substances in water: Ⅰ. sunlight induced reactions of aquatic pollutants photosensitized by humic substances [J]. Chemosphere,1981,10(1):109-117.
    [253]S. Esplugas, D. M. Bila, L. G. T. Krause, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (ECDs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials, 2007,149 (3):631-642.
    [254]M. Klavarioti, D. Mantsavinos, D. Kassinos. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J]. Environment International, 2009,35 (2):402-417.
    [255]S. Malato, J. Blanco, A. Vidal, et al. Photocatalysis with solar energy at a pilot-plant scale:an overview [J]. Applied Catalysis B:Environmental,2002.37 (1):1-15.
    [256]F. Mendez-Arriaga, S. Esplugas, J. Gimenez. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation [J]. Water Research,2008,42 (3):585-594.
    [257]R. Torres, V. Sarria, W. Torres, et al. Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone:toward an electrochemical-biological coupling [J]. Water Research,2003.37 (13):3118-3124.
    [258]D. S. Bhatkhnade, V. G. Pangarkar, A. A. C. M. Beenackers. Photocatalytic degradation for environmental applications-a review [J]. Journal of Chemical Technology and Biotechnology,2002,77 (1):102-116.
    [259]S. Gautam, S. P. Kamble, S. B. Sawant, et al. Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation [J]. Chemical Engineering Journal, 2005,110(1-3):129-137.
    [260]H. S. Hilal, G Y. M. Al-Nour, A. Zyoud, et al. Pristine and supported ZnO-based catalysts for phenazopyridine degradation with direct and solar light [J]. Solid State Sciences,2010,12 (4):578-586.
    [261]R. A. Palominos, M. A. Mondaca, A. Giraldo, et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions [J]. Catalysis Today,2009,144 (1-2): 100-105.
    [262]F. Mendez-Arriaga, M. Ignacio Maldonado, J. Gimenez, et al. Abatement of ibuprofen by solar photocatalysis process:enhancement and scale up [J]. Catalysis Today, 2009,144(1-2):112-116.
    [263]P. R. Shukla, S. B. Wang, H. Ming Ang, et al. Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light [J]. Separation and Purification Technology,2010,70 (3):338-344.
    [264]W. Z. Li, S. G. Lu, Z. F. Qiu, et al. UV and VUV photolysis vs UV/H2O2 and VUV/H2O2 treatment for clofibric acid removal from aqueous solution [J]. Environmental Technology,2010. (in press)
    [265]C. Sirtori, A. Aguera, W. Gerniak, et al. Effect of water matrix composition on trimethoprim solar photodegradation kinetics and pathways [J]. Water Research,2010,44 (9):2735-2744.
    [266]S. Malato, J. Blanco, C. Richter, et al. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species [J]. Applied Catalysis B:Environmental,1998,17 (4):347-356.
    [267]R. Doong, W. Chang. Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide [J]. Journal of photochemistry and photobiology A:Chemistry,1997,107 (1-3):239-244.
    [268]T. E. Agustina, H. M. Ang, V. K. Vareek. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2005,6 (4):264-273.
    [269]阴俊,谈建国.上海地区地面太阳紫外辐射的观测和分析[J].热带气象学报,2006,22(1):86-90.
    [270]V. Augugliaro, E. Garcia-Lopez, V. Loddo, et al. Degradation of lincomycin in aqueous medium:coupling of solar photocatalysis and membrane separation [J]. Solar Energy,2005,79 (4):402-408.
    [271]B. Neppolian, H. C. Choi, S. Sakthivel, et al. Solar/UV-induced photocatalytic degradation of three commercial textile dyes [J]. Journal of Hazardous Materials,2002, 89 (2-3):303-317.
    [272]C. C. Wong, W. Chu. The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources [J]. Chemosphere,2003,50 (8):981-987.
    [273]Y. Lin, C. Ferronato, N. Deng, et al. Photocatalytic degradation of methyparaben by TiO2: multivariable experimental design and mechanism [J]. Applied Catalysis B: Environmental,2009,88 (1-2):32-41.
    [274]W. Z. Li, S. G Lu, Z. F. Qiu, et al. Clofibric acid degradation in UV254/H2O2 process: effect of temperature [J]. Journal of Hazardous Materials,2010,176 (1-3):1051-1057.
    [275]M. Neamtu, D. M. Popa, F. H. Frimmel. Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation [J]. Science of the Total Environment,2006,369 (1-3):295-306.
    [276]J. C. Garcia, K. Takashima. Photocatalytic degradation of imazaqiun in an aqueous suspension of titanium dioxide [J]. Journal of Photochemistry and Photobiology A: Chemistry,2003,155 (1-3):215-222.
    [277]S. Kaneco, N. Li, K. Itoh, et al. Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution:kinetics and mineralization [J]. Chemical Engineering Journal,2009,148 (1):50-56.
    [278]H. Wang, H. L. Wang, W. F. Jiang. Solar photocatalytic degradation of 2, 6-dinitro-p-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)-TiO2 composite photocatalysts [J]. Chemosphere,2009,75 (8):1105-1111.
    [279]李微,王怡中.无机离子对光催化水处理过程影响的研究进展[J].环境污染治 理技术与设备,2004,5(3):15-17.
    [280]G. Tchobanoglous, F. L. Burton, H. D. Stensel. Wastewater engineering:treatment and resue [M].3nd ed., Boston:McGraw-Hill,2003.
    [281]X. H. Xia, J. L. Xu, Y. Yun. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide [J]. Journal of Environmental Sciences,2002,14 (2):188-194.
    [282]P. Neta, R. E. Huie, A. B. Ross. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Phydical and Chemical Reference Data,1988,17 (3): 2885-2891.
    [283]M. Abdullah, G. K. C. Low, R. W. Matthews. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide [J]. The Journal of Physical Chemistry,1990,94 (17):6820-6825.
    [284]G. Wu, Y. Katsumura, Y. Muroya, et al. Temperature dependence of carbonate radical in NaHCO3 and Na2CO3 solutions:is the rdical a single anion? [J]. Journal of Physical Chemistry A,2002,106 (11):2430-2437.
    [285]P. Neta, P. Maruthamuthu, P. M. Carton, Formation and reactivity of the amino radical [J]. The Journal of Physical Chemistry,1978,82 (17):1875-1878.
    [286]C. Chen, X. Li, W. Ma, et al. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation:a probe for the interfacial electron transfer process and reaction mechanism [J]. The Journal of Physical Chemistry B,2002, 106(2):318-324.
    [287]M. Sokmen, A. Ozkan. Decolouring textile wastewater with modified titania:the effects of inorganic anions on the photocatalysis [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,147 (1):77-81.
    [288]W. Zhang, T. An, M. Cui, et al. Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor [J]. Journal of Chemical Technology and Biotechnology,2005,80 (2):223-229.
    [289]C. Hu, J. Yu, Z. Hao, Effects of acidity and inorganic ions on the photocatalytic degradation azo dyes [J]. Applied Catalysis B:Environmental,2003,46 (1):35-47.
    [290]任学昌,陈学民,赵昊星,等.水体中常见无机阴离子对TiO2薄膜光催化降解甲 醛的影响[J].环境工程学报,2008,2(10):1339-1344.
    [291]A. G. Trovo, R. F. P. Nogueira, A. Aguera, et al. Photodegradation of Sulfamethoxazole in various aqueous media:persistence, toxicity and photoproducts assessment [J]. Chemosphere,2009,77 (10):1292-1298.
    [292]J. Minghou, C. Wenda, H. Lejun. Studies on marine humic substances I. isolation of humic substances from seawater with an effective adsorbent, GDx-102 adsorption resin [J]. Chinese Journal of Oceanology and Limnology,1983,1 (2):370-379.
    [293]K. Zeng, H. M. Hwang, H. Yu. Effect of dissolved humic substances on the photochemical degradation rate of 1-aminopyrene and atrazine [J]. International Journal of Molecular Sciences,2002,3 (10):1048-1057.
    [294]T. Heberer, K. Schmidt-Baumler, H. J. Stan. Occurrence and distribution of organic contaminants in the aquatic systems in Berlin. Part I. drug residues and other polar contaminants in Berlin surface and groundwater [J]. Acta Hydrochimica et Hydrobiologica,1998,26 (5):272-278.
    [295]S. Canonica, M. Freiburghaus. Electron-rich phenols for probing the photochemical reactivity of freshwaters [J]. Environmental Science and Technology,2001,35 (4): 690-695.
    [296]Y. P. Chin, P. L. Miller, L. Zeng, et al. Photosensitized degradation of bisphenol A by dissolved organic matter [J]. Environmental Science and Technology,2004,38 (22): 5888-5894.
    [297]J. Hoigne, H. Bader. Ozonation of water: "oxidation-competition values" of different types of waters used in Switzerland [J]. Ozone:Science & Engineering:The Journal of the International Ozone Association,1979,1 (4):357-372.
    [298]C. Lin, K. S. Lin. Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures [J]. Chemosphere,2007,66 (10): 1872-1877.
    [299]G. A. Epling, C. Lin. Investigation of retardation effects on the titanium dioxide photodegradation system [J]. Chemosphere,2002,46 (6):937-944.
    [300]U. Khan, N. Benabderrazik, A. J. Bourdelais, et al. UV and solar TiO2 photocatalysis of brevetoxins (PbTxs) [J]. Toxicon.2010,55 (5):1008-1016.
    [301]D. M. Leech, M. T. Snyder, R. G. Wetzel. Natural organic matter and sunlight accelerate the degradation of 17p-estradiol in water [J]. Science of the Total Environment, 2009,407 (6):2087-2092.
    [302]C. K. Gratzel, M. Jirousek, M. Gratzel. Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces [J]. Journal of Molecular Catalysis,1990,60 (3):375-387.
    [303]N. Daneshvar, D. Salari, A. R. Khataee. Photocatalytic degradation of azo dye Acid Red 14 in water: investigation of the effect of operational parameters [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,157 (1):111-116.
    [304]M. Murugannandham, N. Shobana, M. Swaminathan. Optimization of solar photocatalytic degradation conditions of reactive Yellow 14 azo dye in aqueous TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2006,246 (1-2):154-161.
    [305]A. Bianco-Prevot, C. Baiocchi, M. C. Brussino, et al. Photocatalytic degradation of Acid Blue 80 in aqueous solutions containing TiO2 suspensions [J]. Environmental Science & Technology,2001,35 (5):971-976.
    [306]M. Saquib, M. Muneer. TiO2- mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions [J]. Dyes and Pigments, 2003,56(1):37-49.
    [307]V. Augugliaro, C. Baiocchi, A. Bianco-Prevot, et al. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation [J]. Chemosphere, 2002,49(10):1223-1230.
    [308]Y. H. Wang, C. S. Hong. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions [J]. Water Research, 1999,33 (9):2031-2036.
    [309]O. Legrini, E. Oliveros, A. M. Braun. Photochemical processes for water treatment [J]. Chemical Reviews,1993.93 (2):671-698.
    [310]M. W. Peterson, J. A. Tuner, A. J. Nozik. Mechnitic studies of the photocatalytic behavior of TiOi. Particles in a photoelectrochemical slurry cell and the relevance to photodetoxification reactions [J]. The Journal of Physical Chemistry,1991.95 (1): 221-225.
    [311]J. De Laat, L. G. Truong. Effects of chloride ions on the iron (Ⅲ)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process [J]. Applied Catalysis B:Environmental,2006,66 (1-2):137-146.
    [312]N. Klamerth, N. Miranada, S. Malato, et al. Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2 [J]. Catalysis Today,2009,144(1-2):124-130.
    [313]Z. H. Ai, P. Yang, X. H. Lu. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method [J]. Journal of Hazardous Materials,2005,124 (1-3):147-152.
    [314]U. I. Gaya, A. H. Abdullah, Z. Zainal, et al. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions:intermediates, influence of dosage and inorganic anions [J]. Journal of Hazardous Materials,2009,168 (1):57-63.
    [315]U. I. Gaya, A. H. Abdullah, M. Z. Hussein, et al. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO power [J]. Desalination, 2010,263(1-3):176-182.
    [316]T. M. Salama, I. O. Ali, M. M. Mohamed. Synthesis and characterization of mordenites encapsulated titania nanopariticles: photocatalytic degradation of meta-chlorophenol [J]. Journal Molecular Catalysis A:Chemical,2007,273 (1-2): 198-210.
    [317]P. Kralik, H. Kusic, N. Koprivanac, et al. Degradation of chlorinated hydrocarbons by UV/H2O2:the application of experimental design and kinetic modeling approach [J]. Chemical Engineering Journal,2010,158 (2):154-166.
    [318]L. F. Zhang, S. Sawell, C. Moralejo, et al. Heterrogeneous photocatalytic decomposition of gas-phase chlorobenzene [J]. Applied Catalysis B:Environmental,2007, 71 (3-4):135-142.
    [319]R. Andreozzi, M. Canterino, R. Lo Giudice, et al. Lincomycin solar photodegradation, algal toxicity and removal from wastewater by means of ozonation [J]. Water Research, 2006,40 (3):630-638.
    [320]H. Chaabane, E. Vulliet, F. Joux. et al. Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms [J]. Water Research,2007,41 (8):1781-1789.
    [321]A. Zertal, T. Sehili, P. Boule. Photochemical behaviour of 4-chloro-2-methyl-phenoxyacetic acid:influence of pH and irradiation wavelength [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,146 (1-2):37-48.
    [322]F. Bonnemoy, B. Lavedrine, A. Boulkamh. Influence of UV irradiation on the toxicity of phenylurea herbicide using Microtoxs(?) test [J]. Chemosphere,2004,54 (8): 1183-1187.
    [323]N. C. Shang, Y. H. Yu, H. W. Ma, et al. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols [J]. Journal of Environmental Management, 2006,78 (3):216-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700