用户名: 密码: 验证码:
几种典型抗生素药物在水体及土壤中的环境行为及呼吸抑制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1928年青霉素的发现到现在短短的几十年内,抗生素药物的生产和使用量在全球范围内一直维持在持续增长的势头中。抗生素在给人类和牲畜疾病的治疗带来积极作用的同时,也引发了不可忽视的负面效应。磺胺甲恶唑(SMX)、磺胺吡啶(SPY)是人类和牲畜常用的一类磺胺类抗生素药物,甲氧苄氨嘧啶(TRM)作为磺胺类药物增效剂通常被与磺胺类药物结合使用,特别是与SMX常以1:5的质量比联合使用。同其他抗生素药物一样,这些药物残留通过各种途径排放进入到水体环境及土壤环境中,给环境安全造成威胁。当SMX、SPY及TRM排放进入水体后,光降解和水解是其在水体中的重要环境行为。当前对于这三种药物在水体环境中的光降解报道还较少,更缺乏在不同光源条件下的相关行为比较,因此全面比较这三种药物在不同环境水体条件下的光降解行为十分有必要。另一方面土壤也是这些药物在环境中的迁移转化的重要承载体,而目前对于这些药物在土壤中的累积及降解动力学报道仍然较少,其原因一方面可能是由于无标准统一的检测方法,另一方面是对这些药物引起污染的重视程度不够。因此当前建立起有效灵敏的在土壤等复杂基质中的检测方法,进一步了解其在土壤中发生的微生物降解行为,探究其是否对土壤微生物造成毒性的研究近在眉睫。
     论文研究中,首先确定了三种药物在水体及土壤环境中的检测方法。在水相中使用Agilent 1100 HPLC进行检测。结合前人文献报道及预试验,选用了乙腈(A)和含有0.3%的乙酸水溶液(B)做为流动相,采用梯度洗脱。通过对梯度洗脱条件的反复比较,确定了试验中所采用的洗脱条件,该梯度能很好地实现三种药物的分离,且峰形尖锐、对称。HPLC具体测定的色谱条件为:紫外检测器下的检测波长280 nm,C18柱(4.6 mm×250 mm,5μm,10 mm, Alltech)。柱温为28℃,流动相起始比例为A:B=20:80,总的运行时间为19分钟,流速1mL min-1,注射体积20μL。在土壤复杂基质中的检测,由于SPE-HPLC无法较好地去除基质干扰,检测灵敏度不高,因而在土壤降解实验中采用了SPE-LC-ESI-MS/MS检测方法。土壤降解样品加入10 ml的混合溶剂(methanol/EDTA-Mcllvaine 1:1,pH=4).通过超声,离心,洗脱等一系列步骤后进样检测。HPLC色谱分离使用Thermo Scientific Surveyor分析仪器。色谱分离柱选用Hypersil ODS-2μm,150×2.6 mm(Thermo Scientific).流动相A为乙腈,流动相B为0.1%甲酸溶于10 mM的乙酸铵溶液(1 L)。采用的梯度为,A起始于20%,持续3分钟,然后在2分钟后增加到50%,再在0.1分钟内增加到90%,持续2.9分钟,然后在0.1分钟内降低到20%,接着3.9分钟用来平衡。整个流动速率为0.2 ml min-1.土壤中回收率检测作三次平行,在三种实验所用的单一土壤(5 g)和添加牛粪的土壤中(5g+0.2 g)注入1 mg kg-1或200μg kg-1的SMX.TRM,回收率分别为71±5%~80±8%(SMX,干重),60±9%~72±7%(TRM,干重)。总之,QA/QC验证结果表明了上述在水相及土壤中的检测方法灵敏度较高,检测方法准确可行。
     在确定了实验中所用的检测方法后,接着展开研究了三种药物SMX,SPY及TRM在不同水体环境介质中及土壤中的环境行为。在光降解实验中,考察了SMX,SPY及TRM在不同水体条件下的光降解行为,比较了三种药物在高压汞灯、自然光及紫外灯下的降解差异。研究结果表明:光源、水体pH值、温度、光照时间及各种不同的水体介质都会影响药物的光降解效率。SMX和SPY比较容易发生光降解,但在某些水体条件下降解率较高,而在有些条件下则降解率相对较低,这与药物在不同pH条件下的离子形态影响到对光源波长的吸收可能有一定关系。在降解过程中二者均出现了明显的降解产物,同时实验过程中对控制样品的监测发现SMX和SPY一般情况下不容易发生水解。对于TRM,其在各种不同光降解条件下表现十分稳定,甚至在类Fenton反应这类高级氧化过程中(女口UV+Fe2+, UV+Fe3+)也基本未发生降解,在8小时内的降解率低于2%,呈现出持久稳定状态。然而在自然光照下,对包裹的试验控制样品中的浓度及对应温度、光强监测对比发现,在pH=4和pH=7的TRM溶液在白天吸收热量,夜间放热的过程中促进了其发生热水解的能力,并出现了明显的水解产物,水解发生率大于10%。药物在土壤中的吸附解吸行为也是重要的环境行为之一。为考察这些药物在各种不同性质土壤中的流动性和累积性,参照OECD(?)旨导方针选择了5种具有不同理化性质的土壤进行了试验研究。同时考察了土壤溶液pH值的变化对吸附造成的影响进行了选择性实验。实验结果发现,SMX和SPY在吸附过程中受土壤有机碳含量影响较大,通常含量越高的土壤,吸附能力随之提高,这和前人对其他磺胺类药物吸附实验的报道相一致。总体来说,SMX和SPY在土壤中的吸附系数较小,因而在土壤中具有高度的流动性。而对于TRM,在吸附过程中受到有机碳含量的影响不明显,而与土壤的阳离子交换容量关联程度较高。相比SMX和SPY,在各种类型的土壤中都呈现出较高的吸附系数,呈现出较强的吸附性能。解吸实验计算得出的迟滞系数表明,三种药物在各种土壤中都呈现出不同程度的迟滞行为,这为进一步评价药物在土壤中的流动性及累积性提供了有利的参考数据。在土壤溶液pH值调节对吸附影响的实验发现,SMX随着土壤溶液pH值的提高,吸附能力呈显著下降超势,而SPY随着pH值的提高,吸附能力未呈现出明显的波动,而TRM则呈现出两段变化,在前一阶段,吸附能力随着pH的提高而呈现上升趋势,但在后一阶段,吸附能力随着pH的提高则呈现下降趋势。这充分表明土壤溶液的pH值在药物吸附过程起到相当重要的作用。
     吸附实验结果发现,磺胺类药物(SMX和SPY)在土壤中呈现低吸附能力,而TRM呈现高吸附能力,通常低吸附的化合物在土壤中易发生生物降解,高吸附的化合物则不易发生生物降解。为考察它们实际的生物降解能力,接着进行了生物降解实验。实验中主要以SMX和TRM这两种常结合在一起使用的药物作为研究主体,考察了在三种具有不同理化性质的土壤中,有无添加牛粪修复的情况下,在好氧及厌氧培养条件下的降解行为。实验结果表明,在好氧培养条件下,在具有生物活性的土壤中,在前20天内,>50%的SMX在粘壤土和壤质砂土中消失,在壤土中则观察到有>80%的损失出现。而TRM则在三种土壤中表现出较强的持久性。在100天后,残留在具有生物活性的壤质砂土、粘壤土及壤土中的含量比分别61±6%,31±7%,和26±6%。土壤中牛粪的添加(37.8%C,2.3%N,pH 8.19,添加比例为4%)仅仅轻微地影响到两种化合物的起始降解速率,即在前20天内的降解速率要快于未添加牛粪的土壤。但20天过后,降解速率已无差别显现,实验结束后,在牛粪修复和未修复的土壤中未发现降解效率的显著差别。在厌氧培养条件下,两种化合物的降解同好氧培养条件下相比迅速的多。在20天内,SMX几乎损失殆尽,而TRM也出现了85%以上的损失。同时在厌氧环境体系中,实时监测了体系的pH,N03-,S042-的变化,进一步验证了厌氧环境体系的存在。
     由于在降解实验中发现了SMX和TRM在灭菌控制样品中的损失出现,推测可能有部分原因是因为随着时间的推移,微生物活性逐渐复苏造成。因而为进一步验证灭菌及未灭菌体系的微生物活性,同时考察土壤中药物单体或混合物,不同浓度下的添加对微生物活性是否造成影响,在这部分研究中,采用基质诱导呼吸法考察了药物在土壤中对微生物呼吸的影响。实验结果表明,灭菌后的样品经历长时间实验过程中,均呈现出不同程度的复苏迹象,因而这也是药物在灭菌样品中浓度损失的原因之一。对于微生物呼吸的影响比较发现,同控制土壤样品对比,药物对土壤微生物呼吸的短暂抑制作用出现在前2天,随后快速恢复。100天后,在添加不同浓度,单体或混合物的抗生素土壤中,总的矿化程度无较大差异。这表明无论是在二种不同浓度下,添加单体或混合药物的土壤中(10mg kg-1 SMX+2 mg kg-1 TRM或100 mg kg-1 SMX+20 mg kg-1 TRM),在100天后对微生物呼吸造成的影响较小。
Since the discovery of penicillin in 1928, just in a few decades, the production and use of pharmaceutical antibiotics has been increasing over the world. The introduction of antibiotics posed on positive effects for curing human and livestock's deseases, but also led to negative effects which could not be ignored. Sulfamethoxazole (SMX), sulfapyridine (SPY) are commonly used in human and livestocks which belonged to a class of sulfonomides. As a synergist, trimethoprim (TRM) is often used in combination with sulfa-drugs, expecially with sulfamethoxazole, in a ratio of 1:5. Like other antibiotics, these drug residues were emitted into the aquatic environment and soil environment by various pathways, posing part of threat to the environmental safety as well. When SMX, SPY and TRM are discharged into aquatic environment, photodegradation and hydrolysis become important environmental behaviors for them. However, there are little reports on these drugs currently, especially lack of comparisons under different conditions. So it is necessary to fully understand the photodegradation behaviors of these antibiotics in aquatic environment. On the other hand, soil is also an important carrier, but there is still little report on the accumulation and degradation kinetics in soil. The reasons might be related to two aspects, one is no standard detection method has been established until now, and the other aspect is the poor emphasis on the drug-induced pollution. So it is imminent to make the establishment of detection method with high efficacy and sensitivity in soil and other complex matrix, to further understand biodegradation behaviors and explore whether they are toxic to soil microorganisms.
     In this project, determination of three pharmaceuticals in aquatic and soil environment was first identified. Agilent 1100 HPLC was used in aquatic phase. Based on previous literatures and preliminary tests, acetonitrile (A) and 0.3% acetic acid in ultra-pure water (B) are used for mobile phase and gradient elution was adopted. Comparing with different elution conditions, optimized condition was identified. The gradient was well to achieve the separation of three compounds, and the peaks were sharp and symmetry. Analysis of samples was undertaken by HPLC (Agilent Technologies, series 1100) with C-18 column (4.6 mm×250 mm,5μm,10 mm, Alltech). A UV detection wavelength of 280 nm was used and the oven temperature was set at 28℃. The initial ratio of mobile phase is A:B=20:80. The run time was 19 min with a flow rate of 1mL min-1 and an injection volume of 20μL. In the complex matrix like soil, it could not well remove matrix interferences,and with low sensitivity via using SPE-Agilent 1100 HPLC, so SPE-LC-ESI-MS/MS method was developed to use in soil degradation experiment. An aliquot of 10mL of the extractant (methanol/EDTA-Mcllvaine 1:1, pH=4) was added to each degradation samples. Samples were ultrasonicated, centrifuged and eluted before LC-ESI-MS/MS analysis. A Thermo Scientific Surveyor HPLC system was used for liquid chromatography with a Thermo Hypersil ODS column (150×2.6 mm,2μm) used as a stationary phase. Gradient elution was achieved with acetonitrile (A) and formic acid 0.1% in 10 mM ammonium acetate (B).The gradient program began at 20% A for 3 min, increased to 50% A in 2 min, then increase to 90% A in 0.1 min, hold for 2.9min, then decrease to 20% A in 0.1 min followed by 3.9 min of equilibration time. The flow rate was 0.2 mL min-1. The recovery for spiked concentration of at 1 mg kg-1 SMX or 200μg kg-1 TRM and in three experimental soils with and without manure amendment (dry weight) was ranged from 71±5% with manure to 80±8% without manure for SMX and 60±9% with manure to 72±7% without manure for TRM.QA/OC validation demonstrates that the analysis methods mentioned above in aquatic and soil phase are highly sensitive, accurate and feasible.
     Soon after detection methods were identified, environmental behavior of three drugs-SMX, SPY and TRM in different aquatic and soil environment was studied. In the photodegradation experiments, photogegradation of SMX, SPY and TRM under different conditions was investigated and degradation differences of the three drugs under high-pressure mercury lamp, natural light and UV light with different water matrix was compared. The results show that:light source, pH of aquatic phase, temperature, exposure time and various water media, are important factors for photodegradation. SPY and SMX are more prone to be degraded under photodegradation. The degradation rates were higher under some aquatic conditions, while the degradation rates were relatively lower under other conditions. This could be related with the speciation of phamarceuticals under different pH conditions, which might affect the absorption of light wavelength. Significant degradation products were observed. Meantime, hydrolysis did not easily occur under normal conditions by control samples tests.For TRM, it's very stable under different light conditions, even low response to the advanced oxidation process like simulated Fenton reaction (such as UV+Fe2+, UV+Fe3+). Degradation rates of TRM were less than 2% within 8 hours, showing a persistent stable state. However, monitoring of concentration changes of control samples with responding temperature and light intentisity found that, thermal hydrolysis occurred during the heat release from day to night in pH 4 and pH 7 solutions. Hydrolysis rates were greater than 10%.Sorption-desorption behavior is also an important environmental behavior of these drugs. To investigate mobility and accumulation in variety of soil properties, five types of soils were selected and studied according to the reference of OECD 106. Meantime, selected soils were conducted to investigate the pH effect on sorption. The results that sorption of SMX and SPY are highly dependent on the organic carbon content. The more content in soil, the higher sorption potential displayed. This is consistent with the previous reports on other sulfa-drugs. Overall, sorption coefficient of SMX and SPY are low in soil, thus they have high mobility in soil. With regard to TRM, it's not obviously affected by organic carbon content, but highly related with CEC of soil.TRM is readily sorbed onto different types of soils compared with SMX and SPY. The high sorption potential of TRM is displayed. Hysteresis index calculated by the results of desorption experiment indicated that hysteresis was present in soils for these compounds to some extent and it is a helpful reference for further accessing the mobility and accumulation. Selective pH adjustment on sorption found the extent of sulfamethoxazole sorption on selected soils was highest at low pH and decreased with increasing pH. An increase in pH was found to have no significant affect on the sorption of sulfapyradine, while sorption was found to have increased initially and decreased beyond a certain pH value for trimethoprim with changes of two phases. Therefore, pH in suspended soil solution plays an important role on sorption.
     Sorption exprements showed that low sorption of SMX and SPY in soil, while high sorption for TRM. In general, biodegradation was easy to occur for compounds with low sorption potential and hard for compounds with high sorption potential. To investigate the real biodegradability of them, biodegradation experiment was conducted next. SMX and TRM were mainly studied, which commonly used in combination with each other.This evaluation was undertaken in three soils of varying characteristics and included amendment of the soil with manure. The inhibition of microbial respiration of these antibiotics in soils was also investigated using substrate-induced respiration. Under aerobic conditions, sulfamethoxazole (SMX) dissipated rapidly mainly through microbial degradation. Within first 20 days in biologically active soils,> 50% of the SMX was lost from the clay loam and loamy sand soils, and> 80% loss was noted in the loam soil. In contrast, trimethoprim (TRM) was more persistent under aerobic conditions. After 100 days, the TRM residue remaining in biologically active aerobic soil was 61±6%,31±7%, and 26±6% in loamy sand, loam, and clay loam soils, respectively. Addition of manure to soil (37.8% C,2.3%N, pH 8.19) at a rate of 4% (w w-1) to soil only slightly affected the initial dissipation rate of the two compounds (faster rate in manure amended soils). At the end of experiment there was no significant difference between amended and unamended soils. Anaerobic dissipation of both compounds was more rapid than that under aerobic conditions, with nearly total dissipation of SMX, and over 85% dissipation of TRM within 20 days. At the same time, real-time monitoring of the system pH, NO3-, SO42-'changes was established, to further validate the existence of an anaerobic system.
     As it was found that the concentration loss of SMX and TRM in sterile control samples in the degradation experiment, suggesting that the recovery of microbial activity might occur with time. To further investigate the variation of microbial activity in non-sterile and sterile system, and also investigate the effect of on soil in the presence of antibiotics as a mixture and individually, substrate induced respiration via measuring the mineralisation of 14C labelled glucose was introduced to answer these questions. The results indicate that in longer term experiments, contribution of low level of biological activity may occur, and this is one reason contributing to the loss in sterile samples. From the comparison on microbial respiration, it showed obvious suppress respiration of these antibiotics occurred in the first 2 days compared to control soils, but a quick recovery appeared later. There was no significant concentration-dependent inhibition on the total mineralization of soils following spiking with sulfamethoxazole or sulfamethoxazole combined with trimethoprim after 100 days, indicating the less influence on microbial respiration no matter two different concentrations, single compound or mixture added in soils (10 mg kg-1 SMX+2 mg kg-1 TRM or 100 mg kg-1 SMX+20 mg kg-1 TRM).
引文
[1]Ajit K. Sarmah., Michael T. Meyer., Alistair B.A. Boxall.A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65:725-759.
    [2]崔浩.抗生素的细菌耐药性:酶降解和修饰[J].国外医药:药学分册,2006,33(1):34-36.
    [3]Kummerer, K, Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent [J]. Clin. Microbiol. Infec.2003,9, 1203-1214.
    [4]Halling-Sorensen, B., Nielsen, S.N., Lanzky, P.F., Ingerslev, F., Lutzhoft, H.C.H., Jorgensen, S.E.,1998. Occurrence, fate and effects of pharmaceutical substances in the environment-a review[J]. Chemosphere,1998,36,357-394.
    [5]张晓然,李春艳,俞媛.滥用抗生素的现状与对策[J].中国民康医学,2008,20(1):24-25.
    [6]Soren Thiele-Bruhn.Pharmaceutical antibiotic compounds in soils-a review [J]Journal of plant nutrition and soil science,2003,166(2):145-167.
    [7]Heberer, T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water[J]. J. Hydrol.2002,266,175-189.
    [8]Batt, A.L., Kim, S., Aga, D.A. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations [J]. Chemosphere,2007,68,428-435.
    [9]Patrick K. Jjemba.,2002. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review [J]. Agriculture, Ecosystems and Environment 93,267-278.
    [10]Stuart J. Khan., Jerry E. Ongerth. Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations [J]. Chemosphere, 2004.54:355-367.
    [11]Michal R, Pedro J J.Amplification and attenuation of tetracycline resistance in soil bacteria:aquifer column experiments[J]-Water Research,2004,38:3705-3712.
    [12]Lalumera G M, Calamari D, Galli P, Castiglioni S, Crosa G, Fanelli R. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy[J].Chemosphere,2004,54(5):661-668.
    [13]叶计朋,邹世春,张干,等.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境,2007,16(2):384-388.
    [14]Jones O AH, Voulvoulis N, Lester J N.Human Pharmaceuticals in wastewater treatment processes [J].Critical Reviews in Environmental Science and Technology,2005,35:401-427.
    [15]Gavalchin J., S.E. Katz. The persistence of fecal-borne antibiotics in soil[J].Journal of AOAC International.1994,77:481-485.
    [16]Campagnolo, E. R., Johnson, K. R., Karpati, A., Rubin, C. S.,Kolpin, D. W., Meyer, M. T., et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations [J]. Science of the Total Environment.2003,299,89-95.
    [17]Lamshot, M, P. Sukul, S. Zuhlke, and M. Spiteller.2007. Metabolism of 14C labelled and non-labelled sulfadiazine after administration to pigs [J]. Anal.Bioanal. Chem.388:1733-1745.
    [18]Schmidt, B., J. Ebert, M. Lamshoft, B. Thiede, R,et al. Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic[J]. J. Environ. Sci. Health B,.2008,43:8-20.
    [19]M. Silvia Diaz-Cruz, Maria J. Lopez de Alda, Damia Barcelo.,.Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge[J]. Trends in analytical Chemistry,2003,22,340-348.
    [20]王立群,孙文,章广德,等.典型抗生素废水净化菌株的分离筛选及其效果研究[J].中国农业大学学报,2008,13(4):97-101.
    [21]M. D. Hernando, M. Mezcua, A. R. Ferna'ndez-Alba, D. Barcel. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta,2006,69,334-342.
    [22]R. H. Lindberg, K. Bjorklund, P. Rendahl, M. I. Johansson, M. Tyklind, B. A. V. Andersson. Environmental risk assessment of antibiotics in the Swedish environment with emphasis oneewage treatment plants [J].Water Res.2007,41, 613-619.
    [23]Andreozzi R, Caprio V, Ciniglia C, De Champdore M, Lo Giudice R, Marotta R, Zuccato E. Antibiotics in the environment:occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin[J]. Environ Sci Technol, 2004,38:6832-6838.
    [24]BaguerA J, Jensen J, Krogh PH · Effects of theantibiotics oxytetracycline and tylosin on soil fauna [J]-Chemosphere,2000,40:751-757.
    [25]Loftin, K.A., Henny, C., Adams, C.D., Surampali, R., Mormile, M.R.. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate[J]. Environ. Toxicol. Chem.2005, 24,782-788.
    [26]Boxall, A. B. A.; Kolpin, D. W.; Halling-Sorensen, B.; Tolls, J. Are veterinary medicines causing environmental risks?[J]. Environ. Sci. Technol.2003,37, 286-294.
    [27]Silvia Diaz-Cruz M, Maria J Lopez de Alda, Damia Barcelo. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge [J]. Analytical Chemistry,2003,22(6):340-350.
    [28]Anke Gobel, Christa S. McArdell, Adriano Joss.et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Science of the Total Environment,2007,372:361-371.
    [29]Jogensen, S.E., Halling-Soensen, B. Drugs in the environment[J]. Chemosphere, 2000,40,691-699.
    [30]Soren Thiele.Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem[J]. Journal of plant nutrition and soil science,2000,163(6):589-594.
    [31]G□bel, A, McArdell, C. S, Suter, M. J. F, Giger, W. Trace Determination of trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Anal. Chem.2004,76,4756-4764.
    [32]Ingerslev F, Halling-Soerensen B.Biodegradability properties of sulfonamides in activated sludge-Environmental Toxicology Chemistry,2000,19(10):2467-2473.
    [33]Bruce JR, PaulK S L, MichaelM.Emerging chemicals of concern: Pharmaceuticals and personal care products(PPCPs) inAsia, with particular reference to Southern China[J].Marine Pollution Bulletin,2005,50:913-920.
    [34]Boxall A B A,Black P,Cavallo R,Kay P,Tolls J. The sorption and transport of sulphonamide antibiotic in soil systems. Toxicology Letters,2002,131:19-28.
    [35]K. Kummerer, Pharmaceuticals in the Environment:Source, Fate, Effects and Risks, Springer, Berlin, Heidelberg, New York,2001.
    [36]Gobel A., Thomsen A., McArdell C.S.Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge [J]. Journal of Chromatography A,2005,1085:179-189.
    [37]Accinelli, C., Ko skinen, W.C., Becker, J.M., Sadowsky, M.J., Environmental fate of two sulphonamide antimicrobial agents in soil. J. Agric. Food Chem. 2007,55:2677-2682.
    [38]姜蕾,陈书怡,杨蓉,等.长江三角洲地区典型废水中抗生素的初步分析[J].环境化学,2008,27(3):371-374.
    [39]Jonathan P. B., Nikolaos V, Predicted and measured concentrations for selected Pharmaceuticals in UK rivers:Implications for risk assessment, Water research, 2006,40(15):2885-2892
    [40]Calamari, D.; Zuccato, E.; Castiglioni, S.; Bagnati, R.; Fanelli, R., Strategic Survey of Therapeutic Drugs in theRivers Po and Lambro in Northern Italy. Environ. Sci. Technol.2003.
    [41]Lissemore, L., Hao, C. Y., Yang, P., Sibley, P. K., Mabury, S., and Solomon, K. R. An exposure assessment for selected pharmaceuticals within a watershed in southern Ontario.Chemosphere,2006,64(5):717-729.
    [42]World Health Organization. WHO Collaborating Centre for Drug Statistics Methodology. http://www.whocc.no/atcddd/.2006
    [43]Heberer, T., Mechlinski, A., Fanck, B., Knappe, A. Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monitoring & Remediation 2004,24(2):70-77.
    [44]Natalia V. Kaminskaia, Bernhard Spingler, and Stephen J. Lippard, Hydrolysis of β-Lactam Antibiotics Catalyzed by Dinuclear Zinc(Ⅱ) Complexes:Functional Mimics of Metallo-β-lactamases[J]. J. Am. Chem. Soc.,2000,122 (27):6411-6422.
    [45]Werner J J, Arnold WA, McNeill K. Water hardness as a photochemical parameter:tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH [J]. Environ Sci Technol,2006,40:7236-7241.
    [46]Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin [J]. Int J Pharm,1996, 132:53-61.
    [47]Keith A L., Craig D A., Michael TM., et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics [J].Journal of Environmental Quality,2008,37:378-386.
    [48]潘祖亭,颜承农,王润涛,等.金属离子催化β-内酰胺类抗生素水解的荧光光谱研究[J].分析试验室,2001,20(4),1-5.
    [49]陈兆坤,胡昌勤.头抱菌素类抗生素的降解机制[J]国外医药:抗生素分册,2004,25(6):249-265.
    [50]Huang C H., Renew J E., Smeby L K., Pinkston K., Sedlak D L. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Water Resources Update,2001,120:30-40.
    [51]葛林科,张思玉,谢晴,陈景.抗生素在水环境中的光化学行为[J].中国科学:化学,2010,40(2):124-135.
    [52]阳海,安太成,李桂英,等.光催化技术降解水中环境药物的研究进展[J].生态环境学报2010,19(4):991-999.
    [53]Torrents A., Anderson B G., Bilboulian S., Johnson W E., Hapeman C J. Atrazine photolysis:mechanistic investigations of direct and nitrate mediated hydroxy radical processes and the influence of dissolved organic carbon from the Chesapeake Bay [J]. Environ Sci Technol,1997,31:1476-1482.
    [54]Araki T., Kawai Y., Ohta I., Kitaoka H. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution[J]. Chem Pharm Bull,2002, 50:229-234.
    [55]Vione D, Maurino V, Minero C, Calza P, Pelizzetti E. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution[J]. Environ Sci Technol,2005,39:5066-5075.
    [56]张卫.农药阿维菌素在环境中的降解和代谢研究[D].浙江杭州:浙江大学农药学系,2004.
    [57]Cooper W J., Zika R G., Petasne RG., Fischer AM. Sunlight-induced photochemistry of humic substances in natural waters:major reactive species. In: Suffet I H, MacCarthy P, eds. American Chemical Society: Washington DC, 1989.
    [58]Miller PL, Chin YP. Indirect photolysis promoted by natural and engineered wetland water constituents:Processes leading to alachlor degradation [J]. Environ Sci Technol,2005,39:4454-4462
    [59]Ter Halle A, Richard C. Simulated solar light irradiation of mesotrione in natural waters [J]. Environ Sci Technol,2006,40:3842-3847.
    [60]Halladja S, Amine-Khodja A, ter Halle A, Boulkamh A, Richard C. Photolysis of fluometuron in the presence of natural water constituents[J]. Chemosphere, 2007,69:1647-1654.
    [61]Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental Organic Chemistry (Second Edition). New Jersey:John Wiley & Sons, Inc,2003.
    [62]DI P,Addamo M, Auguglaro V. et al. Photolytic and TiO2-assisted photodegradation of aqueous solutions of tetracycline[J].Fresenius Environmental Bulletin,2004,13(11):1275-1280.
    [63]Calza P., Medana C., Pazzi M. et al. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B-Environmental,2004, 53(1):63-69.
    [64]Paul T, Miller P L, Strathmann T J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents [J]. Environmental Science and Technology, 2007,41(13):4720-4727.
    [65]Cogan S., Haas Y. Self-sensitized photo-oxidation of para-indenylidene-dihydropyridine derivatives [J]. J Photoch Photobio A,2008,193:25-32.
    [66]Martin N H., Jefford C W. Self-sensitized photo-oxygenation of 1-benzyl-3,4-dihydroisoquinolines [J]. Helv Chim Acta,2004,64:2189-2192.
    [67]Werner J J., Arnold W A., McNeill K. Water hardness as a photochemical parameter:tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH [J]. Environ Sci Technol,2006,40:7236-7241.
    [68]Ge LK, Chen J W, Qiao X L, Lin J, Cai XY. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics:Mechanism and kinetics. Environ Sci Technol,2009,43:3101-3107.
    [69]Fisher JM, Reese JG, Pellechia PJ, Moeller PL, Ferry JL. Role of Fe(III), phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment. Environ Sci Technol,2006,40:2200-2205.
    [70]Garbin J R, Milori DMBP, Simoes ML, da Silva WTL, Neto LM. Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 2007,66:1692-1698.
    [71]Hassett J P. Dissolved natural organic matter as a microreactor [J]. Science,2006, 311:1723-1724
    [72]Klaus Kummerer. Pharmaceuticals in the environment:source, fate, effects and risks.3rd edition.2008.
    [73]刘伟,王慧,陈小军,杨大为,匡光伟,孙志良.抗生素在环境中降解的研究进展[J].动物医学进展,2009,30(3):89-94.
    [74]张从良,王岩,王福安.磺胺嘧啶在水中的微生物降解研究[J].生态环境,2007,16(6):1679-1682.
    [75]Naoko W, Thomas H H, Brian A B. Environmental occurrence and shallow ground water detection of t he antibiotic monensin f rom dairy farms [J]. J Environ Qual.2008,37:78-85.
    [76]Herve P., Nerve L B., Louis P. Experimental study on the decontamination kinetics of seawater polluted by oxytet racycline contained in effluent s released from a fish farm located in a salt marsh [J]. Aquaculture,1993,11:113-123.
    [77]Al-Ahmad, A.; Daschner, F.D.; Kummerer, K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G and sulfamethoxazole and inhibition of waste water bacteria[J]. Arch. Environ. Contam. Toxicol.1999,37(2):158-163.
    [78]Boxall, A.B.A., Fogg, L.A., Blackwell, P.A.,Kay P., Pemberton, E. J. Veterinary medicines in the environment[J]. Rev Environ Contam. Toxicol.2004,180:1-91.
    [79]Vienoa, N., Tuhkanen, T., Kronberg, L. Elimination of pharmaceuticals in treatment plants in Finland [J]. Water Res.2007,41(5):1001-1012.
    [80]Gobel, A., Christa, S. M., Joss, A. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies [J]. Sci. Tot. Environ.2007,372(2-3):361-371.
    [81]Wu, C.X., Alison, L., Jason, D. Sorption and biodegradation of selected antibiotics in biosolids[J]. J. Environ. Sci. Health, Part A.2009,44 (5):454-461.
    [82]Lai, H. T., Hou, J. H. Light and microbial effects on the transformation of four sulfonamides in eel pond water and sediment [J]. Aquaculture,2008,283(1-4): 50-55.
    [83]Mohring, S.A.I., Strzysch, I., Fernandes, M.R. Degradation and elimination of various sulfonamides during anaerobic fermentation:a promising step on the way to sustainable pharmacy? [J] Environ. Sci. Technol.2009,43(7):2569-2574.
    [84]Gulkowska, A., Leung, H.W., So, M.K., Taniyasu, S., Yamashita, N. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Res.2008,42(1-2):395-403.
    [85]Gobel, A., Thomsen, A., McArdell, C.S., Joss A.,Giger, W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environ. Sci. Technol.2005,39(11):3981-3989.
    [86]Gobel, A., Christa, S. M.,Joss, A. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Sci. Tot. Environ. 2007,372(2-3):361-371.
    [87]Ternes, T., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kapmann, M., Teiser, B. Ozonation:a tool for removal of pharmaceuticals, contrast media, and musk fragrances form wastewater [J]? Water Research,2003,37:1976-1982
    [88]Huber, M.C., Canonica, S., Park, G.-Y., Gunten, U.V. Oxidation of pharmaceuticals during ozonation and advanced oxidation process[J]. Environ. Sci. Technol.2003,37:1016-1024.
    [89]Huber MM, Gobel A, Joss A, Hermann N, Loffler D, McArdell CS, Ried A, Siegrist H, Ternes T, von Gunten U. Oxidation of Pharmaceuticals during Ozonation of Municipal Wastewater Effluents:A Pilot Study[J].Environ Sci Technol.2005,39:4290-4299.
    [90]Boreen, A.L., Arnold, W.A., Mcnell, K. Photochemical fate of sulfa drugs in the aquatic environment:sulfa drugs containing five-membered hetrocyclic groups. Environ. Sci.Technol.2004,38:3933-3940.
    [91]Dodd, M.C., Huang, C.-H. Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine:kinetics, mechanisms, and pathways. Environ.Sci. Technol.2004,38:5607-5615.
    [92]Andreozzi R, Caprio V, Ciniglia C, De Champdore M, Lo Giudice R, Marotta R, Zuccato E. Antibiotics in the environment:Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science and Technology,2004.38:6832-6838.
    [93]Adams, C., Wang, Y., Loftin, K., Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes.Journal of Environmental Engineering (Reston, VA, United States),2002,128:253-260.
    [94]文春波,张从良,王岩.磺胺嘧啶在土壤中的降解与迁移研究[J].农业环境科学学报,2007,26(5):1677-1680.
    [95]Burkhardt M, Stoob K, Stamm C, et al. Veterinary antibiotics in animal slurries-A new environmental issue in grassland research[J].Grassl Sci Eur,2004,9:322-324.
    [96]Sarmah A K, Meyer M T, Boxalla B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere,2006,65(5):725-759.
    [97]Barriuso, E., Baer, U., Calvet, R.. Dissolved organic matter and sorption-desorption of dimefuron, atrazine and carbetamide by soils. J. Environ. Qual.1992,21,359-367.
    [98]Wehrhan A, Kasteel R, Simunek J, et al. Transport of sulfadiazine in soil columns:experiments and modelling approaches [J]. Journal of contaminant hydrology,2007,89(1-2):107-135.
    [99]Sassman, S.A., Lee, L.S. Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange. Environ. Sci. Technol.2005,39: 7452-7459.
    [100]金彩霞,陈秋颖,刘军军,等.磺胺间甲氧嘧啶在土壤中的吸附/解吸特性研究[J].环境污染与防治,2010,32(5):47-51.
    [101]Tolls, J., Sorption of veterinary pharmaceuticals in soils:a review[J]. Environ. Sci.Technol.2001,35:3397-3406.
    [102]Boxall A B A, Johnson P, Smith EJ, Sinclair C J, Stutt E, Levy L S. Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry,2006,54(6):2288-2297.
    [103]周启星,罗义,王美娥.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2007,2(3):244-251.
    [104]Thiele-Bruhn, S., Seibicke, T., Schulten, H.-R., Leinweber, P., Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions[J]. J. Environ. Qual.2004.33:1331-1342.
    [105]Yang J F, Ying G G, Zhou L J. et al. Dissipation of oxytetracycline in soils under different redox conditions [J]. Environmental Pollution 2009,157:2704-2709.
    [106]Schlusener M P., Bester K. Persistence of antibiotics such as macrolides tiamulin and salinomycin in soil [J]. EnvironmentalPolltuion,2006,143 (3):565-571.
    [107]张从良,王岩,王福安.磺胺类药物在土壤中的微生物降解[J].农业环境科学学报2007,26(5):1658-166.
    [108]Wang, Q Q. Guo, M., Yates, S.R. Degradation kinetics of manure-derived sulfadimethoxine in amended soil[J]. J. Agric. Food Chem.2006,54(1):157-163.
    [109]Sanderson H, Brain R A, Johnson D J, Wilson C J, Solomon K R. Toxicity classification and evaluation of four pharmaceuticals classes:antibiotics, antineoplastics, cardiovascular, and sex hormones[J]. Toxicology,2004,203(1-3):27-40.
    [110]Reinthaler F F.,Posch J.,Feierl G.,Wust G.,Haas D.,Ruckenbauer G.,Mascher F., Marth E. Antibiotic resistance of E. coli in sewage and sludge[J].Water Research,2003,37(8):1685-1690.
    [111]Stine O C., Johnson J A,Keefer-Norris A.,Perry K L.,Tigno J.,Qaiyumi S.,Stine M S.,Morris J G.Widespread distribution of tetracycline resistance genes in a confined animal feeding facility[J].International Journal of Antimicrobial Agents,2007,29(3):348-352.
    [112]Halling-Sorensen B., Jacobsen A M., Jensen J., Sengel V G., Vaclavik E., Ingerslev F. Dissipation and effects of chlortetracycline and tylosin in two agricultural soils:a field-scale study in southern Denmark[J]. Environmental Toxicology and Chemistry,2005,24(4):802-810.
    [113]Lanzky P F., Halling-Sorensen B.The toxic effect of the antibiotic metronidazole on aquatic organisms [J]. Chemosphere,1997,35(11):2553-2561.
    [114]Kong W D., Zhu Y G., Fu B J., Marschner P., He J Z., The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community [J].Environmental Pollution,2006,143(1):129-137.
    [115]黄小花,杨秀娜,徐虹,等.铜绿微囊藻对5种抗生素敏感性的研究[J].厦门大学学报.自然科学版,2006,45(1):106-109.
    [116]王勇,苏忠亮,钱凯先.螺旋藻基因工程研究几种抗生素对钝顶螺旋藻的抑制效应[J].浙江大学学报.工学版,2003,37(1):121-123.
    [117]Migliore L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, Gaudio L.Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L.,Plantago major L.and Rumex acetosella L.)[J].Agriculture, Ecosystems & Environment,1997,65(2):163-168.
    [118]金彩霞,刘军军,陈秋颖,等.兽药磺胺间甲氧嘧啶对土壤呼吸及酶活性的影响[J].农业环境科学学报,2010,29(2):314-318.
    [119]Jung J, Kim Y, Kim J, Jeong DH, Choi K. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna[J]. Ecotoxicology,2008,17:37-45.
    [120]Liguoro M D., Fioretto B., Poltronieri C., Gallina G.The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim[J].Chemosphere,2009,75:1519-1524.
    [1]Tanaka N, Hooper IR. Aminoglycoside antibiotics [M]. Berlin:Springer-Verlag, 1982:221.
    [2]Woodward K N, Shearer G. Chemical analysis for antibiotic used in agriculture [J]. AOAC International,1995,3 (5):426-432.
    [3]蔡玉娥,蔡亚岐,牟世芬,等.高效液相色谱-紫外光度法检测尿液和牛奶中多种头孢类抗生素[J].分析化学,2006,34(6):745-748.
    [4]代敏.PCR和核酸探针检测猪源沙门氏菌四环素耐药基因tetC的研究[D].四川农业大学,2003(06)01.
    [5]Stead D A. Currentmethodologies for the analysis of aminoglycosides [J]. J Chromatography B,2000,747-752.
    [6]Flurer C L, Pharm J. The analysis of aminoglycoside antibiotics by capillary electrophoresis [J]. J Pharl Biomedical Anal,1995,13 (7):809-814.
    [7]Fatta D., Nikolaou A., Achilleos A., Meric S. Analytical methods for tracing pharmaceutical residues in water and wastewater [J]. Trends in Analytical Chemistry,2007,26 (6):515-533.
    [8]Usleber E, Dietrich R. Immunochemical rapid test formultiresidue analysis of antimicrobial drugs in honey [J]. Arch Lebensmittelhyg,1995,46(3):94-96.
    [9]李彦文,莫测辉,赵娜,等.高效液相色谱法测定水和土壤中磺胺类抗生素[J].分析化学,2008,36(7):954-958.
    [10]Shelvera W L., Hakka H, Larsena G L. et al. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. Journal of Chromatography A,2010,1217:1273-1282.
    [11]Giegold S., Teutenberg T., Tuerk J. et al. Determination of sulfonamides and trimethoprim using high temperature HPLC with simultaneous temperature and solvent gradient[J].Journal of separation Science.2008,31(20):3497-3502.
    [12]Epshtein N.A.Simultaneous HPLC Determination of Trimethoprim, Sulfamethoxazole, and Methyl- and Propylparaben in Suspensions of the Co-Trimoxazole Type [J].Pharmaceutical chemistry journal,2002,36(12):675-679.
    [13]仉文升,李安良.《药物化学(三)》[M].高等教育出版社.1999
    [14]黄志勇,蔡洪基,黄高凌,等.水产品中四环素类抗生素残留量的高效液相色谱测定方法[J].福建分析测试,2005,14(1):2093-2095.
    [15]Zheng Yan, Chengzhi Huang. Simultaneous Determination of Antibiotics by Micellar Electrokinetic Capillary Chromatograph [J]. School of Chemistry and Chemical Engineering, Southwest University,2005,30(5):868-876.
    [16]Joshi S. HPLC separation of antibiotics present in formulated and unformulated samples. Journal of Pharmaceutical and Biomedical Analysis.2002,28(5):795-809.
    [17]杨挺,王立君,赵健,等.高效液相色谱法测定水产品中四环素类抗生素残留[J].化学分析计量,2007,(2):35-37.
    [18]Jacobsen,A.M.; Halling-Sorensen, B. Multi-component analysis of tetracyclines,sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem.2006,384 (5), 1164-1174.
    [19]盛龙生.汤坚.液相色谱质谱联用技术在食品和药品分析中的应用[M]化学工业出版社,2008.
    [20]液相色谱质谱联用的原理及应用.http://branch.gdpu.edu.cn/zxsys/domnload/1cms.ppt
    [21]Bialk-Bielinska A, Kumirska J, Palavinskas R. et al. Optimization of multiple reaction monitoring mode for the trace analysis of veterinary sulfonamides by LC-MS/MS[J].Talanta,2009,80:947-953.
    [22]吕海涛,陈峰,姜悦.高效液相色谱法测定四环素类抗生药物中土霉素、强力霉素、四环素和金霉素[J].理化检验(化学分册),1998,43(1):18-20.
    [23]高效液相色谱柱的选择.http://www.biosou.com/index_newshow.php?newsid=70814
    [24]Ivan Senta, Senka Terzic', Marijan Ahel. Simultaneous Determination of Sulfonamides, Fluoroquinolones, Macrolides and Trimethoprim in Wastewater and River Water by LC-Tandem-MS[J]. Chromatographia,2008,68:747-758.
    [25]Snyde L., John W. Dolan. High-performance gradient elution:the practical application of the linear-solvent-strength model. Wiley,2006.
    [26]Martinez-Carballo E., Gonzalez-Barreiro C., Scharf S., Gans O.Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environmental pollution,2007,148:570-579.
    [27]李竺,郜洪文,陈玲,等.固相萃取技术在环境中农药残留分析的研究进展.世界科技研究与发展,2005,27(5):64-71.
    [28]何淼.固相萃取技术在环境有机污染物分析中的应用[D]中国地质科学院,2007
    [29]Guide to Solid Phase Extraction. http://www.sigmaaldrich.com/Graphics/Supelco/objects/4600/4538.pdf
    [30]Nigel J.K. Simpson. Solid-Phase Extraction:Principles, Techniques, and Applications. CRC Press; 1st edition.2000.
    [31]马丽丽,郭昌胜,胡伟,等.固相萃取-高效液相色谱.串联质谱法同时测定土壤中氟喹诺酮、四环素和磺胺类抗生素[J].分析化学,2010,38(1):21-26.
    [32]Gobel A., Thomsen A., McArdell C.S.Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge [J]. Journal of Chromatography A,1085 (2005) 179-189.
    [33]唐才明,黄秋鑫,余以义,彭先芝.污泥和沉积物中微量大环内酯类、磺胺类抗生素、甲氧苄胺嘧啶和氯霉素的测定[J].2009,37(8):1119-1124.
    [34]Sun H W, Ai L F, Wang F C. Quantitative analysis of sulfonamide residues in natural animal casing by HPLC[J].Chromatographia,2007,66(5-6):333-337.
    [35]Loksuwan J., Suntudrob J. Separation and determination of multiresidues of sulfonamides in milk by HPLC with UV detection [J] ASEAN Food Journal, 1997,12:47-52.
    [36]U.S.FDA(Food and Drug Administration).Guidance for Industry:analytical procedures and methods validation, chemistry, manufacturing, and controls documentation(Draft)[S].2000.8.
    [37]ICH(International Conference on Harmonisation)Guidelines,Q2A.Test on Validation of Analytical Procedures[S].February 2002.
    [38]ICH(International Conference on Harmonisation)Guidelines,Q2B.Validation of Analytical Procedures:Methodology[S].February 2002.
    [39]EPA-821-R-08-002. Method 1694:Pharmaceuticals and personal care products in water, soil, sediment, and biosolids 2007.
    [1]Christopher C. Ryan, David T. Tan, William A. Arnold. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent [J]. Water research.2011,45(3):1280-1286.
    [2]Boreen, A.L., Arnold, W.A., McNeill, K. Photochemical fate of sulfa drugs in the aquatic environment:sulfa drugs containing five-membered heterocyclic groups[J].Environmental Science and Technology,2004,38 (10):3933-3940.
    [3]Guerard, J.J., Chin, Y.-P., Mash, H., Hadad, C.M. Photochemical fate of sulfadimethoxine in aquaculture waters [J]. Environmental Science and Technology,2009,43 (22):8587-8592.
    [4]Trovo A G., Nogueira R F P., Aguerra A. et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation [J]. Water research,2009,43:3922-3931.
    [5]OECD. Guidance Document on Direct Phototransformation of Chemicals in Water. OECD Environmental Health and Safety Publication.Series on Testing and Assessment No 7, Paris, France,1997.
    [6]Tu Y H, Wang D P, Allen LV.Stability of a nonaqueous trimethoprim preparation [J]. Am J Hosp Pharm.1989,46(2):301-304.
    [7]张卫·农药阿维菌素在环境中的降解和代谢研究[D]·浙江杭州:浙江大学农药学系,2004.
    [8]Klaus Kummerer.Pharmaceuticals in the environment:source, fate, effects and risks.3rd edition.2008.
    [9]Andreozzi R., Raffaele M., Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment [J]. Chemosphere,2003,50:1319-1330.
    [10]Gerecke A C.,Canonica S., Stephan R M, et al. Quantification of dissolved natural organic matter(DOM) mediated phototransformation of phenylurea herbicides in lakes[J]. Environ Sci Technol.2001,35(19):3915-3923.
    [11]Lam M W.,Tantuco K.,Mabury S. PhotoFate:A New Approach in Accounting for the Contribution of Indirect Photolysis of Pesticides and Pharmaceuticals in Sudace Waters[J]. Environ Sci Technol,2003,37:899-907.
    [12]Jerzykiewicz M, Jezierski A, Czechowski F, et al.Influence of metal ions binding on free radical concentration in humic acid. A quantitative electron paramagnetic resonance study[J]. Environ Sci Technol.2002,33:265-268.
    [13]Oscar Gonzalez., Carme Sans, Santiago Esplugas. Sulfamethoxazole abatement by photo-Fenton:Toxicity, inhibition and biodegradability assessment of intermediates [J]. Journal of Hazardous Materials,2007,146:459-464.
    [14]Jung J, Kim Y, Kim J, Jeong DH, Choi K. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna[J]. Ecotoxicology,2008,17:37-45.
    [15]Wojciech Baran., Jolanta Sochacka., Wladyslaw Wardas. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions [J]. Chemosphere,2006,65:1295-1299.
    [16]Christopher C R., David T T., Wilian A A. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent[J].Water research,2011(45):1280-1286.
    [17]Zhou, W., Moore, D.E. Photosensitizing activity of the antibacterial drugs sulfamethoxazole and trimethoprim [J]. Journal of Photochemistry and Photobiology B:Biology,1997:39,63-72.
    [18]Bernabeu A., Vercher R F., Santos-Juanes L. et al. Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents [J]. Catalysis Today,2011,161:235-240.
    [19]Baeza C, Knappe D.R.U.Transformation kinetics of biochemically active compounds in low-pressure UV Photolysis and UV/H2O2 advanced oxidation processes [J].Water research,2011, xxx:1-13.
    [20]Canonica, S., Meunier, L., von Gunten, U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water [J]. Water research,2008. 42(1-2):121-128.
    [21]Schwarzenbach, R.P., Gschwend, P.M., Imboden,D.M. Photochemical transformation reactions. In:Environmental Organic Chemistry, second ed. John Wiley & Sons, Inc., New York,2003,611-686.
    [22]Packer, J.L., Werner, J.J., Latch, D.E., McNeill, K., Arnold, W.A. Photochemical fate of pharmaceuticals in the environment:naproxen, diclofenac, clofibric acid, and ibuprofen [J]. Aquatic Sciences,2003,65 (4):342-351.
    [23]Huber, M.M., Canonica, S., Park, G.Y., von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes [J]. Environmental Science & Technology,2003,37(5):1016-1024.
    [24]Buxton, G., Greenstock, C.L., Helman, W.P., Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (*OH/*O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988.17 (2):513-886.
    [25]Fernando J. Beltra'n., Almudena Aguinaco., Juan F. Garcia-Araya, et al. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water [J]. Water research,2008,42:3799-3808.
    [26]Trovo A G., Nogueira R F P., Aguerra A. et al. Photodegradation of sulfamethoxazole in various aqueous media:Persistence,toxicity and photoproducts assessment[J]. Chemospherer,2009,77:1292-1298.
    [27]Sirtori C., Aguera A., Gernjak W.et al.Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways[J]. Water Research, 2010,44:2735-2744.
    [28]Abellan M N., Gimenez J., Esplugas S. Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim [J]. Catalysis today,2009, 144:131-136.
    [29]Rodayan A., Roy R., Yargeau V. Oxidation products of sulfamethoxazole in ozonated secondary effluent [J]. Journal of Hazardous Materials,2010,177:237-243.
    [30]Abellan, M.N., Bayarri, B., Gimenez, J., Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B:Environ., 2007,74,233-241.
    [31]Rosario-Ortiz, F.L., Wert, E.C., Snyder, S.A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Research,2010,44 (5), 1440-1448.
    [1]Ajit, K. Sarmah, Michael,T., Meyer, & Alistair, B.A. Boxall. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere,2006,65,725-759.
    [2]Avisar, D., Primor, O., Gozlan, I. Sorption of sulfonomides and tetracuclines to montmorillonite clay[J]. Water, Air and Soil Pollution,2010,209:439-450.
    [3]Alistair, B.A. Boxall, Paul B., Romina, C., Paul K. The sorption and transport of a sulphonamide antibiotic in soil systems [J]. Toxicology Letters,2002,131,19-28.
    [4]Tolls, J. Sorption of veterinary pharmaceuticals in soils:a review[J]. Environ. Sci.Technol.2001,35:3397-3406.
    [5]Thiele-Bruhn, S., Aust, M.O. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil[J]. Arch. Environ. Contam. Toxicol,2004,47:31-39.
    [6]Thiele-Bruhn, S. Sorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem [J]. J. Plant Nutr. Soil Sci.2000,163,589-594.
    [7]Sukul P., Lamshoft M., Zuhlke S., Spiteller M. Sorption and desorption of sulfadiazine in soil and soil-manure systems [J].Chemosphere,2008,73:1344-1350
    [8]OECD. Sorption-Desorption Using a Batch Equilibrium Method.Technical Guideline,106, OECD-Organisation for Economic Cooperation and Development, Paris.2000.
    [9]Schwarzenbach, R. P., Gschwend, P. M., Imboden, D. M. Environmental Organic Chemistry. (Wiley, New York, ed.2),2003.
    [10]Xu, J., Wu, L., Chang, A.C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils[J]. Chemosphere,2009,77,1299-1305.
    [11]Yu, L., Fink, G., Wintgens, T., Melin, T., Ternes, T.A. Sorption behavior of potential organic wastewater indicators with soils [J]. Water Res.2009,43,951-960.
    [12]Chiou, C.T, Porter, P.E, & Schmedding, D.W. Partition equilibria of nonionic organic compounds between soil organic matter and water [J]. Environ. Sci. Technol.1983,17,227-231.
    [13]Diaz, M.S, Lopezdealda, M.J, Barceclo, D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends in Analytical Chemistry,2003,22,340-351.
    [14]Gao, J., Pedersen J.A. Adsorption of sulfonamide antimicrobial agents to clay minerals [J]. Environ. Sci. Technol.2005,39,9509-9516.
    [15]Brusseau, M.L., Rao, R.S.C., Gillham, R.W. Sorption nonideality during organic contaminant transport in porous media [J]. Cri. Rev. Environ. Control.1989:19, 33-39.
    [16]Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils-a review. J.Plant Nutr. Soil Sci.2003,166,145-167.
    [17]Senesi, N. Binding mechanisms of pesticides to soil humic substances [J]. Science of the Total Environment,1992,123,63-76.
    [18]Thorn, K.A., Kennedy, K.R.,15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose[J]. Environ. Sci. Technol.2002,36,3787-3796.
    [19]Ter Laak, T.L., Gebbink, W.A., Tolls, J. The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil [J]. Environ. Toxicol. Chem.2006,25,904-911.
    [20]Kahle, M., Stamm, C. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite[J]. Chemosphere, 2007,68,1224-1231.
    [21]邹星,吴小莲,莫测辉,李彦文.蒙脱石对四环素类抗生素的吸附平衡及动力学[J].高校化学工程学报,2011,25,(3):524-528.
    [22]张劲强,董元华.诺氟沙星在4种土壤中的吸附-解吸特征[J].环境科学,2007,28(9):2134-2140.
    [23]Boxall, A.B.A., Blackwell, P.A., Cavallo, R., Kay, P., Tolls, J. The sorption and transport of a sulfonamide antibiotic in soil system[J]. Toxicol. Lett.2002,131, 19-28.
    [24]Lertpaitoonpan W., Ong S K., Moorman T B.Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere,2009,76:558-564.
    [25]Kurwadkar, S.T., Adams, CD., Meyer, M.T., Kolpin, D.W. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils [J]. J. Agric.Food Chem.2007,55:1370-1376.
    [26]Bajpai A K., Rajpoot M., Mishra D D.Studies on the correlation between structure and adsorption of sulfonamide compounds [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000,168:193-205.
    [27]Ji, L., Chen, W., Zheng, S., Zhu, D. Sorption of Sulfonamide Antibiotics to Multiwalled Carbon Nanotubes[J]. Langmuir,2009,25,11608-11613.
    [28]Knappe, Detlef R.U. Alternative adsorbents for the removal of polar organic contaminants. AWWA Research foundation,2007,75-99.
    [29]Linda, S. Lee, Suresh P., Rao, C. Influence of Solvent and Sorbent Characteristics on Distribution of Pentachlorophenol in Octanol-Water and Soil-Water Systems[J]. Environ. Sci. Technol.1990,24,654-661.
    [30]Mohammad, A. Qtaitat. Study of the interaction of trimethoprim-montmorillonite by infrared spectroscopy [J]. Spectrochimica Acta Part A,2004, 60,673-678.
    [31]Bekci Z., Seki Y., M. Yurdakoc K. Equilibrium studies for trimethoprim adsorption on montmorillonite KSF[J].Journal of Hazardous Materials,2006, 133:233-242.
    [1]Sarmah, A. K., Meyer, M.T., Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere,2006,65(5):725-759.
    [2]Yang J F, Ying G G, Zhou L J, et al. Dissipation of oxytetracycline in soils under different redox conditions[J].Environmental pollution,2009(157):2704-2709.
    [3]Diaz, M.S.,Lopezdealda, M.J., Barcelo, D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge[J]. Trends Anal. Chem.2003,22(6):340-351.
    [4]Taylor-Lovell, S., Sims, G.K., Wax, L.M.Effects of moisture, temperature, and biological activity on the degradation of isoxaflutole in soil[J]. Journal of Agricultural and Food Chemistry,2002,50,5626-5633.
    [5]Liu, F, Ying G.G, Yang J.F, Yang L.J, Zhou, J.L. Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions[J]. Environ.Chem.2010,7(4),370-376.
    [6]Accinelli, C, Koskinen, W.C, Becker, J.M, Sadowsky, M.J. Environmental fate of two sulfonamide antimicrobial agents in soil[J]. J. Agric. Food Chem.2007, 55(7),2677-2682.
    [7]Wang, Q.-Q, Yates S.R. Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J. Agric. Food Chem.,2008,58(1),1683-1688.
    [8]沈颖,魏源送,郑嘉,等.猪粪中四环素类抗生素残留物的生物降解.过程工程学报,2000,9(5)962-967.
    [9]Wang, Q.-Q, Bradford S.A, Zheng, W, ates S.R. Sulfadimethoxine degradation kinetics in manure as affected by initial concentration, moisture and temperature [J]. J. ENVIRON. QUAL.2006,35:2162-2169.
    [10]Shibata A., Toyota K., Miyake K., Katayama A. Anaerobic biodegradation of 4-alkylphenols in a paddy soil microcosm supplemented with nitrate[J]. Chemosphere,2007,68,2096-2103.
    [11]Ying, G.G., Kookana, R., Dillon, P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Res.2003,37,3785-3791.
    [12]Beulke, S., and C.D. Brown. Evaluation of methods to derive pesticide degradation parameters for regulatory modeling [J].Biol. Fertil. Soils,2001, 33:558-564.
    [13]De Liguoro, M., V. Cibin, F. Capolongo, B. Halling-Sorensen, and C.Montesissa. Use of oxytetracycline and tylosin in intensive calf farming: Evaluation of transfer to manure and soil. Chemosphere,2003,52:203-212.
    [14]Xu, R., and J.P. Obbard. Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments. J. Environ. Qual.2004,33:861-867.
    [15]Wang, Q.-Q, Guo, M. Yates S.R. Degradation kinetics of manure-derived sulfadimethoxine in amended soil [J]. J. Agric. Food Chem.2006,54(1),157-163.
    [16]Silvia, D.M., et al. Principles and Applications of Soil Microbiology.2nd ed. Pearson Prentice Hall, New Jersey.2005.
    [17]J. Kotz, P. Treichel, G. Weaver. Chemistry and Chemical Reactivity.sixth edition. New Jersey.2006.
    [18]Knowles, R. Denitrification in Soils, In:N.S. Subba Rao (ed.) Advances in Agricultural Microbiology, Butterworth Sci. Pub., London, UK.1982,246-266.
    [19]Kuenen, J.G. and Robertson, L.A. Ecology of nitrification and denitrification. In: Cole, J.A. and Ferguson, S.J., Editors,1988. The Nitrogen and Sulphur Cycles. 42nd Symposium of The Society for General Microbiology, University of Southampton, Cambridge University Press, Cambridge,,1988,161-218.
    [20]Chakraborty R and Coates J.D. Hydroxylation and carboxylation-two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB [J]. Applied and Environmental Microbiology,2005,71(9):5427-5432.
    [21]Drillia P., Dokianakis S.N., Fountoulakis M.S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process:The example of the antibiotic sulfamethoxazole [J]. Journal of Hazardous Materials,2005,122, 259-265.
    [22]Villar-Pulido M. Gilbert-Lopez B. Garcia-Reyes J F. et al.Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry [J]. Talanta,2011 (in press)
    [23]Barcelo, Damia. Analysis, Fate and Removal of Pharmaceuticals in the Water Cycle, Wilson, Elsevier Science,2007
    [24]He X, Li J, Gao H, Qiu F, et al. Identification of a rare sulfonic acid metabolite of andrographolide in rats[J]. Drug Metab Dispos.2003,31(8):983-985.
    [25]Garcia-Galan M J., Diaz-cruz- M S., Barcelo D. Identification and determination of metabolites and degradation products of sulfonamide antibiotics [J]. Trends in analytical chemistry,2008, 11(27):1008-1022.
    [26]Lai W G., Zahid N., Uetrecht J P.Metabolism of trimethoprim to a reactive iminoquinone methide by activated human neutrophils and hepatic microsomes [J].1999,291(1):292-299.
    [27]Samuelsen O.B., Lunestad B.T., Ervik, A. Fjelde S., Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions [J]. Aquaculture,1994,126,283-290.
    [28]Yang, J.F, Ying, G.G, Yang, L.H, et al. Degradation behavior of sulfadiazine in soils under different conditions [J]. J. Environ. Sci. Health, Part B.2009,44(3), 241-248.
    [29]Bialk, H. M, Simpson, A. J, Pedersen, J. A. Cross-coupling of sulfonamide antimicrobial agents with model humic constituents[J]. Environ. Sci. Technol. 2005,39(12),4463-4473.
    [30]Thiele-Bruhn, S., Beck, I.C., Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere,2005,59, 457-465.
    [31]Heise J., Holtge S., chrader S., Kreuzig R. Chemical and biological characterization of non-extractable sulfonamide residues in soil [J]. Chemosphere,2006,65,2352-2357.
    [32]Stoob, K., Heinz, P., Stephan, R., Rene, P., Christian, H. Dissipation and Transport of Veterinary Sulfonamide Antibiotics after Manure Application to Grassland in a Small Catchment [J]. Environ. Sci. Technol.2007,41(21),7349-7355.
    [31]Trevors, J.T. Sterilization and inhibition of microbial activity in soil [J]. J. Microbiol. Method.1996,26(1-2),53-59.
    [1]Bailey V. L. Smith J. L. Bolton H. Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal:bacterial ratios in soil[J]. Biol Fertil Soils,2003,38:154-160.
    [2]Kong, W.D., Zhu, Y.G., Liang, Y.C., Zhang, J., Smith, F.A., Yang, M. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)[J]. Environmental Pollution,2007,147:187-193.
    [3]ISTA (International Seed Testing Association), International rules for seed Testing. Annexes of Seed Science and Technology,1985,13,356-513.
    [4]Batchelder, A.R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. Journal of Environmental Quality,1982,11,675-678.
    [5]Farkas, M.H., Berry, J.O., Aga, D.S. Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environmental Science and Technology,2007,41,1450-1456.
    [6]Jjemba, P.K. The effect of chloroquine, quinacrine, and metronidazole on both soybean plants and soil microbiota[J]. Chemosphere,2002,46,1019-1025.
    [7]Jjemba, P.K.,2002b. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review[J]. Agriculture, Ecosystems and Environment 93,267-278.
    [8]Liu F., Ying G.G., Ran T., Zhao J.L. et al. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities [J]. Environmental Pollution,2009,157:1636-1642.
    [9]Patten, D.K., Wolf, D.C., Kunkle, W.E., Douglass, L.W. Effect of antibiotics in beef cattle feces on nitrogen and carbon mineralization in soil and on plant growth and composition[J]. Journal of Environmental Quality,1980,9,167-172.
    [10]Becker, J. M., Parkin, T., Nakatsu, C. H., Wilbur, J. D., Konopka, A. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil[J]. Microbial Ecol.2006,51:220-231.
    [11]Chen S-K, Edwards C A. A microcosm approach to assess the effects of fungicides on soil ecological processes and plant growth:comparisons of two soil types [J]. Soil Biol Biochem.2001,33:1981-1991.
    [12]Heilmann B, Lebuhn M, Beese F. Methods for the investigation of metabolic activities and shifts in the microbial community in a soil treated with a fungicide [J]. Biol Fertil Soils,1995,19:186-192.
    [13]Martens, R. Estimation of microbialbiomass in soil by the respiration method: im-portance of soil pH and flushing methods forthe measurement of respired CO2 [J]. Soil Biol.Biocheni.1987,19:77-81.
    [14]Lin Q, Brookes PC. An evaluation of the substrate-induced respiration method [J]. Soil Biol Biochem.1999,31:1969-1983.
    [15]Anderson J P E, Domsch K H.Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils [J]. Can J Microbiol.1975, 21:314-322
    [16]Ross, D.J. Evaluation of a physiologicalmethod for measuring microbial biomass in soilsfrom grasslands and maize fields [J]. NZ J.Sci.1980,23:229-236.
    [17]Smith J L, McNeal B L, Cheng H H. Estimation of soil microbial biomass:an analysis of the respiratory response of soils [J]. Soil Biol Biochem.1985,17:11-16.
    [18]Lin Q, Brookes P C. Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils [J].Soil Biol Biochem.1999,31:1999-2014.
    [19]Kaiser, E.A.,Mueller T., Joergensen R.G., Insam H. et al. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter[J]. Soil Biul. Biochem.1992,24:675-683.
    [20]Beare M H, Neely C L, Coleman D C, Hargrove W L. A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues[J]. Soil Biol Biochem.1990,22:585-594.
    [21]Liu, F, Ying G.G, Yang J.F, Yang L.J, Zhou, J.L. Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions[J]. Environ.Chem.2010,7(4),370-376.
    [22]Accinelli, C, Koskinen, W.C, Becker, J.M, Sadowsky, M.J. Environmental fate of two sulfonamide antimicrobial agents in soil[J]. J. Agric. Food Chem.2007, 55(7),2677-2682.
    [23]Demoling, L.A., Baath, E., Greve, G. Effects of sulfamethoxazole on soil microbial communities after adding substrate [J]. Soil Biol. Biochem.2009, 41(4):840-848.
    [24]Thiele-Bruhn, S., Beck, I.C., Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere,2005,59, 457-465.
    [25]Drillia P., Dokianakis S.N., Fountoulakis M.S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process:The example of the antibiotic sulfamethoxazole [J]. Journal of Hazardous Materials,2005,122, 259-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700