用户名: 密码: 验证码:
岩体变形光纤光栅传感检测的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上煤矿事故频繁发生的国家之一,而很多重大灾害的发生都是由于人们对煤岩体物理力学行为的认知缺乏所致。提高监测手段,减少灾害的发生显得尤为重要。鉴于光纤光栅传感技术的独特优点及其广阔的应用前景,借助该项技术检测岩体的变形破坏过程,研究适合于岩体的光纤光栅检测方法,对于提高人们对岩石力学行为及其变形破坏机理的认知具有非常重要的现实意义。
     本论文由光纤的波动理论出发,以麦克斯韦方程组及光纤光栅传输模式的正交关系为理论依据,推证出了光纤光栅的传输理论,并得到了传感方程。通过对光纤光栅的传感实验,验证了光栅波长与应变及温度之间的线性关系,表明光纤光栅具有良好的测试性能。
     提出了光纤光栅传感技术对岩体变形的测试方法,即埋入法和表面粘贴法,其中埋入法又可分为锚杆封装法、直接埋入法和钻孔注浆法。分析了埋入状态下光纤的受力特征,推导出了光纤与岩体之间的应变传递方程,得出了二者的应变传递关系。建立了光纤光栅表面粘贴时的力学传递模型,推导出了在考虑表面凹槽时的力学传递方程。在光纤及中间介质的力学参数已知时,可以求得应变传递系数,通过换算后得到岩体真实应变。
     研究了采场周围水平应力分布的光纤光栅埋入式检测方法。在相似模型中埋入裸露的光纤光栅,检测采动过程中波长的变化。借助埋入法应变传递的分析结果,由波长漂移量得出光栅附近岩体的水平应力,再由多点光栅的测试即可得出应力的分布规律。结果表明,借助光纤光栅可以测出采动影响下水平应力的分布,并通过数值模拟计算,验证了测试结果。
     本文在国内首次采用了光纤光栅表面粘贴法对MTS伺服机单轴压缩实验过程进行了检测。在试件的轴向和环分别布置两个光栅,以测试压缩过程中的应变变化。在同一位置附近粘贴应变片,对照实验结果。实验表明,光纤光栅测试效果明显优于应变片及MTS的环向应变计,与MTS的轴向位移计精度相当。实验说明了光纤光栅优越的测试性能,并验证了所建立表面粘贴模型的正确性。
     对济宁三号煤矿风井松散层的沉降变形进行了光纤光栅埋入法检测的应用,光纤光栅的埋入采用了钻孔注浆法。分析了使用该方法时光纤光栅传感器与松散层的应变传递关系,得出了波长漂移量与应变的传递系数。经过8个月在线监测,获得了大量观测数据,经分析得出了最大沉降变形的层位,为井筒的破坏预测和及时维护提供了依据。
Our country is one of the countries that coal mine accidents often happen. Many disasters attributed to the lack of cognizance to the mechanics action of coal and rock. So, it is more important to increase the test level and reduce the accidents. For the unique character and broad foreground of fiber Bragg grating (FBG) sensing, it is used in testing the course of rock deformation and damage. The monitor method adapt to rock is studied. This has very important practical meaning to increase our knowledge level of the mechanics action and the deformation and damage mechanism of rock.
     In this paper, from the undulation theory, and theoretically based on Maxwellian equation and the orthogonality relation of the FBG’s transmission mode, the transmitted theory is deduced and the sensing equation is achieved. By the sensing experiment, the linearity relationship between the grating wavelength and the stain or temperature is proved, and this indicates its well testing character.
     The testing method of rock deformation using FBG is present, i.e. embedding and surface pasting. The embedding method includes anchor package, immediate embedding and boring with slurry. The stress character of fiber in embedding state is analyzed. The transferring equation of strain between fiber and rock is derived, and their relationship is gotten. The transferring model of fiber sticking on the surface is established, and the equation is derived considering the surface groove.When the mechanics parameters of fiber and middle medium are known, the strain transferring coefficient can be calculated, and the real strain of rock can be gotten then.
     It is studied of the embedding method with FBG testing the horizontal stress distribution in rock. The naked fiber is embedded in the simulation model, and the wavelength drift during mining is monitored. With the result of strain transferring analysis, the horizontal stress near gratings can be gained by the drifts, and the distribution can be achieved by FBG multi-point test. The result indicates that the stress can be tested by FBG, and this can be proved by numerical simulation.
     The test of rock uniaxial compression in MTS by the surface pasting of FBG is firstly conducted in our country in this paper. To monitor the strain change of the sample under compression, two gratings are stuck on the surface respectively along axial and radial direction. To compare the result, the electrical strain gauges are pasted on the same position. The result indicates that the testing effection of FBG is obviously better than the electrical strain gauges and the radial strain gauge of MTS, and coincident with MTS’axial displacement gauge. The experiment illuminates the good test capability of FBG, and validates the established transferring model of surface pasting.
     The monitoring to the subsidence of unconsolidated soil layers around the shaft in Jisan Coal Mine with FBG embedding is applied, and the boring method is used. The transferring relationship between the sensors and soil layers is analyzed, and the corresponding coefficient of wavelength and strain is derived. By 8 monthes monitoring, many observation data are gained, and the layer with the biggest subsidence is known form the analysis to the data.This provides the necessary guidance for damage forecast and maintenance timely of the shaft.
引文
[1] 周智. 土木工程结构光纤光栅智能传感元件及其监测系统. [学位论文]. 哈尔滨: 哈尔滨工业大学, 2003
    [2] 汪元辉. 安全系统工程. 天津: 天津大学出版社, 1999
    [3] 文海家, 张永兴, 柳源. 滑坡预报国内外研究动态及发展趋势. 中国地质灾害与防治学报, 2004, 15(1): 1~4
    [4] 周智, 武湛君, 赵雪峰等. 混凝土结构的光纤光栅智能监测技术. 功能材料, 2003, 34(3): 344~348
    [5] 柴敬. 层状岩体变形与破坏光纤传感检测基础实验研究: [学位论文]. 西安: 西安科技大学: 2003
    [6] 任建喜. 岩石损伤演化机理 CT 实时检测. 陕西科学技术出版社, 2003
    [7] Dougill J W. Mechanics in Eng. ASCE. EMD, 1976, 333~355
    [8] Dragon A, Mroz Z. A continuum model for plastic brittle behavior of rock and concrete. Int. J. Eng. Sci. ,1979, 17,121~137
    [9] Krajcinovic D. The Continuous damage theory of brittle mterials, J. Appl. Mech. 1981, 48(4):809~815
    [10] Krajcinovic D. Continuum damage mechanics. Appl. Mech. Rev. 1984, 37(1)
    [11] 谢和平. 分形损伤力学. 中国青年学者岩土工程力学及其应用讨论会论文集. 北京: 1994, 23~33
    [12] Kemeny J. Non-linear deformation and strength of a cracked elastic solid. Int. J. Rock Mech. Min. Sci. & Geomech. Abstract. 1986, 23(2): 107~118
    [13] Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation. Growth and Interaction. Ph. D. thesis, Brown University, 1975
    [14] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth, I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Tech., 1977, 99: 2~15
    [15] Mcclintock F M. A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 1968, 35, 363~371
    [16] 卢应发, 葛修润. 岩石损伤本构理论. 岩土力学, 1990,11(2): 67~72
    [17] 王金龙, 林卓英, 吴玉山等. 脆性岩石的损伤与裂隙扩展. 岩土力学,1990,11(3):1~8
    [18] 李广平 . 类岩石材料微裂纹损伤模型分析 . 岩石力学与工程学报 , 1995, 14(2):107~127
    [19] 刘立,邱贤德, 黄木坤等. 复合岩石损伤本构方程与实验. 重庆大学学报(自然科学版), 2000, 23(3):57~60
    [20] 伍小平. 实验力学中现代光测方法的发展及应用前景. 机械强度,1995,17(2): 20~25
    [21] 金观昌. 训算机辅助光学测量.北京: 清华大学出版社, 1997, 143~174
    [22] Erf R K. Speckle Metrology. New York: Academic Press, 1978.
    [23] Williams D C. Optical Methods in engineering metrology. New York: Chapman&Hall Press, 1993
    [24] 许江, 李贺, 鲜学福等. 对单轴应力状态下砂岩微观断裂发展全过程的实验研究. 力学与实践, 1986, 8(4) : 24~28
    [25] 卢应发, 张梅英, 葛修润等. 大理岩静态和循环荷载试件的电镜分析. 岩土力学, 1990, 11(4): 75~80
    [26] 张梅英, 袁建新, 潘轺湘等. 岩土介质微观力学动态观测研究. 科学通报, 1993, 38(10) : 920~924
    [27] 凌建明, 孙钧等. 脆性岩石的细观裂纹损伤及其时效特征. 岩石力学与工程学报, 1993, 12(4):304~312
    [28] 余拱信, 漆新民, 李禾等. 全息干涉法研究岩石裂隙扩展破坏规律. 激光杂志, 1995, 16(3): 105~108
    [29] 赵永红. 受压岩石中裂纹发育过程及分维变化特征. 科学通报, 1995, 40(7): 621~623
    [30] 张梅英, 袁建新, 李廷芥等. 单压缩过程中岩石变形破坏机理. 岩石力学与工程学报, 1998, 17(1): 1~8
    [31] 吴立新. 煤岩损伤扩展规律的即时压缩 SEM 研究. 岩石力学与工程学报, 1998, 17(1): 9~15
    [32] 刘冬梅. 单轴压力作用下岩石损伤演化特征研究. 江西有色金属, 2000, 14(4): 1~3
    [33] 巫静波峰. 岩石节理剪切力学特性的光弹实验研究. 中国矿业大学学报, 2000, 29(6): 640~642
    [34] 谢锦平, 刘冬梅, 黄文勇等. 用全息二次曝光法分析岩石侧向受压形变规律. 激光杂志, 2002, 23(1): 61~62
    [35] 刘传孝. 岩石破坏机理及节理裂隙分布尺度效应的非线性动力学分析与应用. [学位论文]. 青岛: 山东科技大学, 2005
    [36] 刘冬梅, 谢锦平, 周玉斌等. 岩石压剪耦合破坏过程的实时监测研究. 岩石力学与工程学报, 2004, 23(10):1616~1620
    [37] Arthur J R. New techniques to measure new parameters. Proc of Roscoe Material Symp. Stress-Strain Behavior of Soils. Cambridge, 1971. 340~346
    [38] Petrovic A M, Siebert J E, Ricke P E. Soil bulk density anasysis in three dimensions by computed tomographic scanning. Soil Sci. Soc. Sm. J., 1982, 46: 445~450
    [39] Cromwell V, Kortum D J, Bradley D J. The use of a medical computer tomography (CT) system to observe multiphase flow in porous media. Soc. Of Petroleum Eng., Richardson, TX 1984, 13098
    [40] Honarpour M M, Cromwell V, Hatton D, et al. Reservoir rock descriptions using computer tomography (CT). Petroleum Eng., 1985, 14272
    [41] Vinegar H J, Waal J A, Wellington S L. CT studies of brittle failure in Caste gate sandstone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1991, 28(5): 441~448
    [42] Verheslt F, Vervoort A, Bosscher P H. G. X-ray computerized tomography: Determination of herteogeneities in rock samples Proc. of 8th ISRM Cong., Tokyo, Rotterdam: A. A. Balkema. 1995, 1: 105~108
    [43] Sugawar K, Obara Y, Kaneko K, et al. T. Visualization of three-dimensional structure of rocks using X-ray CT method. Proc. of 1st ARMS, Seoul, Korea, 1997, 2: 769~774
    [44] Sugawara K, Obara Y, Aoi T, et al. Visualization of water permeation within rock using the X-ray CT method. Proc. of 10th JPN. Symp. on Rock Mech., 1998, 341~346
    [45] Scavia C F. Determination of contact areas in rock joints by X-ray computer tomography. Int. J. Rock Mech. & Min. Sci, 1999, 36: 883~890
    [46] Sugawara K, Sato A, Obara Y, et al. Crack opening analysis using X-rays CT data. Proc. of 9th ISRM Cong., Paris, Rotterdam: A. A. Balkema. 1999, 2: 1019~1022
    [47] Kawakata H, Chao A, Yanagidani T, et al. Three-dimensional observation of faulting process in Westerly granite under triaxial compression by X-ray CT scan, Tectonophysics, 1999, 313: 293~305
    [48] 吴紫汪,马巍, 蒲毅彬等. 冻土蠕变变形特征细观分析. 岩土工程学报, 1997, 19(3): 1~6
    [49] 马巍. 冻土三轴蠕变过程中结构变化的 CT 动态监测. 冰川冻土, 1997, 19(1):52~57
    [50] 蒲毅彬, 朱元林. CT 用于冻结土、岩及冰的无损动态试验研究. 自然科学进展, 1998, 8(2): 251~253
    [51] 黄树华. 岩石力学研究中 AE 和 CT 装置的应用. 岩土力学,1989, 10(1): 83~86
    [52] 杨更社, 谢定义.岩石损伤特性的 CT 识别. 岩石力学与工程学报, 1996, 15(1):48~54
    [53] 杨更社, 谢定义, 张长庆. 煤岩损伤特性的 CT 检测. 力学与实践, 1996, 18(2):14~16
    [54] 杨更社. 单轴受力状态下岩石损伤扩展本构关系的 CT 识别研究. 岩土力学, 1997, 18(2): 29~34
    [55] 杨更社. 岩体损伤及检测. 西安: 陕西科学技术出版社. 1998
    [56] 任建喜, 葛修润. 单轴压缩岩石损伤演化细观机制及其本构模型研究. 岩石力学与工程学报. 2001, 20(4): 425~431
    [57] Verhelst F, Vervoort A, Debosscher P H, et al. X-ray computerized tomography: Determination of heterogeneities in rock samples. In: S. Sakurai ed. Proceedings of the 8th International Congress on rock Mechanics. 1995, 105~108
    [58] Kawa H, Cho A, Yanggedani T, et al. The observations of faulting in Westerly granite under triaxial Compression by x-ray CT scan. Int. J. Rock Mech. & Min. Sci, 1997, 34(3~4): 151~162
    [59] 郑孝军, 胡志军, 刘倡清等. 裂隙岩石疲劳损伤变形规律 CT 试验初探. 西安科技大学学报, 2005, 25(4): 469~472
    [60] 赵阳升, 孟巧荣, 康天合等. 显微 CT 试验技术与花岗岩热破裂特征的细观研究. 岩石力学与工程学报, 2008, 27(1): 28~34
    [61] 丁卫华, 仵彦卿, 蒲毅彬等. X 射线岩石 CT 的历史与现状. 地震地质, 2003, 25(3): 467~476
    [62] 尹贤刚,李庶林. 声发射技术在岩土工程中的应用. 采矿技术, 2002, 2(4): 39~42
    [63] 冯夏庭. 声发射(AE)技术的应用. 北京:冶金工业出版社,1996
    [64] 李庶林, 尹贤刚, 王泳嘉等. 单轴受压岩石破坏全过程声发射特征研究. 岩石力学与工程学报, 2004, 23(15): 2499~2503
    [65] 陈忠辉, 唐春安, 徐小荷等. 岩石声发射 Kaiser 效应的理论和实验研究. 中国有色金属学报, 1997, 7(1): 9~12
    [66] 吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性.1998, 20(2): 82 ~85
    [67] 曹庆林, 余克圣, 桑玉发等. 采场冒顶灾害的声发射预报技术. 中国有色金属学报. 1996, 6(2): 7~12
    [68] 傅鹤林. 采场冒顶的声发射预测预报. 岩石力学与工程学报.1996, (l5):109 ~114
    [69] 唐绍辉, 桑玉发. 用分维研究采场顶板失稳的声发射过程. 中国有有色金属学报.1997, 7(3): 22~25
    [70] 王恩元, 何学秋, 刘贞堂. 煤岩电磁辐射特性及其应用研究进展. 自然科学进展. 2006, 16(5): 532~636
    [71] 毛桐恩, 钱书清, 刘小伟. 震前电磁波观测与实验研究文集. 北京: 地震出版社, 1989. 1~4
    [72] Nitsan U. Electromagnetic emission accompanying fracture of quartz-bearing rocks. Gephysical Research Letters, 1977, 4(8): 333~336
    [73] 徐为民, 童芜生, 吴培雅. 岩石破裂过程中电磁辐射的实验研究. 地球物理学报, 1985, 28(2): 181~189
    [74] 何学秋, 刘明举. 含瓦斯煤岩电磁动力学. 徐州: 中国矿业大学出版社, 1995. 5~56
    [75] 王恩元, 何学秋, 刘贞堂. 煤岩变形及破裂电磁辐射的信号的 R/S 统计规律. 中国矿业大学学报, 1998, 27(4):349~351
    [76] 窦林名, 何学秋, 王恩元等. 由煤岩变形冲动破坏所产生的电磁辐射. 清华大学学报(自然科学版), 2001, 451(13): 86~88
    [77] 何学秋, 王恩元, 聂百胜等. 煤岩流变电磁动力学. 北京, 科学出版社, 2003. 10
    [78] 王恩元, 何学秋, 窦林名等. 煤矿采掘过程中煤岩体电磁辐射特征及应用. 地球物理学报, 2005, 48(1): 216~221
    [79] Brady B T, Rowcll G A. Laboratory investigation of the electrodynamics of rock fracture. Nature, 1986, 321(29): 488~492
    [80] Luong Minh Phong. Infrared the movision of damage processes in concrete and rock. Engineering fracture mechanics, 1990, 35(1):291~301
    [81] 张东胜, 安里千, 张拥军. 受力光弹材料的红外辐射热特征. 实验力学, 2001, 16(4):444~449
    [82] 吴立新.遥感岩石力学及其新近进展与未来发展. 岩石力学与工程学报. 2001, 20( 2): 139~146
    [83] Wu L X, Liu S J, Wu Y H, et al. From qualitative to quantitative information: The development L of remote sensing rock mechanics (RSRM). Int. J. Rock Mech. & Min. Sci, 2004, 41(3): 415~416
    [84] 彭瑞东, 刘彬, 王建强等. 岩石损伤检测技术的研究进展. 岩矿测试, 2007, 26(1): 61~66
    [85] Hill K O, Fuji Y, Jonson D C, et al. Photosensitivity in optical fiberwave guides, application to reflection filter fabricaion. Appl phys. Lett., 1978, 32 (10): 547~649
    [86] Meltz G, Morey W W, Glenn H, et al. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1998, 14 (15): 823~825
    [87] Hill K O. Bragg Grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, (62): 1035~1037
    [88] Lemaire P J, Atkins R M, Mizrahi V, et al. High pressure H2 Loading as a Technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electron. Lett., 1993, (29): 1191~1195
    [89] Morey W W, Meltz G, Glenn W H. Fibre optic Bragg grating sensors. SPIE, 1989, 1169: 98~107
    [90] Friebele P. Fibre Bragg grating strain sensors: Present and future applications in smart structures. Optics and Photonics News, 1998, 9: 33~3
    [91] Nellen P M, Anderegg P, Bronnimann R B, et al. Applocation of fiber optical and resistance strain gauges for long-term surveillance of civil engineering structures. SPIE,1997, 3043: 77~86
    [92] Nellen P M, Bronnimann R, Frank A. Structurally embedded fiber Bragg gratings: Civil Engineering Applications. SPIE, 1999, 3860: 44~54
    [93] Fuhr P L, Spammer S. Fiber optic sensors in the Waterbury Bridge. SPIE, 1998, 3489: 124~129
    [94] Sein J, Udd E, Schulz W. Health monitoring of an Oregon Historical Bridge with fiber grating strain sensors. SPIE, 1999, 3671: 128~134
    [95] 周智, 赵雪峰, 武湛君等. 光纤光栅毛细钢管封装工艺及其传感特性研究. 中国激光, 2002, 29(12):1089~1092
    [96] 赵雪峰, 田石柱, 周智等. 基于封装光纤 Bragg 光栅传感器的混凝土应变监测试验研究. 光学技术, 2003, 29(4): 423~426
    [97] Foote P D. Fiber Bragg grating strain sensors for aerospace smart structure. SPIE, 1994, 2361: 162~166
    [98] Ferdinand P. Applications of Bragg gating sensors in Europe. Proc. of the Optical Fiber Sensors Conf. Williamsburg, VA, USA, 1997: 14~19
    [99] Weis W. MWD telemetry system for coil-tubing drilling using optical fiber grating modulators down-hole. Proc. Of the Optical Fiber Sensors Conf. Williamsburg, VA, USA, 1997: 416~419
    [100] Peng Y T. The Characterization of hydrogen sensor based on palladium electro plated fiber Bragg gratings. Proc. SPIE, 1999, 3670: 42~53
    [101] Zhang Z, Sirkis J S. Temperature compensated long-period grating chemical sensor. Proc. of the Optical Fiber Sensors Conf. Williamsburg, VA, USA, 1997: 294~297
    [102] Falcia R. Optical fiber long period gratings for the refractometry of a queous solution. Proc. SPIE, 1998, 3555: 447~450
    [103] Triquesl A L C. Fiber Bragg grating sensing for indirect evaluation of corrosion in oil and gas facilities. SPIE, 2004, 5502: 283~286
    [104] Gusarov A I. High total dose radiation effection temperature sensing fiber Bragg gratings. IEEE Photonics Technology Letters, 1999,11(9): 1159~1161
    [105] Ferdinand P. Applications of Bragg gating sensors in Europe. Proc. Of the Optical Fiber Sensors Conf. Williamsburg, VA, USA, 1997: 14~19
    [106] Rao Y J. In-fibre Bragg grating temperature sensor system for medical application. Light wave technology, 1997, 15: 779~785
    [107] Rao Y J. In-situ temperature monitoring in NMR machines with a prototype in-fibre Bragg grating sensor system. Proc. of the Optical FiberSensors Conf. Williamsburg, VA,USA, 1997: 646~649
    [108] Fisher N E. Response of in-fibre Bragg grating stofocused Ultrasound fields. Proc. of the Optical Fiber Sensors Conf. Williamsburg, VA, USA, 1997:190~193
    [109] Kihara M, Hiramats M K, Shima M. Distributed optical fiber strain sensor for detecting river embankment collapse. IEICE Trans Elect., 2002, 952~959
    [110] Luo Fei, Liu Jingyuan, Ma Nanbing, Morse T. f. A fiber optic microbend sensor for distributed sensing application in the strain monitoring. Sensor and actuators A, 2002, (96): 21~24
    [111] Gafsi Rachid, Malki abdelrafik, ahdad farid, et al. Static stress optic-fiber sensor. Sensor and actuators A, 1997,(62): 501~505
    [112] 万华琳,蔡德所,何薪基等. 高陡边坡深部变形的光纤传感监测试验研究. 三峡大学学报(自然科学版),2001, 23(1):20~23
    [113] 葛修润,蒋宇,卢允德等. 周期荷载作用下岩石疲劳变形特性试验研究,岩石力学与工程学报,2003, 22(10):1581~158
    [114] 施斌,余小奎, 张巍等. 基于光纤传感技术的桩基分布式检测技术研究. 第二届全国岩土与工程学术大会论文集. 北京: 科学出版社, 2006, 476~1409
    [115] 张丹, 施斌, 徐洪钟. 基于 BOTDR 的隧道应变监测研究. 工程地质学报, 2004, 12(4): 421~426
    [116] 施斌, 徐洪钟, 张丹等. BOTDR 应变监测技术应用在大型基础工程健康诊断中的可行性研究. 岩石力学与工程学报, 2004, 23(3): 493~499
    [117] 周策,陈文俊,汤国起. 滑坡崩塌岩体推力监测系统的研究. 探矿工程(岩土钻掘工程),2004, (1): 43~46
    [118] 代志勇,袁勇,刘永智. 基于光纤应力传感的山体滑坡监测系统研究.光学与光电技术, 2004, 2(3): 51~53
    [119] 唐天国, 朱以文, 蔡德所等. 光纤岩层滑动传感监测原理及试验研究. 岩石力学与工程学报, 2006, 25(2): 340~344
    [120] 李端有,陈鹏霄,王志旺. 温度示踪发渗漏监测技术在长江堤防渗流监测中的应用初探.长江科学院院报,2000, (增): 48~50
    [121] 刘泉声, 徐光苗, 张志凌. 光纤测量技术在岩土工程中的应用. 岩石力学与工程学报, 2004, 23(2): 310~314
    [122] Hattenberger C S, Marcel Naumann, Gunter Borm. Fiber Bragg grating strain measurements in comparison with additional techniques for rock mechanical testing. IEEE sensors journal. 2003, 3(1): 50~55
    [123] Yang Y W, Bhalla S, Wang C, et al. Monitoring of rocks using smart sensors.Tunnelling and Underground SpaceTechnology, 2007, 22: 206~221
    [124] Toscan D, Verbandt Y, Voet M, et al. Accurate stability control in mining with fiber sensing technology--STABILOS. Proc. CEE Workshop ming tech, 1993
    [125] Pierre Ferdinand, Ferragu O, Lechien J L, et al. Mine operating accurate STABILITY control with optical fiber sensing and Bragg grating technology: the European BRITE/EURAM STABILOS project. Journal of lightwave technology, 1995, 13(7): 1303~1302
    [126] Hattenberger C S, Borm G. Bragg grating extensometer rods (BGX) for geotechnical strain measurements. Proc. SPIE workshoup Opt. Fiber Sens., 1998, 3484: 214~217
    [127] Frank, Andreas, Nellen. Fiber optical Bragg grating sensors embedded in GFRP rockbolts. SPIE, 1999, 3670: 497~504
    [128] Philipp M, Nellen, Andreas Frank, et al. ptica fiber Bragg grating for Tunnel Surveillance.SPIE, 2000, 3986: 263~270
    [129] Martin Schroeck, Wolfgang Ecke, Andrea Graupner. Strain monitoring in steel rock bolts using FBG sensor arrays. SPIE, 2000, 4047: 298~304
    [130] Lir J G, Hattenberger C S, Borm G. Dynamic strain measurement with a fiber Bragg grating sensor system. Measurement, 2002, 32: 151~161
    [131] Hattenberger C S, Naumann M, Borm G. Dynamic strain detection using a fiber Bragg grating sensor array for geo technical applications. SPIE, 2003, 4763:227~232
    [132] Jobmann, Michael, Voet. Fiber optic deformation and temperature measurement system for application at underground radioactive waste repositories. SPIE, 2005, 5855: 282~285
    [133] Dewynter V, Rougeault S, Boussoir. Instrumentation of borehole with fiber Bragg grating thermal probes: Study of the geothermic behaviour of rocks. SPIE, 2005, 5855: 1016~1019
    [134] 姜德生, 左军, 信思金等. 光纤 Bragg 光栅传感器在水布垭工程锚杆上的应用. 传感器技术. 2005, 24 (1): 72~74
    [135] 姜德生, 南秋明, 梁磊. 光纤光栅传感技术在锚索监测中的应用研究. 承德石油高等专科学校学报. 2004, 6(3): 1~4
    [136] 姜德生, 梁磊, 南秋明. 新型光纤 Bragg 光栅锚索预应力监测系统. 武汉理工大学学报. 2003, 25(7):15~17
    [137] 金秀梅. 用于预应力筋长期实时应力监测的光纤传感测试技术研究. 中国安全科学学报. 2005, 15(11): 108~112
    [138] 柴敬, 兰曙光, 李继平等. 光纤 Bragg 光栅锚杆应力应变监测系统. 西安科技大学学报, 2005, 25(1): 1~4
    [139] Chai jing, Wei Shiming, Chang Xintan, et al. Monitoring deformation and damage on rock structures with distributed fiber optical sensing. Int. J. Rock Mech. Min. Sci., 2004, 41(3): 413
    [140] Chai Jing, Wei Shi-ming, Liu Jin-xuan. Study on rock deformation monitoring using fiber Bragg grating in simulation experiment. Journal of Coal Science & Engineering (China). 2006, 12(2): 30~33
    [141] 柴敬, 魏世明, 相似材料中光纤传感检测特性分析. 中国矿业大学学报, 2007, 36(4): 458~462
    [142] 柴敬,魏世明,常心坦等. 岩梁变形监测的分布式光纤传感技术. 岩石力学与工程学报, 2004, 23(23): 4068~4071
    [143] 柴敬, 常心坦. 光纤传感器在相似材料模型测试中的相容性研究. 实验力学, 2004, 4: 453~458
    [144] 柴敬,魏世明,常心坦等. 相似材料模型实验中的 OTDR 检测方法. 中国岩石力学与工程学会第八次大会文集, 中国科学技术出版社, 2004
    [145] 柴敬, 魏世明. 矿山压力模拟实验中的光纤传感测试. 矿山压力与顶板管理,2004, (专刊): 112~113
    [146] 魏世明, 柴敬. 岩梁小变形的光纤光栅检测方法研究. 地下空间与工程学报, 2005, 1(6): 986~989
    [147] 魏世明, 柴敬. 相似模拟实验中光纤光栅传感检测研究. 地下空间与工程学报, 2007, (6): 1171~1175
    [148] 廖帮全. 光纤光栅理论、传感应用及全光纤声光市制研究. [学位论文]. 2002: 22~35
    [149] 梁龙彬. 光纤光栅应变传感在建筑结构中的应用研究. [学位论文]. 2001: 1~17
    [150] 马库塞. 介质光波导理论. 北京: 人民邮电出版社, 1982
    [151] D. Marcuse. Theory of dielectric optical waveguedes. New York, Academic Press, 1974
    [152] 周树同. 光纤理论与测量. 上海: 复旦大学出版社, 1988
    [153] 谬延彪. 光纤光学.北京,清华大学出版社. 2000
    [154] 尚韬, 舒学文, 刘德明等. 非均匀应变条件下的光纤光栅反射谱. 华中理工大学学报, 2000, 28(9): 96~98
    [155] Yanmada M, Sakuda K. Analysis of almost-periodic distributed feedback slab wavegedes via a fundamental Matrix approach. Ppl. Opt., 1987, 26(16): 3474~3478
    [156] 金晓峰, 张仲先. 非均匀光纤光栅响应特性研究. 光学学报, 1999, 19(6): 721~727
    [157] Zhao Jingxi, Zhang Xia, Huang Yongqing, et al. Experimental analysis of birefringence effects on fiber Bragg grating induced by lateral compression. Opt. Commu., 2004, 229:203~207
    [158] 张伟刚, 开桂云, 董孝义等. 光纤光栅多点传感的理论与实验研究. 光学学报, 2004, 24(3): 331~336
    [159] 魏世明, 柴敬, 邓明. 相似模拟实验中光纤光栅传感测试的温度补偿. 西安科技大学学报, 2007, 27(4): 565~568
    [160] Nann A, Yang C C, Pan K, et al. Fiber-optic sensors for concrete strain/stress measurement. ACI materials Journal. 1991, 88(3): 257~264
    [161] Pak Y Eugene. Longitudinal shear transfer in fiber optic sensors. Smart Mterials and Structures, 1992, 1:57~62
    [162] Ansari Farhad, Yuan Libo. Mechanics of bond and interface shear transfer in optical fiber sensors. Journal of Engineering Mechanics, 1998, 124(4): 385~394
    [163] 黄国君, 殷昀虢, 戴锋等. 光纤布拉格光栅应变传感器的灵敏性及疲劳可靠性研究. 激光杂志, 2003, 24(6): 45~47
    [164] 袁象恺, 潘鼎, 杨序纲. 模型氧化铝单纤维复合材料的界面应力传递. 材料研究学报, 1998, 12(6): 624~627
    [165] 李东升, 李宏男. 埋入式封装的光纤光栅传感器应变传递分析. 力学学报, 2005, 37(4): 435~441
    [166] 徐芝纶. 弹性力学. 北京: 高等教育出版社. 2000
    [167] 周广东, 李宏男, 任亮等. 光纤光栅传感器应变传递影响参数研究. 2007, 24(6): 169~173
    [168] 梁德志, 孙丽, 黄昌铁等. 埋入式FBG传感器应变传递的有限元计算理论分析比较. 沈阳建筑大学学报(自然科学版), 2008, 24(1): 72~76
    [169] 尤明庆. 岩石试件的强度及变形破坏过程. 北京: 地质出版社, 2000: 26~36
    [170] Savin G N. Stress concentration around holes. New York: Pergamon Press, 1961
    [171] 林可翼. 坝内的孔口和廊道. 北京: 水利电力出版社, 1986
    [172] Lei G H. Stress and displacement around an elastic artificial rectangular hole. J. Eng. Mech. 2001, 129(7): 880~890
    [173] Lekhnitskii S G. Anisotropic plates. New York; Gordon and Breach, 1968
    [174] Daoust J, Hoa S V. An analytical solution for anisotropic plates containing triangular holes. Int. J. Fracture, 1986, 31: 189~271
    [175] Ukadgaonker V G, Rao D K. Stress distribution around triangular holes in anisotropic plates. Composite Structures, 1999, 45:171~183
    [176] 杨丽红, 何蕴增. 含矩形孔无限域应力集中的系列分析. 应用科技, 2005, 32(7): 53~56
    [177] 杨丽红, 何蕴增. 无限平面矩形开孔的应力场分析. 哈尔滨工业大学学报, 2002, 23(2): 106~110
    [178] MycxeлиШвили. 数学弹性力学的几个基本问题. 北京: 科学出版社, 1965
    [179] Г. Н. 萨文. 孔附近的应力集中. 北京: 科学出版社, 1958
    [180] 龙述尧, 许敬晓. 弹性力学的局部边界积分方程方法. 力学学报, 2000, (5): 566~577
    [181] 钱鸣高, 刘听成. 矿山压力及其控制.北京: 煤炭工业出版社. 1990
    [182] 刘环宇, 陈卫忠, 王争鸣. 兖州矿区立井井筒破坏机制的理论分析. 岩石力学与工程学报, 2007, 26(1): 2620~2626
    [183] 崔广心. 论深厚表土层中确定地下结构物外载的基础理论—深土力学. 煤炭学报, 1999, 24(2): 123~126
    [184] 王伟成. 厚冲积层疏水引起的地面沉降时井筒受力分析. 中国矿业大学学报, 1996, 25(3): 54~58
    [185] 崔广心. 特殊地层条件竖井井壁破裂机理. 建井技术, 1998, 19(2): 29~32
    [186] 许延春, 杨建华. 济宁三号矿主、副井筒破裂预防性主动防治技术. 煤炭工程, 2006, (6): 56~58
    [187] 隋旺华, 蔡光桃, 董青红. 近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验. 岩石力学与工程学报, 26(10): 2084~2091
    [188] 徐辉东, 经来旺,杨树仁. 矿山立井井筒与表土之间的剪切力分析. 岩石力学与工程学报, 2006, 256(2): 385~391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700