用户名: 密码: 验证码:
绒面AZO透明导电薄膜的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO:Al (AZO)透明导电薄膜具有优良的光电性能,在氢等离子体中具有较高的稳定性,源材料丰富且廉价,这使得其做为透明前电极在硅基薄膜太阳能电池中获得了广泛的研究和应用。而具有凹凸不平表面形貌的绒面AZO薄膜,更可以实现有效的陷光效应,增加太阳能电池吸收层对光的吸收,从而提高电池的转换效率。因此,研究具有较好陷光能力、高透过率、低电阻率绒面AZO薄膜的制备及特性具有重要意义。
     目前,绒面AZO薄膜大多采用先溅射沉积后稀HCl溶液腐蚀的方法制备,然而稀HCl溶液较快的腐蚀速度使得腐蚀过程和绒面形貌难以控制。因此本论文采用碱性NaOH溶液对磁控溅射技术制备的平面AZO薄膜进行腐蚀,从而获得具有陷光能力的绒面AZO透明导电薄膜,以期实现对腐蚀过程和绒面形貌的控制。论文系统地研究了平面和绒面AZO薄膜的结构、表面形貌、光电特性和陷光能力,并探索了腐蚀后再沉积法制备绒面AZO薄膜对陷光能力的影响。主要研究内容如下:
     以ZnO:Al2O3(98wt.%:2wt.%)陶瓷靶为溅射靶材,利用直流脉冲磁控溅射技术制备平面AZO薄膜,系统地研究了衬底温度、Ar流量、工作气压、退火温度和薄膜厚度对平面AZO薄膜特性的影响。溅射法制备的AZO薄膜均为六方纤锌矿结构,具有(002)择优取向。所有的AZO薄膜在可见光波段均具有90%以上的平均透过率,溅射沉积条件对AZO薄膜的透射光谱吸收边和导电性能均具有影响。通过研究结果得到制备优良光电特性的AZO薄膜的最佳沉积条件:衬底温度为270℃、工作气压为0.8Pa、Ar流量为50sccm、溅射功率为350W。此时AZO薄膜的可见光平均透过率在90%以上,电阻率为1.3×10-3Ω.cm。
     采用碱性NaOH溶液腐蚀平面AZO薄膜,成功地获得了具有较好绒面形貌和陷光能力的绒面AZO薄膜,薄膜表面呈现分布均匀的尺寸为0.5-1μm的理想“弹坑”状绒面结构,此时绒面AZO薄膜电阻率为3.2×10-3Ω.cm,且具有高透过率和体现较好陷光能力的高绒度值。系统地研究了以NaOH溶液为腐蚀液时,不同沉积条件和腐蚀条件下制备的绒面AZO薄膜的特性。所有绒面AZO薄膜均具有较好的透光性,可见光平均总透过率均达到90%以上。当衬底温度高于270℃以后,随着衬底温度的升高,绒面结构的弹坑尺寸逐渐变小,且绒度值逐渐减小。Ar流量的增加使得腐蚀后的AZO薄膜表面形貌从“蜂窝”状转变为“弹坑”状结构,绒度值逐渐增大。较高的工作气压不利于有效绒面结构的形成。腐蚀时间或腐蚀浓度的增加使得薄膜表面的弹坑尺寸逐渐增大而弹坑密度减小,从而增加绒面AZO薄膜的陷光能力。腐蚀温度的升高并不能促进有效绒面结构的形成。研究了AZO薄膜绒面结构的形成机理,探讨了绒面形貌控制、陷光能力改善和制备条件之间的关系,并且对修正的Thornton模型进行了补充。
     采用腐蚀后再沉积法制备绒面AZO薄膜,即在经过溅射沉积和NaOH溶液腐蚀后,再次进行溅射沉积,研究了腐蚀前后的两次溅射沉积条件对绒面AZO薄膜陷光能力的影响。当两次溅射沉积条件不同时,在保证可见光高透过率的同时,绒面AZO薄膜的陷光能力得到明显改善。
As standard front contacts, ZnO:Al (AZO) films have received great interest in the applications of silicon-based thin film solar cells, owing to their good optoelectronic properties, as well as their low cost, abundant resource and stability under hydrogen plasma environment. Moreover, AZO film with rough surface can realize light trapping effect and increase the absorption of light in the absortion layer, which can achieve a high efficiency in thin film solar cells. Therefore, it is very important to study the preparation and properties of textured AZO films with high transparency in the visible wavelength range, low resistivity and good light trapping ability.
     At present, surface textured AZO films were prepared by wet chemical etching after sputtering deposition, and HCl solution was used in most research. However, it is difficult for HCl solution to control the etching process and surface morphology of AZO films because of the high etching rate of HCl solution. In this thesis, through the wet chemical etching process after sputtering deposition, surface textured AZO films with light trapping ability were obtained in NaOH solution in order to control the etching process and surface morphology. The structural, optoelectronic properties, surface morphology and light trapping ability of smooth and textured AZO films were investigated in detail. And light trapping ability of textured AZO films deposited by re-deposition after etching was studied. The main research contents are as follows:
     The smooth AZO films were prepared by direct current pulse magnetron sputtering from a ceramic ZnO:Al2O3(98wt.%:2wt.%) target. The influence of substrate temperature, Ar flow rate, working pressure, annealing temperature and film thickness on the smooth AZO films was studied. All the sputtering AZO films had a hexagonal wurtzite structure with (002) preferred orientation. And all the AZO films had an average transmittance of above90%throughout the visible wavelength range. The deposition conditions had important effects on the absorption edge of the transmittance spectra and the electrical properies of AZO films. From the research results, the optimum deposition conditions for AZO films with good optoelectronic properties were obtained:substrate temperature (270℃), working pressure (0.8Pa), Ar flow rate (50sccm) and sputtering power (350W). AZO films deposited under this condition had an average transmittance of above90%throughout the visible wavelength range, and the resistivity was1.3×10-3Ω·cm.
     NaOH solution was used to etch the smooth AZO films, and effective surface textured structures were obtained successfully. The surface of AZO film was almost uniformly covered by the craters with diameters ranging from0.5to1μm, which is an effective feature for light trapping. Moreover, the resistivity of the textured AZO film is3.2×10-3Ω·cm, and the high transparency and light trapping ablity were also obtained. The influence of deposition and etching conditions on the properties of textured AZO films etched with NaOH solution was studied. All the AZO films had high transparency throughout the visible wavelength range, and the average transmittance reached above90%. When substrate temperature was higher than270℃, the crater size and haze became smaller with the increasing substrate temperature. With the increasing of Ar flow rate, different surface features ranging from honey-comb-like to crater-like structures were observed and the haze was increased. The higher working pressure was not fit for the formation of textured structure. With the increasing etching time and concentration, the crater size was increased while the crater density was decreased, which improved the light trapping ability of textued AZO films. But textured structure was not obtained by increasing the etching temperature. The formation mechanism of textured structure of AZO films was investigated, and the relation between the textured morphology control, light trapping ability improving and preparation condition was discussed. Furthermore, modified Thornton model was supplemented.
     Textured AZO films were prepared by re-deposition after etching. During the deposition+etching (NaOH solution)+deposition process, the influence of sputtering deposition conditions before and after etching on the light trapping prperties of textured AZO films was studied. When the deposition and the re-deposition condition are different, light trapping ability of textured AZO films with high transparency throughout the visible wavelength range was improved obviously.
引文
[1]Hosono H, Ohta H, Orita M, et al. Frontier of transparent conductive oxide thin films. Vacuum.2002, 66(3-4):419-425.
    [2]Nagatomo T, Maruta Y, Omoto O. Electrical and optical properties of vacuum-evaporated indium-tin oxide films with high electron mobility. Thin Solid Films.1990,192(1):17-25.
    [3]郭卫红,汪济奎.现代功能材料及其应用.北京:化学工业出版社,2002:8-20.
    [4]Badeker K. Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bands. Ann. Phys. (Leipzig),1907,22(4):749-766.
    [5]Hosono H. Recent progress in transparent oxide semiconductors:Materials and device application. Thin Solid Films.2007,515(15):6000-6014.
    [6]Remes Z, Vanecek M, Yates H M, et al. Optical properties of SnO2:F films deposited by atmospheric pressure CVD. Thin Solid Films.2009,517(23):6287-6289.
    [7]Miao D K, Zhao Q N, Wu S, et al. Effect of substrate temperature on the crystal growth orientation of SnO2:F thin films spray-deposited on glass substrates. Journal of Non-Crystalline Solids.2010, 356(44-49):2557-2561.
    [8]Terrier C, Chatelon J P, Roger J A. Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films.1997,295(1-2):95-100.
    [9]Liu P Y, Chen J F, Sun W D. Characterizations of SnO2 and SnO2:Sb thin films prepared by PECVD. Vacuum.2004,76(1):7-11.
    [10]May C, Strumpfel J. ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing. Thin Solid Films.1999,351(1-2):48-52.
    [11]Minami T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films.2008,516(17):5822-5828.
    [12]Miao W N, Li X F, Zhang Q, et al. Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature. Thin Solid Films.2006,500(1-2):70-73.
    [13]Parthiban S, Elangovan E, Ramamurthi K, et al. Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique. Solar Energy Materials and Solar Cells.2010,94(3):406-412.
    [14]Lee W, Shin S, Jung D R, et al. Investigation of electronic and optical properties in Al-Ga codoped ZnO thin films. Current Applied Physics.2012,12(3):628-631.
    [15]Zhang Z Y, Bao C G, Yao W J, et al. Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method. Supperlattices and Microstructures.2011,49(6):644-653.
    [16]Zhu H, Ji H, Liu D, et al. Study of thermal stability of ZnO:B films grown by LPCVD technique. Applied Surface Science.2012,258(16):6018-6023.
    [17]Ilican S, Caglar Y, Caglar M, et al. Electrical conductivity, optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method. Physica E: Low-dimensional Systems and Nanostructures.2006,35(1):131-138.
    [18]Kumaravel R, Ramamurthi K, Krishnakumar V. Effect of indium doping in CdO thin films prepared by spray pyrolysis technique. Journal of Physics and Chemistry of Solids.2010,71(11):1545-1549.
    [19]Zheng B J, Lian J S, Zhao L, et al. Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum.2011,85(9):861-865.
    [20]Klein S, Finger F, Carius R, et al. Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition:The influence of the deposition parameters on the material properties and solar cell performance. Journal of Applied Physics.2005,98(2):024905.
    [21]Liao X B, Sheng S R, Yun F, et al. Microcrystalline silicon films and tandem solar cells prepared by triode PECVD. Solar Energy Materials and Solar Cells.1997,49(1-4):171-177.
    [22]Minami T, Sato H, Nanto H, et al. Heat treatment in hydrogen gas and plasma for transparent conducting oxide films such as ZnO, SnO2 and indium tin oxide. Thin Solid Films.1989,176(2): 277-282.
    [23]朱红兵.双旋转靶共溅法制备和研究掺铝氧化锌薄膜及其在硅薄膜太阳能电池中的应用(博士学位论文).华东师范大学.2010:5-6.
    [24]OzgUr U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics.2005,98(4):041301.
    [25]刘恩科,朱秉升,罗晋生.半导体物理学(第7版).北京:电子工业出版社,2009:8-9.
    [26]薛进奎.AZO薄膜表面织构机理和表面织构均匀性的研究(硕士学位论文).郑州大学.2011:1-2.
    [27]朱京平.光电子技术基础(第一版).北京:科学出版社,2003:186-187.
    [28]Rech B, Wagner H. Potential of amorphous silicon for solar cells. Applied Physics A-Materials Science & Processing.1999,69(2):155-167.
    [29]Vetterl O, Finger F, Carius R, et al. Intrinsic microcrystalline silicon:A new material for photovoltaics. Solar Energy Materials and Solar Cells.2000,62(1-2):97-108.
    [30]Muller J, Kluth O, Wieder S, et al. Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates. Solar Energy Materials and Solar Cells.2001, 66(1-4):275-281.
    [31]Rech B, Kluth O, Repmann T, et al. New materials and deposition techniques for highly efficient silicon thin film solar cells. Solar Energy Materials and Solar Cells.2002,74(1-4):439-447.
    [32]Kluth O, Zahren C, Stiebig H, et al. Surface morphologies of rough transparent conductive oxide film applied in silicon thin-film solar cells. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris,2004,1587-1590.
    [33]Lechner P, Geyer R, Schade H, et al. Optical TCO properties and quantum efficiencies in thin-film silicon solar cells. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, 2004,1591-1594.
    [34]Yoo J, Lee J, Kim S, et al. High transmittance and low resistive ZnO:Al films for thin film solar cells. Thin Solid Films.2005,480-481:213-217.
    [35]Krc J, Brecl K, Smole F, et al. The effects of enhanced light trapping in tandem micromorph silicon solar cells. Solar Energy Materials and Solar Cells.2006,90(18-19):3339-3344.
    [1]Nomoto J, Hirano T, Miyata T, et al. Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions. Thin Solid Films. 2011,520(5):1400-1406.
    [2]Gondoni P, Ghidelli M, Di Fonzo F, et al. Structural and functional properties of Al:ZnO thin films grown by Pulsed Laser Deposition at room temperature. Thin Solid Films.2012,520(14):4707-4711.
    [3]Kim D, Yun I, Kim H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells. Current Applied Physics.2010,10(3): S459-S462.
    [4]Xu J W, Wang H, Yang L, et al. Low temperature growth of highly crystallized ZnO:Al films by ultrasonic spray pyrolysis from acetylacetone salt. Materials Science and Engineering:B.2010,167(3): 182-186.
    [5]Li J Z, Xu J, Xu Q B, et al. Preparation and characterization of Al doped ZnO thin films by sol-gel process. Journal of Alloys and Compounds.2012,542:151-156.
    [6]王晓晶.柔性基ZnO:Al透明导电薄膜材料的制备与性能研究(博士学位论文).华中科技大学.2011:5.
    [7]吴跃波.磁控溅射制备ZnO及其掺A1薄膜与MSM紫外光电探测器的研制(博士学位论文).厦门大学.2008:12-13.
    [8]杨伟锋.铝掺杂氧化锌透明薄膜之制备及其在氮化镓基发光二极管之应用(博士学位论文).厦门大学.2008:30-31.
    [9]Seeber W T, Abou-Helal M O, Barth S, et al. Transparent semiconducting ZnO:Al thin films prepared by spray pyrolysis. Materials Science in Semiconductor Processing.1999,2(1):45-55.
    [10]朱红兵.双旋转靶共溅法制备和研究掺铝氧化锌薄膜及其在硅薄膜太阳能电池中的应用(博士学位论文).华东师范大学.2010:27-28.
    [11]陈新亮,薛俊明,张德坤等.绒面结构ZnO薄膜及其表面处理.人工晶体学报.2008,3(3):631-633.
    [12]陈新亮,薛俊明,孙建等.绒面ZnO薄膜的生长及其在太阳电池前电极的应用.半导体学报.2007,28(7):1072-1077.
    [13]Fay S, Feitknecht L, Schluchter R, et al. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells.2006,90(18-19):2960-2967.
    [14]Python M, Vallat-Sauvain E, Bailat J, et al. Relation between substrate surface morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids.2008,354(19-25): 2258-2262.
    [15]Sobajima Y, Kato S, Matsuura T, et al. Study of the light-trapping effects of textured ZnO:Al/glass structure TCO for improving photocurrent of a-Si:H solar cells. Journal of Materials Science: Materials in Electronics.2007.18(1):159-162.
    [16]Zhu H, Bunte E, Hupkes J, et al. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells. Thin Solid Films.2009,517(10):3161-3166.
    [17]Hupkes J, Rech B, Kluth O, et al. Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. Solar Energy Materials and Solar Cells.2006,90(18-19): 3054-3060.
    [18]Berginski M, Hupkes J, Schulte M, et al. The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. Journal of Applied Physics. 2007,101(7):074903.
    [19]Tohsophon T, Hupkes J, Siekmann H, et al. High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells. Thin Solid Films.2008,516(14): 4628-4632.
    [20]Kim Y H, Lee K S, Lee T S, et al. Electrical, structural and etching characteristics of ZnO:Al films prepared by rf magnetron. Current Applied Physics.2010,10(2):S278-S281.
    [21]Tark S J, Kang M G, Park S, et al. Development of surface-textured hydrogenated ZnO:Al thin-films for μc-Si solar cells. Current Applied Physics.2009,9(6):1318-1322.
    [22]Lu W L, Huang K C, Yeh C H, et al. Investigation of textured Al-doped ZnO thin films using chemical wet-etching methods. Materials Chemistry and Physics.2011,127(1-2):358-363.
    [23]Zhu H, Hupkes J, Bunte E, et al. Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells. Solar Energy Materials and Solar Cells.2011,95(3):964-968.
    [24]Gao X Y, Lin Q G, Feng H L, et al. Comparable study on the effect of diluted NH4C1 solution on the postdeposition surface texture of as-deposited aluminum-doped zinc oxide films by direct current pulse and direct current reactive magnetron sputtering. Applied Surface Science.2009,255(16): 7268-7272.
    [25]Wang X J, Wang H, Zhou W L, et al. Preparation and character of textured ZnO:Al thin films deposited on flexible substrates by RF magnetron sputtering. Materials Letters.2011,65(13): 2039-2042.
    [26]Hupkes J, Rech B, Calnan S, et al. Material study on reactively sputtered zinc oxide for thin film silicon solar cells. Thin Solid Films.2006,502(1-2):286-291.
    [27]吴芳.Ga掺杂ZnO透明导电薄膜的制备与特性研究(博士学位论文).重庆大学.2011:21-22.
    [28]陈世朴,王永瑞.金属电子显微分析.北京:机械工业出版社,1992:162-163.
    [29]王璟和.射频溅射法制备透明导电陶瓷薄膜(硕士学位论文).天津大学.2007:26-27.
    [30]Tauc J, Grigorovici R, Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi(b).1966,15(2):627-637.
    [31]刘恩科,朱秉升,罗晋生.半导体物理学(第7版).北京:电子工业出版社,2009:366-368.
    [1]Singh S, Srinivasa R S, Major S S, et al. Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive rf magnetron sputtering. Thin Solid Films.2007, 515(24):8718-8722.
    [2]Chen M, Pei Z L, Sun C, et al. Surface characterization of transparent conductive oxide Al-doped ZnO films. Journal of Crystal Growth.2000,220(3):254-262.
    [3]Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO. Progress in Materials Science.2005,50 (3):293-340.
    [4]Kappertz O, Drese R, Wuttig M. Correlation between structure, stress and deposition parameters in direct current sputtered zinc oxide films. Journal of Vacuum Science and Technology A.2002,20 (6): 2084-2095.
    [5]Tominaga K, Kuroda K, Tada O. Radiation effect due to energetic oxygen atoms on conductive Al-doped ZnO films. Japanese Journal of Applied Physics.1988,27 (7):1176-1180.
    [6]Li W, Sun Y, Wang Y X, et al. Effeets of substrate temperature on the properties of facing-target sputtered Al-doped ZnO films. Solar Energy Materials and Solar Cells.2007,91(8):659-663.
    [7]Mosbah A, Aida M S. Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films. Journal of Alloys and Compounds.2012,515:149-153.
    [8]Kang S J, Joung Y H. Influence of substrate temperature on the optical and piezoeleetric properties of ZnO thin films deposited by rf magnetron sputtering. Applied Surface Science.2007,253(17): 7330-7335.
    [9]Burstein E. Anomalous optical absorption limit in InSb. Physical Review.1954,93(3):632-633.
    [10]Moss T S. The interpretation of the properties of indium antimonide. Proceedings of the Physical Society. Section B.1954,67(10):775-782.
    [11]Suchea M, Christoulakis S, Katsarakis N, et al. Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films.2007, 515 (16):6562-6566.
    [12]Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review.1953,92 (5):1324-1324.
    [13]Cebulla R, Wendt R, Ellmer K. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma:Relationships between plasma parameters and structural and electrical film properties. Journal of Applied Physics.1998,83 (2):1087.
    [14]Fang G J, Li D J, Yao B L. Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films.2002,418 (2):156-162.
    [15]Fernandez S, Naranjo F B. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications. Solar Energy Materials and Solar Cells.2010,94(2):157-163.
    [16]Orton J W, Powell M J. The Hall effect in polycrystalline and powdered semiconductors. Reports on Progress in Physics.1980,43(11):1263-1308.
    [17]Minami T, Ida S, Miyata T. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation. Thin Solid Films.2002,416(1-2):92-96.
    [18]Ellmer K. Magnetron sputtering of transparent conductive zinc oxide:relation between the sputtering parameters and the electronic properties. Journal of Physics D.2000,33(4):R17-R32.
    [19]Kluth O, Schope G, Hupkes J, et al. Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films.2003,442(1-2):80-85.
    [20]Kim K H, Park K C, Ma D Y. Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. Journal of Applied Physics.1997, 81(12):7764.
    [21]Van Der Drift A. Evolutionary selection, a principle governing growth orientation in vapor-deposited layers. Philips Research Reports.1967,22:267-288.
    [22]Hong R J, Helming K, Jiang X, et al. Texture analysis of Al-doped ZnO thin films prepared by in-line reactive MF magnetron sputtering. Applied Surface Science.2004,226(4):378-386.
    [23]Jiang X, Jia C L, Szyszka B. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Applied Physics Letter.2002,80(17):3090.
    [24]Islam M M, Ishizuka S, Yamada A, et al. Thickness study of Al:ZnO film for application as a window layer in Cu(In1-xGax)Se2 thin film solar cell. Applied Surface Science.2011,257(9):4026-4030.
    [25]Guillen C, Herrero J. Optical, electrical and structural characteristics of Al:ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum. Vacuum. 2010,84(7):924-929.
    [26]Hayamizu S, Tabata H, Tanaka H, et al. Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. Journal of Applied Physics.1996,80 (2):787.
    [27]Dong B Z, Fang G J, Wang J F, et al. Effect of thickness on structural, electrical, and optical properties of ZnO:Al films deposited by pulsed laser deposition. Journal of Applied Physics.2007, 101 (3):033713.
    [28]Zhu B L, Zhu S J, Wang J, et al. Thickness effect on structure and properties of ZAO thin films by RF magnetron sputtering at different substrate temperatures. Physica E:Low-dimensional Systems and Nanostructures.2011,43 (9):1738-1745.
    [29]孟庆巨,刘海波,孟庆辉.半导体器件物理.北京:科学出版社,2005:44-45.
    [30]Major C, Nemeth A, Radnoczi G, et al. Optical and electrical characterization of aluminium doped ZnO layers. Applied Surface Science.2009,255(21):8907-8912.
    [31]Tahar R B H, Ban T, OhyaY, et al. Optical, structural, and eleetrical properties of indium oxide thin films prepared by sol-gel method. Journal of Applied Physics.1997,82(2):865.
    [32]Hanamura E. Very large optical nonlinearity of semiconductor microcrystallites. Physical Review B. 1988,37(3):1273-1279.
    [33]Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films.2000,379 (1-2):7-14.
    [1]Cho J S, Kim Y J, Lee J C, et al. Structural and optical properties of textured ZnO:Al films on glass substrates prepared by in-line rf magnetron sputtering. Solar Energy Materials and Solar Cells.2011, 95(1):190-194.
    [2]Minami T, Hirano T, Miyata T, et al. Influence of rapid thermal annealing on surface texture-etched Al-doped ZnO films prepared by various magnetron sputtering methods. Thin Solid Films.2012, 520(10):3803-3807.
    [3]Owen J I, Zhang W D, Kohl D, et al. Study on the in-line sputtering growth and structural properties of polycrystalline ZnO:Al on ZnO and glass. Journal of Crystal Growth.2012,344(1):12-18.
    [4]Calnan S, Hupkes J, Rech B, et al. High deposition rate aluminium-doped zinc oxide films with highly efficient light trapping for silicon thin film solar cells. Thin Solid Films.2008,516 (6):1242-1248.
    [5]Kim Y H, Lee K S, Lee T S, et al. Electrical, structural and etching characteristics of ZnO:Al films prepared by rf magnetron. Current Applied Physics.2010,10(2):S278-S281.
    [6]Kang D W, Kuk S H, Ji K S, et al. The effect of substrate temperature on optoelectronic characteristics of surface-textured ZnO:Al films for micromorph silicon tandem solar cells. Physica Status Solidi C. 2010,7(3-4):925-928.
    [7]Kluth O, Rech B, Houben L, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films.1999,351(1-2):247-253.
    [8]Berginski M, Hupkes J, Schlute M, et al. The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. Journal of Applied Physics.2007, 101(7):074903.
    [9]Yen W T, Lin Y C, Ke J H. Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications. Applied Surface Science.2010,257(3):960-968.
    [10]Rech B, Repmann T, van den Donker M N, et al. Challenges in microcrystalline silicon based solar cell technology. Thin Solid Films.2006,511-512:548-555.
    [11]Zhu H, Hupkes J, Bunte E, et al. Influence of working pressure on ZnO:Al films from tube targets for silicon thin film solar cells. Thin Solid Films.2010,518(17):4997-5002.
    [12]Hiipkes J, Owen J I, Pust S E, et al. Chemical etching of zinc oxide for thin-film silicon solar cells. ChemPhysChem.2012,13(1):66-73.
    [13]Ding J N, Ye F, Yuan N Y, et al. The relationship of etching behavior and crystal orientation of aluminum doped zinc oxide films. Applied Surface Science.2010,257(5):1420-1424.
    [14]Tark S J, Kang M G, Park S, et al. Development of surface-textured hydrogenated ZnO:Al thin-films for μc-Si solar cells. Current Applied Physics.2009,9(6):1318-1322.
    [15]Wang X J, Wang H, Zhou W L, et al. Preparation and character of textured ZnO:Al thin films deposited on flexible substrates by RF magnetron sputtering. Materials Letters.2011,65(13): 2039-2042.
    [16]胡忠鲠.现代化学基础.北京:高等教育出版社,2000:376-378.
    [17]孙宜华.AZO透明导电氧化物靶材及其薄膜制备的研究(博士学位论文).华中科技大学.2009:8.
    [18]周小岩.纳米氧化锌的制备及其气敏、光催化性能研究(博士学位论文).中国石油大学.2011:2-3.
    [19]林均铭.PLD法制备Nb掺杂ZnO基透明导电薄膜及其性能研究(硕士学位论文).华中科技大学.2008:7.
    [20]Mariano A N, Hanneman R E. Crystallographic Polarity of ZnO Crystals. Journal of Applied Physics. 1963,34(2):384-388.
    [21]Loffl A, Kerber H, Schock H W. Texture etched aluminium doped zinc oxide-structural and electrical properties. Solid State Phenomena.1999,67-68:277-282.
    [22]Nomoto J, Hirano T, Miyata T, et al. Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions. Thin Solid Films.2011,520(5):1400-1406.
    [23]Van Der Drift A. Evolutionary selection, a principle governing growth orientation in vapor-deposited layers. Philips Research Reports.1967,22:267-288.
    [24]李钢贤.AZO透明导电薄膜载流子输运机制及特性研究(博士学位论文).华中科技大学.2011:59-60.
    [25]Owen J I. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells. Germany. 2011:127-128.
    [26]Owen J I, Hupkes J, Bunte E. Observation of the evolution of etch features on polycrystalline ZnO:Al thin-films. Materials Research Society Symposium Proceedings.2009,1153:A07-08.
    [27]Owen J I. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells. Germany. 2011:102-109.
    [28]Movchan B A, Demchishin A V. Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxdes. Physics of Metals and Metallography.1969,28(4):83-90.
    [29]Thornton J A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology.1974,11(4): 666-670.
    [30]Kluth O, Schope G, Hupkes J, et al. Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films.2003,442(1-2):80-85.
    [1]Sittinger V, Ruske F, Werner W, et al. ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells. Thin Solid Films.2006,496(1):16-25.
    [2]Domine D, Buehlmann P, Bailat J, et al. Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector. Physica Status Solidi (RRL).2008,2(4):163-165.
    [3]Hongsingthong A, Krajangsang T, Yunaz I A, et al. ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells. Applied Physics Express.2010, 3(5):051102-051104.
    [4]Isabella O, Krc J, Zeman M. Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Applied Physics Letters.2010,97(10):101106.
    [5]Krc J, Lipovsek B, Bokalic M, et al. Potential of thin-film silicon solar cells by using high haze TCO superstates. Thin Solid Films.2010,518(11):3054-3058.
    [6]Tark S J, Kang M G, Park S, et al. Characterization of hydrogenated Al-doped ZnO films prepared by multi-step texturing for photovoltaic applications. Current Applied Physics.2011,11(3):362-367.
    [7]Owen J I, Zhang W, Kohl D, et al. Study on the in-line sputtering growth and structural properties of polycrystalline ZnO:Al on ZnO and glass. Journal of Crystal Growth.2012,344(1):12-18.
    [8]Isabella O, Moll F, Krc J, et al. Modulated surface textures using zinc-oxide films for solar cells applications. Physica Status Solidi A.2010,207(3):642-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700