用户名: 密码: 验证码:
硅基太阳能电池陷光材料及陷光结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低光伏系统的成本首先要降低组件成本,而要降低组件成本首先要降低材料成本,特别是晶硅材料成本。即一是提高光电转换效率,二是薄膜化(或薄层化、薄片化)。太阳能电池厚度减小时,由于透射光引起的损失随着厚度的减小而增大,对于间接禁带材料硅来说,这种损失比直接禁带材料的大。
     电池中光损失主要来源于以下三方面:①表面反射的损失;②进光面电极材料的覆盖面积对入射光总能量的损失;③由于电池厚度过薄而造成的透射损失。
     针对光损失引入的陷光结构包括:①电池进光面减反,一般常采用蒸镀减反膜或表面织构;②光线射入电池体内后,增加光在吸收层的路径。例如,使吸收层的折射率大于其上下层织构材料以及加强背反射,使没有吸收的光再次返回电池吸收层,进行二次吸收;③尽量减少进光面栅线电极覆盖的面积,同时以能将光生电流最大限度的输出。计算表明:由于长波光子的低吸收率,材料薄至50μm时,电池的光电流密度随着减小。从光程计算出发来设计高收集效率的陷光结构,可使这种减小得以补偿。
     目前国际上晶体硅太阳能电池厚度一般在50μm以上,陷光措施主要采取蒸镀减反膜或在表面制备绒面,单从减反效果上,绒面优于减反膜,因此,晶体硅电池中采用绒面技术是提高电池效率的措施之一。①单晶硅绒面电池的表面常采用碱腐蚀方法在表面构造金字塔结构;②多晶硅电池目前国际上大规模生产时,电池表面减反一般只采用Si_3N_4减反膜的方法。多晶硅绒面电池实验室效率虽已达到16.8%以上,但多晶硅绒面技术还没有广泛地应用于大规模生产,关键在于如何控制多晶硅绒面微结构的均匀性、稳定性和界面接触。
     硅基薄膜太阳能电池在陷光上仅采用表面减反是不够的,常采用的陷光结构是:织构透明电极及背表面增反膜等。因此对透明电极材料的研究是很必要的。目前绒面SnO_2透明导电玻璃已产业化,但以此为衬底通过PECVD制备μc:Si:H薄膜时,在氢等离子体中SnO_2膜不稳定,易被还原变黑。而ZnO膜在氢等离子体中具有较好的稳定性,且渗杂ZnO薄膜的性能已可以与ITO和SnO_2薄膜相比。因此,在μc:Si:H薄膜太阳能电池中,采用ZnO:Al膜作为透明电极材料已成为趋势。
To decrease the cost of photovoltaic system, the cost of the modules must be firstly decreased. However, the lower cost of package asks the lower the cost of materials. Firstly, how to increase the efficency; secondly, try to thin the thickness of silicon wafer. When the thickness of solar cells are decreased the light loss from transmitance light increase. To the indirect band gap silicon, these light loss are larger than direct band gap materials.
    The light trapping structure should include below: ①the fabrication of antireflection films on the surface of incident light; ②light trapping method should be adopted to enhance light absorption after the light insident, for example, back reflection layer or layers that have lower refraction index be prepared to reflect light back to the absorption layer; ③grids on the front surface should be as few as possible to increase aperture area so as to increase light induced current. Theoretical calculation implied: when material thickness was reduced to 50μm, if high effective light trapping structure which was designed from the optical path calculation was adopted, the light loss caused by decreasing the thickness of the material can be compensated.
    Presently, the thickness of the solar cells on the world is generally more than 50μm. And the light trapping structure mostly is surface texture and evaporated antireflection film: ①for solar cells based on single crystalline silicon wafers, diamond textures were mostly adopted using alkali eroding method; ②for solar cells based on multicrystalline silicon wafers, merely S13N4 antireflection films were always prepared for large area commercially manufacturing. Although 16.8% efficiency had been achieved for rough surface multicrystalline silicon wafer based solar cells, rough surface method were not used for large scale manufacturing. The key to this method was to control the stability and surface contact. ③for silicon thin film solar cells, light trapping method was always textured transparent conductive contact and surface antireflection films.
    At present, textured SnO_2 transparent conductive glass had been industrialized. But when used as substrate to prepare μc.Si.H thin films in PECVD, it could be deoxidized
引文
[1] Harold J. Hovel, Semiconductors and Semimetals, Academic Press, New York, San Francisco, London A Subsidiary of Harcourt Brace Jovanovich, Publishers, 48-69;
    [2] F. Pelanchon and P. Mialhe, Toward a theoretical limit of solar cell efficiency with light trapping and sub-structure, Solar Energy, Vol. 54, No. 6, 381-385, 1995;
    [3] Martin A. Green, Solar Cells operating principles, technology and system applications, published by the university of new south wales, 163;
    [4] 赵富鑫,魏彦章,主编,国防工业出版社,1985;
    [5] J. Springera, B. Rech, W. Reetz, J. Müller, M. Vanecek, Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates, Solar Energy Materials & Solar Cells 85(2005)1-11;
    [6] [日]滨川圭弘,西川纬一等编.郭成言译.能源环境学[M].北京:科学出版社,2003.
    [7] [日]神原建树编著.邹俊忠等译.电能基础[M].北京:科学出版社,2002.
    [8] Paul Maycock. PV market update. Renewable Energy World Vol. 7 No. 4. 2004.
    [9] P.J.Verlinden et al. Silver solar cells: a new thin crystalline silicon photovoltaic technology[A].Technical Digest of the International PVSEC-14[C]. Bangkok, Thailand. 2004. 17-20.
    [10] Arnulf Jager Waldau. PVNET European Roadmap for PV R & D [R]. Italy: European Communities, 2004.
    [11] M. A. Green. Crystallineand and thin-film silicon solar cells: state of the art and future potential[J]. Solar Energy. 2000, 65(2): 9-16.
    [12] T..M. Bruton et al. Aproduction route to high efficiency solar cells made with ultra thin silicon wafer. Proc. 17th European PV SEC, 2001, 1282-1286.
    [13] C. J. J. Tool et al. Wafer thickness and performance of multicrystalline silicon solar cells[A].Technical Digest of the International PVSEC-14[C]. Bangkok, Thailand. 2004. 397-399.[14] Bolko von Roedern. Status of amorphous and crystalline thin film silicon solar cell activities. NCPV AND Solar Program Review Meeting 2003.
    [15] R. W. Collins, A. S. Ferlauto,G. M. Ferreira, et al. Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry [J]. Sol. Energy Mater. Sol. Cells, 2003, 78(1-4):143-180.
    [16] S. Zhang, X. Liao ,L. Raniero et al. Polymorphous silicon thin films and their use in solar cells[A]. Technical Digest of the International PVSEC-14[C]. Bangkok, Thailand. 2004. 43-44.
    [17] 张凤鸣.多晶硅薄膜太阳电池[J].太阳能学报,2003,24(4):555-564.
    [18] 赵玉文,林安中,晶体硅太阳电池及材料,太阳能学报特刊,(1999);
    [19] S. Narayanan, Large area multicrystalline silicon solar cells in high volume production environment—history, status, new processes, technology transfer issues, Solar Energy Materials & Solar Cells 74 (2002) 107-115;
    [20] Adolf Goetzberger, Christopher Hebling, Photovoltaic materials, past, present, future, Solar Energy Materials & Solar Cells 62 (2000) 1}19。
    [21] Makoto Konagai. Thin film solar cells program in Japan[A]. Technical Digest of the International PVSEC-14[C]. Bangkok, Thailand. 2004. 657-660.
    [1] 许彦旗,汪义川,季静佳,施正荣,“关于单晶硅各向异性腐蚀机理的讨论”,2003年我国太阳能光伏会议论文集,34-38;
    [2] Vazsonyi E., De Clercq K, Einhaus R., et al., Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells, Sol. Energy Mater. Sol. Cells, 1999, 57, 179
    [3] Singh P. K, Kumar R., Lal M., et al., Effectiveness of Anisotropic Etching of Silicon in Aqueous Alkaline Solution, Sol., Energy Mater. Sol. Cells, 2001, 70, 103-113
    [4] Nishimoto Y., Namba K., Inverstigation of Texturization for Crystalline Silicon Solar Cells with Sodium Carbonate Solutions, Sol. Energy Mater. Sol., Cells, 2000, 61, 393
    [5] 崔容强,秦蕙兰,绒面硅太阳电池的研究,太阳能学报,1980,1(2):189-196
    [6] 席珍强,杨德仁等,单晶硅太阳能电池的表面织构化,太阳能学报,2002,23(3):285-289[7] 张忠文,李景天,李杰慧,刘祖明,高天荣,姚朝晖,“绒面腐蚀液中使用化学添加剂改进大批量加工的稳定性”,2003年我国太阳能光伏会议论文集,66-69;
    [8] 黄汉尧,李乃平,半导体器件工艺原理,上海科学技术出版社,1985;
    [9] 黄庆安编,“硅微机械加工技术”,北京,科学出版社,1995,12,51-100;
    [10] J. B. Price, Anisotmpic etching of silicon with KOH-H2O-IPA, in Semiconductor Silicon, 1973, 339(1973)
    [11] D. L. Kendall, On etching very narrow grooves in silicon, Appl. Phys. Lett., Vol. 26, No. 4, 195(1975)
    [12] E. D. Palik, et al., Study of the etch-stop mechanism in silicon, J. Electrochem. Soc., Vol. 129, No. 9, 2051(1982)
    [13] J. W. Faust, et al., Study of the orientation dependent etching and initial anodization of Si in aqueous KOH, J. Electrochem Soc., Vol. No. 6, 1413 (1983)
    [1] 刘志刚,孙铁囤,于化丛,周之斌,崔容强,“酸腐蚀在多晶硅太阳电池上的应用”,第八届全国光伏会议论文集,767-771;
    [2] T. Ishihara, K. Namba and Y. Nishimoto,, Investigation of Acidic Texturization for Multicrystalline Silicon Solar Cells, Journal of the Electro-chemical Society, 146(2), 1999, pp:457-461;
    [3] R.A. Arndt, J.F. Allison, J. G. Hayons et al. Optical Properties of the COMSAT Non-reflective Cell, Jr. Proe.llth PVSC, 1995, pp: 40-43;
    [4] R. Einhaus, E. Vazonyi, J. Szlufcik, et al. Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions[C], Proceeding on IEEE 26th PVSC 1997;
    [5] C. Gerhards, C. Marckmann, R. Tolle, M. Spiegel, P. Fath, G.. Willeke, E. Bucher. Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization. PVSC, 1997, 26th IEEE, Anaheim CA, 43-46;
    [6] Willeke, H. Nussbaumer, H. Bender, et al. A Simple and Efficient Light Trapping Technique for Polycrystalline Silicon Solar Cells ,Solar Energy Materials and Solar Cells Vol.26,1992,pp.345-356;
    [7] D. S. Ruby, S. H. Zaidi, S. Narayanan, B. Bathey, S. Yamanaka, R. Balanga..??RIE-texturing of industrial multicrystalline silicon solar cells. PVSC, 2002, 29th IEEE, 2002: 146-149;
    [8] W. A. Nositschka, O. Voigt, P. Manshanden, H. Kurz, Textursation of multicrystalline silicon solar cells by RIE and plasma etching. Solar energy materials & solar cells, 2003, 80,227-237;
    [9] W. J. Lee, J. H. Lee, U. Gangopadhyay, I. O. Parm, K. Chakrabarty, Kyunghae Kim; J. Yi. High-density hollow cathode plasma etching for large area multicrystalline silicon solar cells. PVSC, 2002, 29th IEEE, 2002: 296-299;
    [10] K. Fukui, Y. Inomata and K. Shirasawa, Surface texturing using reactive ion etching for multicrystalline silicon solar cells[C], Proceedings on IEEE 26th PVSC,1997;
    [11] Jianhua Zhao, Aihua Wang, Patric Campell, and Martin A. Green, "A 19.8% efficient honeycomb multicrystalline silicon solar cells with improved light trapping," IEEE Transactions on Electron Devices, Vol. 46, pp.1978-1983, 1999;
    [12] S. Bastide, S. Strehlke, M. Cuniot, et al, Porous silicon emitter for solar cells [J]. Proc.13th EC Photovoltaic Solar Energy Conf.,1995, 1280-1283;
    [13] E. Vazsonyi, M. Fried, T. Lohner, et al. High efficiency silicon PV cells with surface treatment by anodie etching [J] Proc.13th EC Photovoltaie Solar Energy Conf.,1995, 37-40;
    [14] 黄庆安,硅微机械加工技术,北京:科学出版社,1996;
    [15] I. Sagnes, A. Halimaoui, G. bincent, et al, AppLPhys. Lett. 62(1993)1155;
    [16] J. Szlufcik, F. Duerinckx, J. Horzel, E. Van Kerschaver, H. Dekkers, S. De Wolf, P. Choulat, C. Allebe, J. Nijs. High-efficiency low-cost integral screen-printing multicrystalline silicon solar cells. Solar energy materials & solar cells, 2002, 74,155-163;
    [17] 韩爱珍,半导体工艺化学,南京:东南大学出版社,1991;
    [18] L. Schirone, G. Sotgiu, F. P. Califano, Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells, Thin Solid Films, 297(1997) 296-298;
    [19] S. Strehlke, D. Sarti, et al., Porous silicon emitter and high efficiency multicrystalline silicon solar cells, Barcelone, Spain, 30 June-4 July 1997, 2480-2483;[20] D. Dimova-Malinovska, M. Sendova-Vassileva, et al., Preparation of thin porous silicon layers by stain etching, Thin Solid Films, 297(1997), 9-12;
    [21] P. Vitanov, M. Kamenova, et al., High-efficiency solar cell using a thin porous silicon layer, Thin Solid Films, 297(1997), 299-303;
    [22] S. Strehlke, D. Sarti, et al., Porous silicon emitter concept applied to multicrystalline silicon solar cells 297(1997), 291-295;
    [23] R. R. Bilyalov, B. Groh, et al., Screen printed multicrystalline silicon solar cells with porous silicon antireflection coating, 26th PVSC, Sept.30-Oct.3, Anaheim, CA, 147-150;
    [24] Roland einhaus, E. Vazsonyi, et al., Recent progress with acid texturing solutions on different multicrystalline silicon materials including ribbons, 2nd World Conferenceand Exhibition On Photovoltaic Solar Energy Conversion, 6-10 July 1998, Vienna, Austria, 1630-1633;
    [25] R. R. Bilyalov, H. Lautenschlager, et al., Porous silicon as an antireflection coating for multicrystalline silicon solar cells, 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 30 June-4 July 1997, 788-791;
    [26] R. R. Bilyalov, H. Lautenschlager, et al., Multicrystalline silicon solar cells with porous silicon selective emitter, 2ndWorld Conference and Exhibition On Photovoltaic Solar Energy Conversion, 6-10 July 1998, Vienna, Austria, 1642-1645;
    [27] L.Schirone,G. Sotgiu, Porous silicon in high efficiency large solar cells, 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 30 June-4 July 1997, 1479-1482;
    [28] Bilyalov R R, Stalmans L, Schirone L, et al. Use of porous silicon antireflection coating in multicrystaline silicon solar cell processing[J]. IEEE Transactions On Electron Devices, 1999, 46(10): 2035;
    [29] J. Szlufic, F. Duerinck, J. Horzel, et al., High-efficiency low-cost integral screen printing multicrystalline silicon solar cells.
    [30] 孟凡英,赵百川,化学方法织构多晶硅太阳电池的研究,中国太阳能学会2001学术会议论文集,pp:119-120;[31] 林安中等,多孔硅在多晶硅太阳电池上的应用,Vol.19,No.1,1998;
    [32] 苏里曼.K.特拉奥雷,刘祖明等,多晶硅多孔硅太阳电池研究,中国太阳能学会2001学术会议论文集,PP:129-13;
    [33] J. Qian, S. Steegen, E. Vander Poorten, D. Reynaerts, H. Van Brnssel. EDM texturing of multicrystalline silicon wafer and EFG ribbon for solar cells application. International Journal of Machine Tools & Manufacture, 2002, 42:1657-1664;
    [34] Malcolm Abbott, Ly Mai, Jeff Cotter, Laser texturing of multicrystalline silicon solar cells, Technical Digest of the International PVSEC-14, Bangkok, Thailand, 2004: 1015-1014;
    [35] R.R. Bilyalov, H. Lautenschlager, et al, Proceeding of the 14th EC Photovoltaic Solar Energy Conf, 1997, pp: 788-791;
    [36] 刘祖明等,多孔硅多晶硅太阳电池研究,云南师范大学学报,2001,21:13-16;
    [37] R.R. Bilyalov, R. Liidemonn, et al, Multicrystalline silicon solar cells with porous silicon emitter, Solar Energy Materials and Solar Cells, Vol.60, 2000, pp.391-420;
    [38] Y.S. Tsu, Y. Xiao, et al, Potential applications of porous silicon in photovoltaic [J], 23~(rd) IEEE Photovoltaic Specialists Conf., 1993, pp: 287-293;
    [39] D.R. Turner, On the mechanism of chemically etching germanium and silicon, J. Electron. Soc., Vol. 107, No.10, 180(1960);
    [40] W. Kern, Chemical etching of silicon, germanium, gallium arsenide, and gallium phosphide, RCAReview, Vol. 39, 278 (1998);
    [41] H. Robbin, et al., Chemical etching of silicon-I, The system HF, HNO3 and CH2COOH, J. Electrochem. Soc., Vol. 106, No.5, 505(1959);
    [42] H. Robbin, et al., Chemical etching of silicon-II, The system HF, HNO3 and CH2COOH, J. Electrochem. Soc., Vol. 107, No.1, 108(1960);
    [43] B. Schwartz et al., Chemical etching of silicon-Ⅲ, Atemperature study in the acid system, J. Electrochem. Soc., Vol. 108, No.3, 365(1961);
    [44] B. Schwartz et al., Chemical etching of silicon-IV, Etching technology J. Electrochem. Soc., Vol. 123, No.12, 1903(1976);
    [45] R. Herino,et al., Porosity and pore size distribution of porous silicon layers, J.??Electrochem. Soc., Vol.134, NO.2, 476(1980);
    [46] L. Niemeyer, L. Pietronero, and H.J. Wiesmann, Phys. Rev. Lett, 52,1033(1984);
    [47] M.I.J. Beale, D.J. Vern, N.G. Chew, and A.G. Cullis, J. Cryst, Growth 73, 622 (1985);
    [48] C. Pickering, M.I. Beale, D.J. R Robbins, P.J. Pearson, and R. Greef, Jour. Phys. C17, 6335(1984);
    [49] M.I.J. Beale, I.D. Benjamin, M.J. Vern, N.G. Chew, and A.G. Cullis, Appl. Lett .46, 86(1985);
    [50] R.L. Smith, et al., Atheoretical model of the formation morphologies of porous silicon, J. Electron. Material, Vol.17, No.6, 53(1988);
    [51] T.A. Witten and L.M. Sander, Phys. Rev. Lett.47, 1400(1981);
    [52] T.A. Witten and L.M. Sander, Phys. Rev. Lett.B27, 5686(1983);
    [53] R. L. Smith and S.D. Collin, J. Appl. Phys. 71(8), R1 (1992);
    [54] L.T. Canham, Appl. Phys. Lett., Vol.57, No.10, 1046(1990);
    [55] V. Leham, et al., Appl. Phys. Lett., Vol/58, No.8, 856(1991);
    [56] H. Foll, Appl. Phys., Vol.A53, No.11, 8(1991) Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer;
    [57] J. P. Zheng, P. T. Charbel, Microelectronic Engineering 66 (2003) 224-232.
    [1] A. Halimaoui, in: L.T. Canham (Ed.), Properties of Porous Silicon, IEE INSPEC, The Institution of Electrical, Engineers, London, 1997, p. 12.
    [2] O. Bisia, Stefano Ossicinib, L. Pavesic, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surface Science Reports 38 (2000) 1-126
    [3] Le T.T. Tuyen, Ngo T.T. Tam, Nguyen H. Quang, Nguyen X. Nghia, Dao D. Khang, Phan H. Khoi, Study on hydrogen reactivity with surface chemical species of nanocrystalline porous silicon, Materials Science and Engineering C 15 (2001) .133-135
    [4] Vitali Parkhutik, Eduardo Andrade Ibarra, The role of hydrogen in the formation of porous structures in silicon, Materials Science and Engineering B58 (1999) 95-99
    [5] F. Moller, M. Ben Chorin, F. Koch, post-treatment effects on electrical conduction in??porous silicon, Thin Solid Films 255(1995) 16-19
    [6] L. Debargea, J.P. Stoquert, A Slaoui, L. Stalmans, J. Poortmans, Rapid thermal oxidation of porous silicon for surface passivation, Materials Science in Semiconductor Processing 1 (1998) 281-285
    [7] E. A Petrova, K.N. Bogoslovskaya, L. A. Balagurov, G. I. Kochoradze, Room temperature oxidation of porous silicon in air, Materials Science and Engineering B69-70 (2000) 152-156
    [8] 朱林,“多孔硅在改善多晶硅太阳电池性能上的研究和应用”,硕士学位论文,北京交通大学,2004,3。
    [9] A. Borghesi, A. Sassella, B. Pivac, L. Pavesi, Solid State Commun. 87 (1993) 1.
    [10] A. Borghesi, G. Guizzetti, A. Sassella, O. Bisi, L. Pavesi, Solid State Commun. 89 (1994) 615.
    [11] 季振国,汪雷等,“硅表面氧化膜的X光电子谱及部分参数固定法曲线拟合”,半导体学报,第15卷,第1期,1994,1,23-28。
    [12] N. E. Korsunkaya, T. V. Torchinskaya, L. Yu. Khomenkova, B. R. Dzhumaev, S. M. Prokes, Microelectronic Engineering 51-52 (2000) 485-493
    [13] F. Leisenberger, R. Duschek, R. Czaputa, F. P. Netzer, G. Beamson, J. A. D. Matthew, Applied Surface Science 108 (1997) 273-281
    [14] J.R.Patel,“硅中的氧”,蒋平译自《硅器件技术新进展》,科学技术文献出版社,1982,4,22-31。
    [15] 夏锦禄,《硅材料质量与硅器件工艺》,上海科学技术文献出版社,1979,1-11
    [16] T. KAMEI, T. WADA, A. MATSUUDA, "Effects of oxygen impurity on microcrystalline Silicon films", 2000 IEEE, 784-788.
    [17] 栾洪发,张果虎,李兵等,“直拉硅单晶中热施主的快速热退除”,半导体学报,第16卷第10期,1995,10,789-792,.
    [18] D. Yang, L. B. Li, et al. "Oxygen-related centers in multi-crystalline silicon", Solar Energy Materials & Solar Cells, 62 (2000) 37-42.
    [19] L. Debarge, J. P. Stoquert, et al. "rapid thermal oxidation of porous silicon for surface passivation", Mater. Sci. Semicon. Processing 1 (1998) 281-285.[20] C. Haβler, H. U. Hofs, W. Koch, et al. "formation and annihilation of oxygen donors in multi-crystalline silicon for solar cells", Mater. Sci. Eng. B71 (2000) 39-46.
    [21] 余学功,马向阳,杨德仁,“大直径直拉硅片的快速热处理”,半导体学报,第24卷,第5期,2003,5,490-493.
    [22] D.Yang, X. Y. Ma, et al. "infrared absorption of nitrogen-oxygen complex in silicon", Mater. Sci. Eng., B72 (2000) 121-123.
    [23] D. Yang, M. K. Levermann, L.I. Mudn, "Shallow thermal donors in silicon doped with isotopic oxygen", Physica B 302-303 (2001) 193-196.
    [24] D. Yang, D. S. Li, et al. "defects in nitrogen-doped multi-crystalline silicon", Physica B 344 (2004) 1-4.
    [25] H. J. Moller, C. Funke, et al. "oxygen and lattice distortions in multi-crystalline silicon", Solar Energy Materials & Solar Cells, 72 (2002) 403-416.
    [26] F. Moller, M. B. Chorin, F. Koch, "post-treatment effects on electrical conduction in porous silicon", Thin Solid Films 255 (1995) 16-19.
    [27] B. Pivac, A. Sassella, A.Borghesi, "non-doping light impurities in silicon for solar cells", Mater. Sci. Eng. B36 (1996) 55-62.
    [28] L. Stalmans, J. Poortmans, et al. "low-thermal-budget treatments of porous silicon surface layers on crystalline Si solar cells: A way to go for improved surface passivation?" Solar Energy Mater. & Solar Cells, 58 (1999) 237-25
    [29] 胡才雄,夏锦禄,张建宇,“硅中氧行为研究的新进展”,上海有色金属,第16卷,第1期,1995,2,39-47。
    [30] AJEET ROHA TGI. Design, Fabrication, and Analysis of 17-18-Percent Efficiency Surface-Passivated Silicon Solar Cells. IEEE TRAN SACT ION S ON EL ECTRON DEVICES ,VOL. ED-31,NO. 5,MAY 1984. 599-603.
    [31] S. R. Wenham, J. Zhao, X. Dai, A. Wang, M. A. Green. Surface passivation ion in high efficiency silicon solar cells. Solar Energy Materials & Solar Cells 65 (2001). 377- 384.
    [32] R. B. Godfrey and M. A. Green. 655mV open circuit voltage 17.6% efficiency silicon MIS solar cells, App I. Phys. Lett. vol. 34, 1979. 790.[33] 刘恩科,朱秉升.半导体物理学[M].北京:国防工业大学出版社,1999.98-102.4、其它钝化方法
    [34] 彭银生,刘祖明,陈庭金,晶体硅太阳电池表面钝化的研究,云南师大学报,第24卷第三期,2004年5月,15-17
    [35] 熊祖洪,刘小兵,廖良生,袁帅,何钧,周翔等,一种简便有效的多孔硅后处理新方法,半导体学报,第19卷第6期,1998年6月,458-462
    [36] 李哲深,蔡卫中,苏润洲等,GaAs表面钝化的新方法:S2Cl2处理,半导体学报,第15卷第7期,1994年7月,505-510
    [37] 陈光华,邓金祥编著,纳米薄膜技术与应用,化学工业出版社,材料科学与工程出版中心,123-125。
    [38] 李谷波,张甫龙,陈华杰等,发光多孔硅的表面氮钝化,物理学报,第45卷第7期,1996年7月,1232-1236
    [39] 刘小兵,史向华,氢与氧及氮钝化对多孔硅光致发光的影响,半导体学报,第22卷第6期,2001年12月,448-450
    [40] 查超麟,刘祖明,陈庭金等,RTP硅太阳电池的研究进展,云南师范大学学报,第23卷第4期,2003年7月,25-29
    [41] 查超麟,刘祖明,刘剑虹,等.多晶硅酸腐蚀表面织构的研究[J].太阳能学报,2002,(增刊):65.
    [42] P. B. Grabiec, W. Zagozdzon-wosik, G. Lux, et aL, Kinetics of phosphorus proximity rapid thermal diffusion using spin- on dopant source for shallow junction fabrication [J]. J. Appl. Phys. 78 (1), July, 1995. PP: 204-211.
    [43] R. Singh, K. C. Cherukuri, L. Vedul, et al., Low temperature shallow junction format ion using vacuum ultraviolet photons during rapid thermal processing [J]. Appl. Phys. Lett. 70 (13), 31M arch 1997, PP: 1700- 1702.
    [44] Vittorio Privitera, Francesco Priolo, Giovami Marrino, et al., The effect of reaction plasma etching on the transient enhanced diffusion of boron in silicon [J]. Appl. Phys. Lett., 17 (13), 29Sep. 1997, PP: 1834- 1836.
    [45] [美]施敏,超大规模集成电路技术[M].北京:科学出版社,1987
    [46] J. Horzel, C. Allebe, J. Szlufcik, S. Sivoth thaman, Development of RTP for Industrial??Solar Cell Processing [J].Solar Energy Materials & Solar Cells, Vol. 72 (2002). PP: 263-269
    [47] Johan F. Nijs, Jozef Szlufcik, Jozef Poortmans, S. Sivoth thaman, Robert P. Mertens, Advanced Manufacturing Concepts for Crystalline Silicon Solar Cells[J]. IEEE Trans. Electron Devices, 1999, 46, (10) : 1948-1969
    [48] A. Rohatgi, S. Narasimha, A. U. Ebong, et al., Understanding and implementation of Rapid Thermal Technologies for High-efficiency Silicon Solar Cells[J]. IEEE Trans. On Electron Devices, Vol. 46. no. 10, Oct., 1999.pp: 1970-1977
    [49] P. B. Grabiec, W. Zagozdzon-wosik, G. Lux, et al., Kinetics of phosphorus proximity rapid thermal diffusionusing spin-on dopant source for shallow junction fabrication [J]. J. Appl. Phys. 78(1), July, 1995. PP: 204-211.
    [50] S. Neol, L. Ventura, A. Slaoui, et al., Impact of ultraviolet light during rapid thermal diffusion [J]. Appl. Phys. Lett. 72 (20), 18May 1998, PP: 2583-2585
    [51] J. Horzel, C. Allebe, J. Szlufcik, S. Sivoththaman, Development of RTP for Industrial Solar Cell Processing [J]. Solar Energy Materials & Solar Cells, Vol. 72 (2002). PP: 263-269
    [52] J. F. Nijs, J. Szlufcik, J. Poortmans, et al. , Advanced Manufacturing Concepts for Crystalline Silicon Solar Cells [J]. IEEE Trans. On Electron Device, Vol. 46, No. 10, Oct. 1999
    [53] S. Sivoththaman, W. Laureys, J. Nijs, et al., Selective Emitter in Si by Single Step Rapid Thermal Diffusion for Photovoltaics Device [J]. IEEE Electron Device lett., Vol. 21, No6, June 2000, pp 274-276
    [54] J Szlufcik et al., Appl. Lett. 59 (13), P. 1583, 1991
    [55] J. Horzel, J. Szlufcik, J. Nijs, Pproc. 16th European Photovoltaic Solar Energy Conference, May, 2000, Glasgow, UK
    [56] J. H. Bultman, R. Kinderman, J.Hoornstra, M. Koppes, Proc. 16th European Photovoltaic Solar Energy Conference, May, 2000, Glasgow, UK
    [57] L. Debarge, J. C. Muller, B. Fgortet, Proc. 16th European Photovoltaic Solar Energy Conference, May, 2000, Glasgow, UK[58] J. Horzel, J. S. sivoththaman, J. Nijs, Proc. 16th European Photovoltaic Solar Energy Conference, May, 2000, Glasgow, UK
    [59] D. S. Ruby, P.Yaang, M. Roy, and S. Narayanan, Recent progress on the self-aligned, selective-emitter silicon solar cell, Proc. 26th IEEE photovoltaic specialists conf., Sept. 1997, Anaheim, California, US
    [60] J.Szhscik et al., Appl. Phys. Lett., 59 (13) P.1583, 1991
    [61] 马丁.格林.太阳电池—工作原理、工艺和系统的应用.北京:电子工业出版社,1987
    [62] J. L. Boone and T. P. Van Doren. Solar cell design based on a distributed diode analysis. IEEE Trans. on Electron Devices, 1978, ED225 (7) : 767~771
    [63] H. J. Hovel. Semiconductors and Semimetals, 11, Solar Cells. Academic Press, 1975
    [64] M. Saadoun, H. Ezzaousia, B. Bessais, Formation fo porous silicon for large-area silicon solar cells: A new method. Solar Energy Materials and solar cells, Vol.59, 1999,pp:377-385
    [65] Y.S. Tsu, Y. Xiao, et al, Potential applications of porous silicon in photovoltaics [J], 23~(rd) IEEE Photovoltaic Specialists Conf.,1993, pp:287-293
    [66] L. Schirone, G. Sotgiu, F. P. Califano, Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells, Thin Solid Films, 297(1997) 296-298
    [67] Palsule C, Liu S, Gangopadhyay S, Holtz M, Lamp D, Kristiansen M. Solar Energy Materials and Solar Cells 1997: 46:261.
    [1] 韩雪,夏慧,吴丽君,透明导电膜及靶材,电子元件与材料,1998年第1期,30-34;
    [2] 孟扬,杨锡良,新型透明导电薄膜In2O3:Mo,真空科学与技术,2000,20(5),331-335;
    [3] K. Yamaya, Y. Yamaki, H. Nakanishi, S. Chichibu, Appl. Phys. Lett. V72,N2 (1998) 235-237;
    [4] T. Minami, H. Sato, Jpn. J. Appl. Phys. V31, N8Apart2 (1992), 1106-09;
    [5] K. C. Park, D. Y. Ma, K. H. Kim, Thin Solid Films 305 (1997) 201-209;
    [6] 殷顺湖,透明导电膜研究进展,材料导报,1997 11,(3),33—37;[7] B. M. Han, S. Chang, S. Y. Kim, Thin Solid Films 338 (1999) 265-268;
    [8] S. Nishizawa, T. Tsurumi, H. Hyodo, et al, Thin Solid Films 302 (1997) 133-139
    [9] M. Ogasaware, Jpn. J. Aply. Phys., Part1, V31 (1992) 2971-2795;
    [10] H. Cao, Appl. Phys. Lett. V73, N25 (1998) 3656-3659;
    [11] P. Mukherjee, Appl. Surface Science, 127-129 (1998) 620-625;
    [12] C. R. Gorla, N. W. Emanetoglu, S. Liang, et al, J. Appl. Phys., 85 (1999) 2595;
    [13] 应春,沈杰,陈华仙,杨锡良,章壮健,ZnO:Al透明导电薄膜的研制,真空科学与技术,第18卷第2期,1998年3月125-129;
    [14] 范志新,陈玖琳,孙以材,AZO透明导电薄膜的特性、制备与应用,真空,2000年10月,第5期,10-13;
    [15] Minami T, et al. Highly Conductive and Transparent ZnO Thin Films Prepared by R. F. Magnetron Sputtering in an Applied External D. C. Magnetic Field [J]Thin Solid Films, 1985, 124: 43.
    [16] Zhang D H, et al Effects of Annealing ZnO Film s Prepared by Ion beam assisted Reactive Deposition [J] Thin Solid Films, 1994, 238:951
    [17] Dumont E, et al. Simultaneous Determination of the Optical Properties and of the Structure of R. F. Sputtered ZnO Thin Film s[J]. Thin Solid Films, 1999, 353:931
    [18] Baik D G, et al. Application of sol-gel Derived Films for ZnO/n-Si Junction Solar Cells [J]. Thin Solid Film s, 1999, 354:2271
    [19] 刘金彪,硕士学位论文,南开大学,光电子所,2005,5;
    [20] K. Ellmer, R. Wendt, D. c. r. f. (reactive) magnetron sputtering of ZnO: Al films from metallic and ceramic targets: a comparative study, Surface and Coating Technology 93 (1997) 21-26;
    [21] 侯鹤岚,直流磁控溅射镀膜在玻璃涂层技术中的应用,真空,2001年2月第1期,18-22;
    [1] King S. L., et al. [J]. Appl. Surf. Sci., 1996, 96298: 811;
    [2] Jin B. J., et al. [J]. Mater. Sci. Eng., 2000, B71: 301;
    [3] Srikant V., et al. [J]. J. Appl. Phys., 1998, 83 (10):5447;[4] Liu M., et al. [J]. J. Lumin., 1992, 54:35;
    [5] Bornstein L., et al. In semiconductors [C]. Springer, Berlin, 1982.Vol. 17, P50;
    [6] Srikant V., et al. [J]. J Appl. Phys., 1997, 81 (9):6357.
    [7] Srikant V., et al. [J]. J. Mater. Res., 1997, 12 (6):1425.
    [8] M. Chen, Ph.D. Dissertation, Institute of Matel Research, CAS (1999);
    [9] K. C. Park, D. Y. Ma, K. H. Kim, Thin Solid Films, 305, 201 (1997);
    [10] 曲喜新,杨邦朝,姜节俭,张怀武,《电子薄膜材料》,科学出版社,1997;
    [11] 龚恒翔,“多晶氧化锌薄膜的制备和结构、电学、光学特性研究”,博士学位论文,兰州大学,2000;
    [12] T. S. Moss, Proc. Phys. Soc., Landon Ser. B67(1954) 775;
    [13] J. E Chang, M. H. Hon, Thin Solid Films, 386 (2001) 79;
    [14] K. Tominaga, T. Murayama, N. Umezu, et al., Thin Solid Films, 343-344 (1999) 160;
    [15] D. B. Fraser and H. D. Cook, J. Electrochem Sot., 119(1972) 1368
    [16] G. Haacke, J. Appl. Phys., 47 (1976) 4086
    [17] Xiao-Tao Hao, Jin Ma, Yinge Yang. Comparison of the properties for ZnO: Al films deposited on polyimide and glass substrates [J]. Materials Science and Engineering B90 (2002), 50-54;
    [18] 孙超,陈猛,裴志亮,曹鸿涛,黄荣芳,闻立时,“透明导电膜ZnO:Al(ZAO)的组织结构与特性”,材料研究学报,2002,16,2,113-120;
    [19] 马从笑,宁潜艳,郑才平。电子束蒸发方法制备ZnO薄膜的结构和光学特性研究[J],哈尔滨商业大学学报,2001,17(3):31-32;
    [20] I. Galesic, U. Reusch, C. Angelkort, et al. "Nitridation of vanadium in molecular nitrogen: a comparison of rapid thermal processing (RTP) and conventional furnace annealing" , Vacuum 61 (2001) 479-484;
    [21] Park K C, Ma D Y, Kim K H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering [J]. Thin Solid Films, 1997, 305:201-209.
    [22] Kluth O, Rech B, Houben L, S Wieder,.G Schope, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells[J]. Thin Solid Films, 1999, 351: 247-253.[23] 吕建国.叶志镇.陈汉鸿.汪雷.赵炳辉.张银珠.直流反应磁控溅射生长p型ZnO薄膜及其特性的研究[J].真空科学与技术,2003年第23卷,第一期,p:05-08。
    [24] R. J. Hong, X. Jiang, G Heide,. B Szyszka,. V Sittinger,. W Werner. Growth behaviors and properties of the ZnO:Al films prepared by reactive mid-frequency magnetron sputtering[J]. Journal of Crystal Growth, 249 (2003) :461-469;
    [25] Sheng-Cong Liufu, Han-Ning Xiao~*, Yu-Ping Li, Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites, Polymer Degradation and Stability 87 (2005) 103-110;
    [26] Rodrigo F. Silva, Maria E.D. Zaniquelli, Morphology of nanometdc size particulate aluminium-doped zinc oxide films, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 198-200 (2002) 551-558;
    [1] 沈学础.半导体光谱和光学性质,2002,2-5,第二版,科学出版社.
    [2] 方容川.固体光谱学,2003,2-10,中国科技大学出版社.
    [3] 黄昆,韩汝琦.固体物理学,2001,477-480,高等教育出版社.
    [4] Lin-Wang Wang, and Alex Zunger. Dielectric constants of Silicon Quantum Dots, Phys. Rev. Lett. 1994, 73: 1039-1042.
    [5] 徐伟弘,晁战云,汪开源.多孔硅吸收光谱和反射光谱,半导体光电,1997,18:101-105.
    [6] C. Delerue, M. Lannoo, and G. Allan. Concept of dielectric constant for nanosized systems, Phys. Rev. B, 68: 1154111-1154114.
    [7] 晁战云,徐伟弘,唐洁影,汪开源.多孔硅反射谱的测量与分析,固体电子学研究与进展,1997,17:50-54.
    [8] H. Touir, and P. Roca i Cabarrocas, Optical dispersion relations for crystalline and microcrystalline silicon, Phys. Rev. B, 2002, 65: 1553301-1553309.
    [9] Weili Liu, and Miao Zhang. Intense blue-light emission from carbon-plasma-implanted porous silicon. Appl. Phys. Lett., 2001, 78(1): 37-39.
    [10] M. I. Strashikova, V. L. Voznyi, V. Ya. Reznichenko, and V. Ya. Gaivoronskii. Journal of experimental and theoretical physics, 2001, 93: 363-371.[11] J. C. Tauc. Amorphous and Liquid semiconconductor, Plenum Press, New York, 1974, p159.
    [12] T. D. Kang, Hosun Lee, S. J. Park, and J. Jang. Microcrystalline silicon thin film studied using spectroscopic ellipsometry, J. Appl. Phys., 2002, 92: 2467-2474.
    [13] 胡志高,王根水,黄志明,褚军浩.溶胶—凝胶法制备的PbTiO3薄膜的光学特性研究,红外与毫米波学报,2002,21:175—179.
    [14] Ulrich Stutenbaumer, Belayneh Mespn, and Solomon Beneberu. Determination of the optical constants and dielectric functions of thin Plm a-Si : H solar cell layers. Solar Energy Materials & Solar Cells, 1999, (57): 49-59.
    [15] 曲喜新,杨邦朝,姜节俭,张怀武,《电子薄膜材料》,科学出版社,1997;
    [16] P. Drude, Z. Phys., 1(1900) 161
    [17] G. Frank, E. Kauer, H. Kostlin, Thin Solid Films, 77 (1981) 107;
    [18] E. Burstein, Phys. Rev. 93 (1954) 455;
    [19] T. S. Moss, Proc. Phys. Soc., Landon Set. B67(1954) 775;
    [1] 应春,沈杰,陈华仙等,ZnO:Al透明导电薄膜的研制,[J] 真空科学与技术,1998,18(2),125-129。
    [2] Ntmes P., Fortunato E., Tonello P., et al. Effect of different dopant elements on the properties of ZnO thin films, [J] Vacuum, 2002, 64, 281-285.
    [3] 范志新,陈玖琳,孙以材,AZO透明导电薄膜的特性、制备与应用,[J] 真空,2000,5,10-12。
    [4] 王印月,《半导体物理学》,兰州大学出版社,1990;
    [5] F. A. Kroger, The Chemistry of Imperfect Crystals, North Holland, Amsterdam, 1974;
    [6] Z. M. Jarzebski, Oxide Semiconductors, Franklink Book Company, 1973;
    [7] 刘恩科,朱秉升,罗晋生,《半导体物理学》,国防工业出版社,1994;
    [8] Jin Ma, Dehang Zhang, Junqing Zhao; Chuenyu Tan; Tianlin Yang; Honglei Ma, et al. Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature[J]. Applied Surface Science, 151(1999): 239-243.
    [9] R. J Hong, X Jiang., G Heide, B. Szyszka; V Sittinger, W Werner. Growth behaviors and??properties of the ZnO: Al films prepared by reactive mid-frequency magnetron sputtering[J]. Journal of Crystal Growth, 249(2003): 461-469.
    [10] Park K C, Ma D Y, Kim K H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering [J]. Thin Solid Films, 1997,305:201-209.
    [11] Ooie T, Nagaset T, Sakakibara J. A novel approach to prepare zinc oxide films: excimer laser irradiation of sol-gel derived precursor films[J]. Thin Solid Films, 1999, 357: 151-158.
    [1] J. Muller, O. Kluth, development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates Solar Energy Materials & Solar Cells, 66(2001)275-281
    [2] J. Kre, M. Zeman, O.Kluth, Light scattering properties of SnO2 and ZnO surface textured substrates
    [3] 刘金彪,“掺铝氧化锌薄膜的研究及其在太阳电池中的应用”,硕士学位论文,南开大学信息技术科学院,2005年5月。
    [4] C. Beneking, B. Rech, S. Wieder, O. Kluth, H. Wagner, W. Frammelsberger, R. Geyer, P. Lechner, H. Rübel, H. Schade, Recent developments of silicon thin film solar cells on glass substrates, Thin Solid Films 351 (1999) 241-246
    [5] Arvind V. Shah, Milan Vanécek, Johannes Meier, Fanny Meillaud, Joelle Guillet, Diego Fischer, Corinne Droz, Xavier Niquille, Sylvie Fay, Evelyne Vallat-Sauvain, Vanessa Terrazzoni-Daudrix, Julien Bailat, Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and 'micromorph tandem' solar cells, Journal of Non-Crystalline Solids 338-340 (2004) 639-645
    [6] B. Rech, O. Kluth, T. Repmann, T. Roschek, J. Springer, J. M. uller, F. Finger, H. Stiebig, H. Wagner, New materials and deposition techniques for highly efficient silicon thin film solar cells, Solar Energy Materials & Solar Cells 74 (2002) 439-447
    [7] R. Brendel, D. Scholten, Modeling light trapping and electronic transport of waffle-shaped crystalline thin-film Si solar cells, Appl. Phys. A Materials Science & Processing 69, 201-213 (1999)[8] Patrick Campbell, Mark Keevers, Light trapping and reflection control for silicon thin films deposited on glass substrates textured by embossing, 2000, IEEE, 355-358
    [9] J. Krc, M. Zeman, O. Kiuth, F. Smole, M, Topic, Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells, Thin Solid Films 426(2003) 296-304
    [10] K. Kishimoto, T. Ouchida, S. Tachibana, Structural and optical properties of textured ZnO:Ga films for large area thin films solar cells, Photovoltaic Specialists Conference, 2000, Conference Record of the Twenty-Eighth IEEE 15-22 Sept. 2000 Pages:754-747
    [11] Oliver Kluth, Gunnar Schope, Jurgen Hupkes, Chitra Agashe, Joachim " Müller, Bemd Rech, Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour, Thin Solid Films 442(2003) 80-85
    [12] Xiaobing Ren, Kazuhiro Otsuka, Universal Symmetry Property of Point Defects in crystals, Phys. Rev. Lett. 85, 5, 2000, 1016-1019
    [13] 麦耀华.a-Si太阳电池陷光结构的新模型及其优化.光电子·激光,2001,12(12):1222
    [14] 唐晋发,郑权编著,《应用薄膜光学》,上海科学出版社,1984;
    [15] J. Müller, G. Schope, O. Kluth, B. Rech, M. Ruske, J. Trube, B. Szyszka, X. Jiang, G. Brauer, Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells, Thin Solid Films 392(2001)327-333
    [16] J. Springer, B. Rech, W. Reetz, J. M. uller, M. Vanecek, Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates, Solar Energy Materials & Solar Cells 85(2005) 1-11op
    [17] J. Singh. Solar Energy Materials and Solar Cells, 光电子·激光,2001,12(12): 1223
    [18] B. Rech, O. Kluth, T. Repmann, T. Roschek, J. Springer, J. Müller, F. Finger, H. Stiebig, H. Wagner, New materials and deposition techniques for highly efficient silicon thin film solar cells, Solar Energy Materials & Solar Cells 74 (2002) 439—447
    [19] O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, H. Wagner, Solar Energy Materials & Solar Cells 66 (2001) 345}351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700