用户名: 密码: 验证码:
硫酸钙复盐的合成、特性及无水硫酸钙水化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国天然无水硫酸钙(硬石膏)矿产资源丰富,但由于水化活性差,利用率很低。随着国民经济的高速发展,对石膏产品需求日益加大,解决天然硬石膏水化活性低的问题越来越迫切。因此针对无水硫酸钙水化理论中存在的问题,如复盐生成与分解、激发剂阳离子的z/r参数的作用、同离子效应等开展研究,揭示盐类激发剂对硬石膏水化激发作用机理,探寻激发硬石膏水化的规律,对促进天然石膏矿产的开发具有重要的理论意义与现实意义。
     本论文从硫酸钙复盐的合成入手,深入开展了硫酸钙复盐的生成条件、热学性质、光谱学表征、水溶特性等方面的研究;对可溶性硫酸盐对无水硫酸钙水化激发效果进行了系统的分析研究;揭示了可溶性硫酸盐对无水硫酸钙的水化激发机理,探讨了盐类激发剂对不同产地天然硬石膏的适应性。主要内容和研究成果如下:
     1、通过应用溶液合成和高温淬冷合成两种方法,对可溶性硫酸盐与无水硫酸钙合成复盐的条件及规律进行了系统研究,优化了复盐的合成工艺参数,并对水溶液合成法中反应温度、反应时间与溶剂量对复盐合成的影响进行了探讨。结果显示,虽然无水硫酸钙具有络合性,但在常温常压水溶液中,仅一价硫酸盐(除Li外)能合成复盐,I族元素从上到下随原子序数增加,与硫酸钙形成复盐的难度逐渐降低,其中钾盐合成复盐速度最快。水溶液合成复盐的影响因素主要为合成温度和溶剂量。硫酸钙复盐的高温合成是一个渐进的过程,受温度影响较大,且与反应物熔点高低密切相关;硫酸钙复盐的高温合成动力学可以用二维扩散反应方程((1.α)ln(1-α)+α=kt)和Ginstling-Brounshtein方程(1-2α/3-(1-α)~(2/3)=kt)来描述,反应受扩散控制。
     2、对硫酸钙复盐的晶体结构、谱学性质及热稳定性进行了研究分析,建立了热学与谱学档案。高温淬冷合成的硫酸钙复盐有较好的热学稳定性,但水合复盐随着温度的升高,复盐的物相组成变化较复杂。受硫酸钙复盐中阳离子数量与种类的影响,SO_4~(2-)阴离子基团的振动光谱出现变化,复盐中阳离子种类越多,其谱峰分裂越明显。
     3、对合成的硫酸钙复盐水溶特性进行研究,对复盐的水化历程、影响因素进行了分析讨论。硫酸钙复盐水溶特性较复杂,但具有一定的相似性。其水化分解主要受水量和水化时间的影响,水合复盐在水量较少的情况下不易分解,在0.3-10L/mol水量范围内含钾硫酸钙水合复盐存在可逆转化。复盐在高水量时溶解非常快,受扩散过程控制。两种水合复盐溶解性能相似,溶解方程级数在1.1左右。而高温复盐的溶解动力学级数则在1.5-1.8范围内,动力学常数比水合复盐低一个数量级,其大小呈现以第三周期元素为中心向两边增大的趋势。结晶阶段为CaSO_4·2H_2O相的析出,其结晶Stumm动力学方程级数为1.07。
     4、通过对CaSO_4在Na_2SO_4、K_2SO_4、Rb_2SO_4、Cs_2SO_4、(NH_4)_2SO_4溶液中水化过程,以及CaSO_4·2H_2O、CaSO_4与以上硫酸盐反应速度、产物的研究,结合复盐合成与水化过程研究结果分析,明确了无水硫酸钙水化不可能按照布德尼科夫的复盐理论进行;CaSO_4在其它种类的可溶性硫酸盐溶液中水化研究表明,无水硫酸钙水化过程中受硫酸盐水合物的析晶过程影响,与激发剂阳离子z/r值大小无关,阳离子的z/r参数影响水化率的规律并不存在;
     5、无水硫酸钙在可溶性硫酸盐中的水化按照溶解-成核-生长理论进行。CaSO_4达到溶解平衡时,Ca~(2+)的浓度大于CaSO_4·2H_2O溶解平衡的Ca~(2+)的浓度,CaSO_4·2H_2O获得结晶的驱动力;可溶性硫酸盐激发作用在于异向晶核的形成:水化过程与CaSO_4生成复盐或析出水合物所形成的细小物相,作为异质微粒使母相中存在不均匀性,这些不均匀性有效地降低成核时的表面能位垒,使CaSO_4·2H_2O晶核优先地在这些不均匀的地方形成,因此这些物质起成核催化剂作用。引入外来离子,降低了成核的表面能势垒,使CaSO_4·2H_2O更容易结晶。
     6、选用四种不同产地与地质成因的天然硬石膏研究盐类激发剂的适应性,并对加水量与环境温度对水化的影响进行了探讨。天然硬石膏由于其地质成因与所处地质环境不同,在物相组成、碱金属离子等杂质含量、晶体生长状态等多方面存在明显差异,因此不同产地硬石膏对激发剂种类具有选择性,但水化激发机理一致。在有杂质存在的天然硬石膏中,FeSO_4表现出了良好的适应性,其水化激发效果高于在分析纯无水硫酸钙中的效果。温度与水量对无水硫酸钙的水化有重要影响,硬石膏胶结料及其制品在生产过程中环境温度宜控制在30℃以内。
Natural anhydrous calcium sulfate (anhydrite) is rich in mineral resources in our country, but activity is very low. So its utilization ratio is not high. With the rapid development of national economy, increasing demand for gypsum products, the improvement of natural anhydrite's low activity has become increasingly pressing. Therefore, in order to aim at the existing problems in anhydrous calcium sulfate hydration theory (eg. the formation and decomposition of double salts, the role of z / r of the activator's cations, common ion effect etc.), reveal for the excitation mechanism of the salts to anhydrite hydration, and seek for the law of catalyzing anhydrite hydration, it is greatly theoretical significance and practical significance for promoting the development of natural mineral gypsum.
     The synthesis of the calcium sulfate double salt was investigated firstly and then researched thoroughly to the formulation condition, thermodynamic properties, spectroscopy characterization and solubility idiosyncrasy of the calcium sulfate double salt. The effect on hydration of the soluble sulfate to the anhydrous calcium sulphate was analyzed systematically, and the mechanism was given. The adaptability of the salts to the different natural anhydrite was also discussed. The main content and research results are as follows:
     1. By mean of the solution method and the high temperature synthetic method, it was investigated to the reactive law of the soluble sulfate with calcium sulfate and the synthetic condition of the double salts systematically, and optimized the parameters of the preparations. The influence of the reaction temperature, reaction time and solvent amount to the synthesis by the solution method were discussed. The result showed that although the anhydrous calcium sulfate has the complexing, in the normal temperature and the atmospheric pressure solution, only univalent sulfate (except Li) can synthesize the double salt with calcium sulfate. Increasing along with the atomic number, I-group sulfate with the anhydrous calcium sulfate is easy to synthesize. The speed of the sylvite is highest. Main effect factors are synthesis temperature and solvent volume. The transformation by the high temperature synthetic method is tardy. And it is effected by the temperature more and closely related with the reactant melting point. High temperature synthesis dynamics of calcium sulfate double salts can be described by the two-dimensional proliferation response ((1-α)ln(1-α)+α=kt) and Ginstling-Brounshtein Equation (1-2α/3-(1-α)~(2/3)=kt). The response is controlled by the diffusion.
     2. Crystal structure, spectroscopy characterization and thermal stability of the double salts were studied in this paper. And their thermodynamic, spectroscopy files were improved. The thermodynamic stability of the calcium sulfate double salts which were quenched is better, while the transformation of the hydration double salts was complicatedly. Influenced by the quantity and type of the positive ions of the double salts, the vibration spectrum of SO_4~(2-) changed. The type of the positive ion is more and the spectrum peak splits are more obvious.
     3.The solubility idiosyncrasy of the calcium sulfate double salt was researched systematically. And the process and the influencing factors of double salts' hydration were discussed. They are complicated, but have certain similarity. The main factors of the solubility transformation were the solvent quantity and the hydration time. The double salts synthesized by the solution method decompose not easily when the water volume is few, and the transformation of potassium calcium sulfate double salts when the water volume is reversible between 0.3 to 10 L/mol. The double salts decompose quickly when the water is enough and it is controlled by the diffusion. Based on that research, the dissolution kinetics and the crystallization kinetics of the double salts were investigated.And the kinetic equations have been obtained. The progressions of the solubility equations of the hydrate double salts were about 1.1, while the quenched double salts' were about 1.5-1.8. The constants of the kinetics equations were increasing as the center of the third period element. And the CaSO_4·2H_2O phase crystallized in the final stage. Its progression of crystallization kinetic equation was 1.07.
     4. Through the research on hydration of the anhydrous calcium sulfate in the following sulfate(Na_2SO_4、K_2SO_4、Rb_2SO_4、Cs_2SO_4、(NH_4)_2SO_4), reaction speed and offspring of the anhydrous calcium sulfate with the previous sulfate, and according to the analytic results of the double salts' synthesis and the hydrated processes, it is founded that double salt theory is not accurate. Through the experiments on hydration of the anhydrous calcium sulfate in the other sulfate, dissoluble sulfate hydrate origining from hydration process of AH affects its hydrous rate, hydrous rate of the anhydrous calcium sulfate does not connect with z/r of the cation in stimulation, and neither does the theory that z/r affect hydrous rate of the anhydrous calcium sulfate.
     5. Hydration of the anhydrous calcium sulfate in dissoluble sulfate complies with dissolve-nucleate-grow theory, concentration of Ca~(2+) from dissolving of CaSO_4is higher than one of CaSO_4·2H_2O,CaSO_4·2H_2O gets a motivity of crystallization. Dissoluble sulfate takes the following functions: double-salt or dissoluble sulfate hydrate from hydration of the anhydrous calcium sulfate in it becomes heterogeneous particle and a kind of nucleation catalyzer, and reducing surface barrier when CaSO_4·2H_2O becomes crystal because the crystal of CaSO_4·2H_2O presciently appears in uneven place. Results indicate that hydration of the anhydrous calcium sulfate does not conform to double-salt theory, but it conforms to this mechanism: dissolve-nucleate-grow, formation of CaSO_4·2H_2O is an uneven nucleation and crystallization process.
     6. It is selected from four kind of different habitats and the geologic origin natural anhydrite, for researching the compatibility of the catalysts. And it is discussed to the influence of the water and the ambient temperature to the hydration. Owing to theirs geologic origin and the geological environment differently, phase composition and foreign inclusions (e.g. alkaline metal ion) and crystal growth condition etc of different kinds of natural anhydrite are discrepant. So the different habitat anhydrite needs different catalyst. But the mechanism is consistent. The effect of FeSO_4 to the natural anhydrite with impurity is better than to analytically pure anhydrous calcium sulfate. The temperature and the water volume have the important effect to the anhydrous calcium sulfate's hydration. Ambient temperature in the production process of anhydrite cement materials and products should be within 30°C.
引文
1. 中国建筑材料科学研究院.绿色建材与建材.北京:化学工业出版社,2003.3-39
    2. 陈燕,岳文海,董若兰.石膏建筑材料.北京:中国建材工业出版社,2003.5-16
    3. 袁润章.胶凝材料学.武汉工业大学出版社,1989.11-13
    4. 荒井康夫.石膏化学.山西化工,1992(4):48-51
    5. Jeulin D, Monnaie P, Peronnet F. Gypsum morphological analysis and modeling. Cement & Concrete Composites, 2001.23(3): 299-31
    6. Lewry A J. The setting of gypsum plaster: part Ⅱ: The development of microstructure and strength. Journal of Materials Sciences, 1994(29): 5524-5528
    7. Odler I. Relationship between pore structure and strength of set gypsum pastes: part Ⅱ: Influence of chemical admixtures. ZKG,1989(8): 419-424
    8. 仲维卓,王步国,施尔畏等.硫酸盐类晶体中[SO~4]~(2-)四面体的结晶方位与晶体的形貌.无机材料学报,1997.12(1):11-16
    9. 法国石膏工业协会.石膏(杨得山译).中国建筑工业出版社,1987.115
    10. 布德尼柯夫.石膏的研究与应用(樊发家,曾宪靖,高康武译).北京:中国工业出版社,1963.147-150
    11. 戴灿.浅析国内石膏砌块发展慨况.科技信息(学术研究),2008.(08):260
    12. 向才旺.建筑石膏及其制品.北京:中国建材工业出版社,1998.97-100
    13. 刘巽伯,魏金照,孙丽玲.胶凝材料——水泥、石灰、石膏的生产和性能.上海:同济大学出版社,1990.17-18
    14. Murat M, El-Hajiouji A, Cornel C, Factors affecting the reactivity of synthetic orthorhombic anhydrite whit water: I. Role of roreign cations in solution, Cement and Concrete Research, 1987, 17(4): 633-639
    15. Jamil A.O, M.Murat, El-Hajjouji A, Factors affecting the reactivity of synthetic orthormbic anhydrite with water: Ⅱ. Role of superficial defects, Cement and Concrete Research, 1988, 18(1): 74-80
    16. 岳文海赵青南,硬石膏酸性激发剂作用机理的研究,《中国硅酸盐学会房屋建筑材料专业委员会第四届年会论文集》第五分册,1987.5-7
    17. 岳文海赵青南,温度及碱度介质对天然石膏溶解量的影响,《中国硅酸盐学会房屋建 筑材料专业委员会第四届年会论文集》第五分册,1987.8-10
    18. Yue Wenhai, Hydration and Hardening of Natural Anhydrite, Proceedings of 1985 Beijing international symposium on Cement and Concrete, Beijing, 1985.426
    19. Kontrec A, Kralj D, Brecevic L, Transformation of anhydrous calcium suphate into calcium sulfate dihydrate in aqueous solution, Journal of Growth, 2002. 240: 203-211
    20. Cournil M, Galtier P, Study of closed systems: liqiud solution-solid powder, Ⅱ. A theoretical model for the kinetics of hydration of a solid: application to calcium sulphate, Journal de Chimie Physique et de Physico-chimie Biologique, 1982. 79(5): 427-433
    21. Christoffersen J, Christoffersen M, Van Rosmalen G M. The affinity of crystal growth and dissolution in aqueous solution with special reference to calcium sulphate dehydrate. Journal of Crystal Growth, 1979.47(5-6): 607-612
    22. 周利民,金解云.二水硫酸钙结晶动力学研究.东华理工学院学报,2004.27(4):378-380
    23. 周利民,周士宾.二水硫酸钙成核及生长现象的研究.天津轻工业学院学报,2001.(3):44-47
    24. 李军,王建华,钟本和等.Al~(3+)对二水硫酸钙结晶动力学影响的研究.成都科技大学学报,1996.(2):53-58
    25. 唐修仁.硬石膏水化的研究.新型建筑材料,1986.10:2-9
    26. 杨新亚,牟善彬.硬石膏活性激发过程中“返霜”现象研究.非金属矿,2003.26(04):4-6
    27. Jarrosinski A. Properties of Anhydrite Cement Obtained from Apatite Phosphogypsum. CCR. VOL, 1994.24:99-108
    28. Kloprogge J T, Schuiling R D, Zhe Ding. Vibrational spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuris acid. Vibrational Spectroscopy, 2002. 28: 209-221
    29. Singh M. Durability of Phosphogypsum Based Water-Resistant Anhydrite Binder. CCR., 1990.20:271-276
    30. Singh M, Garg M. Activation of Gypsum Anhydrite-slag Mixture. CCR, 1995. 25: 332-338
    31. El-Hajjouji A, Murat M. Strength Development and Hydrate Formation Rate- Investigation on Anhydrite Binder. CCR, 1987. 17: 814-822.
    32. Singh M. Development of Phosphogypsum Anhydrite Plaster. ZKG,1981.11: 595-596
    33. Israel D. Investigation into the relationsgip between the degree of hydration,flexural tensile strength and microstructure of setting anhydrite. ZKG International, 1996.4:228-234
    34. 胡兴列.天然无水石膏的硬化条件.新型建筑材料,1988.(11):15-18
    35. 唐修仁.硬石膏胶结料耐久性研究.新型建筑材料,1993.(6):27-29
    36. 胡红梅,马宝国.天然硬石膏的活性激发与改性研究.装饰石膏与胶凝材料,1998.(04):19-21
    37. 罗惠莉,陈吉春,李学强等.硬石膏复合改性研究.山东建材,2003.24(4):45-47
    38.陈吉春,王浩.硬石膏的粉磨改性研究.国外建材科技,1997.18(2):44-46
    39.余红发.无水石膏外墙板18年后的相组成和显微结构.建筑材料学报,1999.2(1):85-88
    40.彭家惠,林芳辉.Ⅱ型无水石膏煅烧工艺及其改性研究.中国建材科技,1998.(6):33-36
    41.丁大武.硬石膏建筑制品生产工艺探索.非金属矿,1988.(02):47-49
    42.杨新亚,牟善彬,秦克刚.粉磨方式对硬石膏活性激发的影响.硅酸盐通报,2004.(1):50-53
    43.魏东岩.论中国钙芒硝矿床.化工矿产地质,2001.23(2):75-81
    44.黄志渡,高子芳.广西陶纡钙芒硝矿床地质特征.广西地质,1996.9(6):25-32
    45.黄宣镇.中国首例杂卤石矿床.云南地质,1996.15(1):52-60
    46.林耀庭,伊世明.四川渠县层杂卤石矿分布特征及其成因和意义.四川地质学报,1998.18(2):121-125
    47.安莲英,殷辉安,唐明林等.杂卤石中钾的提取工艺.化工矿物与加工,2002,(12):5-7
    48. Kloprogge T, Schuiling R D, Zhe Ding. Vibrational spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuris acid. Vibrational Spectroscopy, 2002. 28: 209-221
    49. 朱黎霞,岳涛,高世扬.A_2Ca[B_4O_5(OH)_4]2.8H_2O(A=Rb,Cs)硼氧酸盐复盐的合成与表征.无机化学学报,2002.18(10):1063-1066
    50. 朱黎霞,岳涛,高世扬.Mg(OH)_2·2MgSO_4·2H_2O晶体的水热生长过程.物理化学学报,2003.19(3):212-215
    51. Fleck M, Gieste G. Crystal structures of the new double salts K_2Cd_3 (SO_4)_4-5H_2O, Rb_2Cu_3 (SO_4)_3(OH)_2 and Cs_2Cu (SeO_4)_2·4H_2O. Chem. Inform, 2003. 34(10): 233
    52. Agnieszka W, Wieaslawa B. Synthesis crystal structure and spectroscopic characterization of double salt [Zn(bpy)_3](CrO_4)0.5NO_366.5H_2O. Journal of Molecular Structure, 2002. 608(2-3): 151-160
    53. Wang TZ, Yu Y, Lu Y. Study on thermodynamic properties of a double salt, K_2Mg (IO_3)_4·2H_2O. Thermochimica Acta, 1999. 333: 1-4
    54. Zhou YP, Xu F, Mo XM. Thermochemical studies on the langbeinite-type double-sulfate salts, (NH_4)_2M_2 (SO_4)_3. Thermochimica Acta, 2001. 380:43-46
    55. 宋粤华,夏树屏.软钾镁矾溶解动力学I:对K~+,Mg~(2+)/SO_4~(2-)-H_2O三元体系的研究(50-75C).盐湖研究,1998.6(1):18-23
    56. 周亚平,张瑞,万洪文.无水钾镁矾类复盐(A~+)_2Cd_2(SO_4)_3的热化学.物理化学学报,2001.17(3):245-247
    57. 周亚平,徐芳,张瑞.无水钾镁矾类复盐K_2Mg_2(SO_4)_3的热化学研究.华中师范大学学报(自然科学版),2002.36(3):326-328
    58. 周亚平,徐芳,万洪文.无水钾镁矾类复盐Rb_2Mg_2(SO_4)_3的热化学.黄冈师范学院学报,2002.22(3):22-24
    59. Du H. Thermodynamic assessment of the K_2SO_4-Na_2SO_4-MgSO_4-CaSO_4 system. Journal of Phase Equilibria, 2000. 21(1): 6-18
    60. He SL, Morse W. Prediction of halite, gypsum, and anhydrite solubility in natural brines under subsurface conditions. Computers & Geosciences, 1993. 19(1): 1-22
    61. Tsoumeleas C I, Katsioti M, Georgali B. Thermal stabilisation of CaSO_4. World Cem, 2000. 31(11): 57-58,60-61.
    62. Freyer D. Voigt W. The measurement of sulfate mineral solubilities in the Na-K-Ca-SO_4-H_2O system at temperatures of 100, 150 and 200℃. Geochimica et Cosmochimica Acta, 2004. 68(2): 307-318
    63. Freyer D, Fischer St, Kohnke K. Formation of double salt hydrates Ⅰ .Hydration of quenched Na_2SO_4-CaSO_4 phases. Solid State Ionics, 1997. 96: 29-33
    64. Erdoes E, Altorfer H. Crystal data for sodium calcium sulphate [Na_4Ca(SO_4)_3]. Journal of Applied Crystallography, 1978. 11:159
    65. Swiatek A, Waclawska I. DTA determination of the anhydrite content in rock salts. Journal of Thermal Analysis, 1987. 32(6): 1715-1718
    66. 大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,2001.364-365
    67. 徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001.14-18,37-40,128-131
    68. 张克立.固体无机化学北京:科学出版社,2002.194
    69. 周益明,忻新泉.无机化学学报,1999,15(3):273-292
    70. 杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000.214-215
    71. Sharp J S, Brindley G W, Achar B N. Numerical data for some commonly used solid state reactions. J Am Ceram Soc, 1966.49(7):379-382
    72. Beretka J, Brown T. Effect of particle size on the kinetics of the reaction between magnesium and aluminum oxides. J Am Ceram Soc, 1983. 66(5):383-388
    73. Koga N, Criado J M. Kinetic analyses of solid state reactions with a particle size distribution. J Am Ceram Soc. 1998. 81(11): 2901-2909
    74. Frade J R, Cable M. Theoretical solutions for mixed control of solid state reactions. J Mater Sci, 1997. 32: 2723-2727.
    75. Frade J R. Reexamination of the basic theoretical model for the kinetics of solid state reactions. J Am Ceram Soc, 1992. 75(7):1949-1957
    76. Bandy M C. Mineralogy of three sulfate deposits of northern Chile. American Mineralogist, 1938. 23: 669-760
    77. Menchetti S, Bindi L, Bonazzi P. Disordered distribution of Cu in the crystal structure of Leightonite, K_2Ca_2Cu (SO_4)_4·2H_2O. American Mineralogist, 2002. 87:721-725
    78. 闻辂.红外矿物光谱学.重庆:重庆大学出版社,1989.45-65
    79. 彭文世,刘高魁.矿物红外光谱图集.北京:科学出版社,1982.32-53
    80. Kloprogge J T, Ding Z, Martens W N. Thermal Decomposition of Syngenite, K_2Ca(SO_4)2.H_2O. Thermochimica Acta, 2004.417:143-155
    81. Ojkova T, Stoilova D, Barkov D. On the double salt formation in the systems Rb_2SeO_4-ZnSeO_4-H_2O and Cs_2SeO_4-ZnSeO_4-H_2O at 25℃ Chemical Monthly, 2000. 131(10): 19-23
    82. 夏树屏,李军,高世扬.盐卤硼酸盐化学——ⅩⅩⅧ氯柱硼镁石的激光拉曼光谱.无机化学学报,1995.02:152-158
    83. 李武,高世扬,夏树屏.纤维硼镁石的高温水热合成研究.盐湖研究,1996.4(3-4):43-47
    84. 岳涛,朱黎霞,高世扬.硫氧镁化合物的水热合成、FTIR光谱和Raman光谱表征.光谱学与光谱分析,2003.6:1115-1118
    85. 刘志宏,胡满成,高世扬.MgO·3B_2O_3·3.5H_2O的合成,表征及其溶液Raman光谱分析.无机化学学报,2002.18(12):1226-1228
    86. Shiozaki Y, Nakamura E, Mitsui T. Landolt-Bdrnstein-Group Ⅲ Condensed Matter(36B2)-Inorganic Substances other than Oxides. Springer Berlin Heidelberg, 2005. 1-13
    87. 徐宁,杨振海,邱竹贤.氧化铝在冰晶石熔体中溶解的动力学模型.东北大学学报(自然科学版),1999.03:315-318
    88. 李勇,夏树屏,李青凤.溶解动力学和结晶动力学研究的参数优化.盐湖研究,1999.7(1):47-54
    89. 曾忠民,夏树屏,洪显兰.软钾镁矾溶解动力学研究,盐湖研究.1994.2(1):57-62
    90. 高世扬,李青凤,李若愚.多参数跟踪装置研究盐和复盐溶解动力学.计算机与应用化学,1995.12(2):132-136
    91. Ramesh S, Arof A K. Electrical conductivity studies of polyvinyl chloride-based electrolytes with double salt system. Solid satate ionics, 2000. 136: 1197-1200
    92. 夏树屏,童义平,高世扬.氯碳酸镁盐的溶解,转化机制及动力学研究.无机化学学报,1995.11(1):8-14
    93. Keskinler B, Bayamohlu M. Intenation Journal of processing, 1992. 36:259
    94. W.斯塔姆,J.J.摩尔根.水化学:天然水体化学平衡导论(汤鸿霄译).北京:科学出版社,1987.232-34
    95. 童义平.氯碳酸镁盐的溶解研究[硕士学位论文].西宁:中国科学院青海盐湖研究所,1990
    96. 夏树屏,高世扬,刘志宏.溶解动力学的数学模型和热力学函数.盐湖研究,2003.03:47-50
    97. 夏树屏,陈若愚,高世扬.青藏高原钠硼解石的物理化学特征.沉积学报,1994.1:117-122
    98. 曾忠民,夏树屏,洪显兰.软钾镁矾溶解动力学研究,盐湖研究.1994.2(1):57-62
    99. 马玉涛,夏树屏,高世扬.硼酸盐化学(ⅩⅩⅪ)—MgO·2B_2O_3-18%MgSO_4-H_2O饱和溶液结晶动力学研究.高等学校化学学报,2002.23(1):18-21
    100. 洪显兰,夏树屏,高世扬.钾光卤石溶解动力学.应用化学,1994.3:26-31
    101. 陈若愚,夏树屏,高世扬.青藏高原钠硼解石在水中溶解动力学和热力学的研究.盐湖研究,1994.1:52-56
    102. 洪显兰,夏树屏,高世扬.钾光卤石溶解过程研究.盐湖研究,1994.2:44-48
    103. 王典芬.X-射线光电子能谱在非金属材料研究中的应用.武汉:武汉工业出版社,1994.204-208
    104. 钱迈平,厉建华,孙万栓.三叠纪扬子板块的漂移导致下扬子区石膏硬石膏矿床的形成.江苏地质,2002.26(03):129-134
    105. 林耀庭,曹善行,熊淑君等.四川盆地海相三叠系硬石膏和盐卤水的硫同位素组成及意义.化工矿产地质,1997.19(03):171-176
    106. 卢志诚.试论中国石膏矿床成因类型.石膏专辑.中国地质学会非金属矿产地质专业委员会第一次学术交流会.北京:1981.40-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700