用户名: 密码: 验证码:
基于稳健与可靠性优化设计的轿车车身轻量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减轻汽车自重是节约能源和提高燃油经济性、减少环境污染的最基本途径之一。车身重量约占整车重量的40%左右,车身的轻量化对于整车的轻量化起着举足轻重的作用。在车身轻量化实际工程应用中,由于工艺制造、环境变化、人为操作等环节中的不确定性因素使得零部件的板厚及材料性能参数(屈服极限、强度极限、弹性模量等)与名义设计值之间存在一定的变差,这些随机变量的变差直接影响汽车的各项结构性能,致使轻量化方案缺乏可靠性,从而丧失实际工程可行性。本文针对现有车身结构形式,从轿车车身轻量化的参数设计角度,基于稳健与可靠性优化设计的理论方法,计及板厚、材料性能参数的变差及其对各项结构性能的影响,开展对轿车车身轻量化方法及工程应用的研究,主要研究工作及结论如下:
     (1)复杂近似建模方法拟合结构耐撞性能指标的对比分析研究
     车身结构复杂系统具有设计变量多、结构性能响应非线性强等特点,针对二次多项式响应面进行轿车耐撞性等强非线性性能指标的拟合建模远远不能满足精度与计算效率要求的问题,基于试验设计和近似拟合理论与方法,引入机器学习领域的新方法―――支持向量回归(Support vector regression, SVR),围绕结构耐撞安全性能指标的拟合建模,从拟合精度与计算效率两方面,与移动最小二乘(Moving leastsquare, MLS)、人工神经网络(Artificial neural network, ANN)、克罗格(Kriging)、径向基函数(Radial basis function, RBF)四种常用近似拟合方法进行了对比、分析研究,旨在提供一种先进的适合建立车身强非线性结构性能指标的拟合方法。研究表明,支持向量回归方法在拟合精度及计算效率上具有明显的优势,更适合应用于建立车身强非线性结构性能指标的近似拟合模型。
     (2)基于支持向量回归的车身结构性能指标自适应建模方法研究
     为提高近似拟合模型在最优解处的预测精度,从而得到具有工程可实施性的优化设计方案,基于利用有限元仿真检验最优设计解的思想,针对车身结构性能指标拟合建模中的自适应反馈方法进行了研究。通过对具体检验内容的研究,提出了自适应反馈过程的重要判别依据,建立了基于支持向量回归的自适应拟合建模方法。依据建立的设计流程与步骤,针对车身前部结构轻量化的工程实例进行了研究,验证了该方法的可行性。基于支持向量回归的自适应建模方法利用有限元仿真分析手段对最优设计解进行检验,并将最优设计解的样本信息反馈至近似拟合模型,保证了最优设计解与仿真分析结果的一致性,从而有效提高了拟合模型预测最优设计解的精度,为稳健与可靠性优化设计提供了高精度的近似拟合建模方法。
     (3)基于蒙特卡罗(MCS)的稳健与可靠性优化设计串行优化策略研究
     针对目前稳健与可靠性优化设计中的传统双循环优化策略计算效率低、求解不稳定的问题,基于解耦优化与可靠性分析过程的思想,对串行的优化策略进行了研究。通过对约束界限移动步长及约束界限值计算方法的研究,实现了串行优化策略中的确定性优化约束边界自适应调整过程,建立了自适应的约束边界调整方法。提出了基于MCS的串行优化策略,并建立了具体实现步骤。经理论的数学案例以及典型的工程应用案例验证了该优化策略的可行性。基于MCS的串行优化策略摒弃了传统双循环优化策略低效率的劣势,避免了最大可能失效点(Most probable point, MPP)方法进行可靠性分析的多MPP问题,保证可靠度计算精度的同时,有效提高了优化求解效率,适合应用于复杂系统的工程稳健与可靠性优化设计问题,为车身轻量化方法及其工程应用研究奠定了基础。
     (4)基于稳健与可靠性优化设计的轿车车身轻量化方法研究
     针对轿车车身结构轻量化的特点,结合基于支持向量回归的自适应建模方法以及基于MCS的串行优化策略,对轿车车身轻量化方法进行了研究。提出了基于稳健与可靠性优化设计的轿车车身轻量化总体构架,并建立了具体流程与详细设计步骤,进行了整个轿车车身轻量化工程实例设计研究,得到了工程上可行的轻量化方案并应用于实车轻量化改进,验证了基于稳健与可靠性优化设计的轿车车身轻量化方法的可行性。该方法有效提高了轻量化设计解的工程可行性以及设计效率,为车身轻量化提供了可借鉴的方法。在此基础上,构建了基于稳健与可靠性优化设计的轿车车身轻量化软件平台,为实际工程应用提供了可操作性的设计工具。
Weight reduction of automobiles is a fundamental approach to realize fuel economyand environmental protection. The weight reduction in body structure plays a ratherimportant role in decreasing the weight of full vehicle, which results from the fact thatbody structure possesses about40%weight of full vehicle. In real engineering applications,the variation of gauge thicknesses and mechanical parameters of material (yield limit, ultratensile strength, Young’s modulus) caused by uncertainties including environmentalchange, manufacturing precision and individual difference of operators, affects directly thestructural performances of autobody structure. The lightweight design without consideringaforementioned variations may fail to meet the requirements of structural performances,which will lead to a lack of feasibility and reliability in a real engineering application. Thedissertation concentrates on the study of determining the parameters of the existingautobody structure topology, including sheet thicknesses and mechanical parameters ofmaterial, to achieve the lightweight design of autobody structure. Based on robust andreliability-based design optimization (RRBDO), the method for the lightweight design ofautobody structure, coupled with its engineering application, is investigated consideringthe variation of sheet thickness and mechanical parameters of material caused by variouskinds of uncertainties. The main research work and corresponding conclusions are listedas follows:
     (1) Comparative study of complex metamodeling techniques for approximating
     crashworthiness performance indicators
     The lightweight design for autobody structure is generally considered as the designoptimization problem for a complex system, since autobody structure is characterized bystrong nonlinear structural performance responses and large number of random variables.Polynomial response surface frequently undergoes bad accuracy and efficiency when approximating the structural performance indicators. To overcome this difficulty, supportvector regression (SVR) that is a new technique in machine learning is introduced toapproximate the crashworthiness performance indicators of autobody structure. Thecomparative study of SVR with four commonly used complex metamodeling techniquesincluding moving least square (MLS), artificial neural network (ANN), Kriging (KG) andradial basis function (RBF) is performed. The comparison is investigated both inapproximation accuracy and computational efficiency. It is shown that SVR outperformsother metamodeling techniques considering both approximation accuracy and efficiency.Consequently, SVR will be used in the succeeding study work to approximate structuralperformance indicators of autobody structure.
     (2) Study on SVR-based adaptive metamodeling method for approximating
     performance indicators of autobody structure
     The improvement in prediction accuracy of metamodels at the design optimum willhelp obtain a reliable and feasible design scheme in real engineering applications. Toachieve this goal, the adaptive metamodeling method is studied based on the idea ofverifying the design optimum by using the finite element analysis. The SVR-basedadaptive metamodeling method is proposed and the framework and steps of the methodincluding verification and criterion are introduced in detail. The study case of lightweightdesign for frontal autobody structure is given and the surrogates of crashworthinessperformance indicators are constructed by using the proposed SVR-based adaptivemetamodeling method. The optimum design verified by the finite element simulation isfinally obtained, which makes the lightweight scheme more reliable in the real engineeringapplication. In this method, the design optimum is verified by using finite elementsimulation and then the simulation results of the design optimum will be fed back as theinformation of a sampling point that will be used if necessary to reconstruct themetamodels of structural performance indicators. It is shown that the prediction accuracyof metamodels at the design optimum is effectively improved and guaranteed, whichprovides a high-fidelity metamodeling method for RRBDO of autobody structure.
     (3) Study on sequential optimization strategy of RRBDO based on MCS
     In robust and reliability-based design optimization (RRBDO), traditional double loop(DL) strategy is frequently used but the weakness in solving efficiency and accuracy isusually aggravated for a large-scale engineering application. In order to tackle the problem, sequential optimization strategy is investigated based on decoupling the process ofoptimization and reliability analysis. The MCS-based sequential optimization strategy isproposed and the design steps are introduced in detail. The adaptive constraint shiftingmethod is created, which helps to realize the constraint boundary shifting for thedeterministic optimization process. The proposed strategy is verified by using classicalmathematical and engineering cases. By using the MCS-based sequential optimizationstrategy, both the unstability and multi-MPP problems of DL strategy are overcome. Whilethe accuracy for the reliability analysis is guaranteed and the solution efficiency is greatlyimproved. Consequently, the MCS-based sequential optimization strategy is suitable forbeing used in the RRBDO of complex system, which lays the foundation for thesucceeding study on the lightweight design method and corresponding engineeringapplications.
     (4) Study on lightweight design method of autobody structure based on RRBDO
     According to the particularity of the lightweight design for autobody structure, thelightweight design method of autobody structure based on RRBDO is investigated bycombining the SVR-based adaptive metamodeling method and MCS-based sequentialoptimization strategy. The framework of RRBDO-based method for autobody lightweightdesign is proposed and the detailed introduction to the design steps is given. Anapplication case of the lightweight design for full autobody structure is investigated andthe reliable lightweight scheme is obtained and applied in real engineering application,which verifies the feasibility of the proposed RRBDO-based method for autobodylightweight design. By using the RRBDO-based method for autobody lightweight design,the lightweight scheme is more reliable and the design efficiency is effectively improved.Furthermore, a software platform is developed based on the proposed method, which aimsat providing an operable and convenient tool for being used in automotive engineeringapplications.
引文
[1] Joseph C., Benedy K. Light metals in automotive applications. Light Metal Age.2000,10:34-35.
    [2]冯美斌.从SAE2004年会看汽车材料发展趋势.汽车材料与工艺.2004,22(6):6-12.
    [3] Shi M. F. Advanced High Strength Steels: Properties, Performances and Applications.Automotive Material Seminar, Mar7,2003, Detroit.
    [4]张继魁,王保忠,董伦.从2004汽车材料年会看汽车材料的发展.重型汽车.2004,19(6):22-26.
    [5] Friesen F., Cunat P. J. Application of Stainless Steel in Crash Structures of Vehicles. SAE Paper,2004-01-0882.
    [6] Tack J., Tandon G., Fonseka S. Lightweight Tailgates with Stainless Steel. SAE Paper,2004-01-0883.
    [7] Kim K. Y., Kim Y. H., Lee Y. D., et al. Application Study of an Automotive Structural Part withNitrogen-Alloyed High Strength Austenitic Stainless Steel. SAE Paper,2004-01-0884.
    [8] Labelle P., Baril E., Fischersworring A., et al. Alloy Used for a New Engine Block. SAE Paper,2004-01-0659.
    [9] Vert P., Niu X. P., Aghion E., et al. Comparative Evaluation of Automotive Oil Pans Fabricatedby Creep Resistant Magnesium Alloy and Aluminum Alloy. SAE Paper,2004-01-0658.
    [10] Druschitz A. P., Showalter E. Evaluation of High Temperature, Cast Magnesium Alloy, FrontEngine Covers. SAE Paper,2004-01-0657.
    [11] Carrera M., Castejon L., Gil E., et al. Development of an Innovative Concept of LightSemi-Trailer by Means of FEM and Testing. SAE Paper,2004-01-1517.
    [12] Pan T. Y., Pan J. Applications of Polymeric Materials in Automotive Body Structure.Automotive Body Seminar. Mar7,2004, Detroit.
    [13] McKune P. M., Lightweight Closure Assemblies Utilizing Structural Foam. SAE Paper,2004-01-1514.
    [14] Cornette D., Hourman T., Hudin O., et al. High Strength Steels for Automotive Safety Parts.SAE Paper,2001-01-0078,37-47.
    [15] Shaw J. R., Zuidema B. K. New High Strength Steels Help Automakers Reach Future Goalsfor Safety, Affordability, Fuel Efficiency and Environmental Responsibility. SAE Paper,2001-01-3041,976-983.
    [16] Botkin M. E. Structural Optimization of Automotive Body Components Based on ParametricSolid Modeling. Engineering with Computers.2002,18(2):109-115.
    [17] Koehr R. ULSAC-Lightweight Steel Automotive Closures. SAE Paper,2001-01-0076,21-28.
    [18] Lanzerath H., Schilling R. Crash Simulation of Structural Foam. SAE Paper,2003-01-0328,73-81.
    [19] Danyo M. W., Young C. S., Cornille H. J., et al. A Design Concept for an Aluminum SportUtility Vehicle Frame. SAE Paper,2003-01-0572,261-267.
    [20] Vanderplaats G. N. Saving Energy Through Design Optimization. SAE Paper,2003-01-1331,587-593.
    [21] Ma Z. D., Wang H., Kikuchi N., et al. Substructure Design Using a Multi-Domain Multi-StepTopology Optimization Approach. SAE Paper,2003-01-1303,1349-1357.
    [22] Harte A. M., Atenhof W. Uses for Stabilized Aluminum Foam in Crashworthiness andStrengthening Applications. SAE Paper,2003-01-1295,559-568.
    [23] Cornille H. J., Danyo M. W., et al. The P2000S Unitized Sport Utility Vehicle Body Structure.SAE Paper,2003-01-0573,270-279.
    [24] Ishihama M., Lizuka S., Tanahashi K., et al. Optimization of Super-Lightweight Space-FrameVehicle Structure. SAE Paper,2003-01-1709,2221-2226.
    [25]沈浩,陈昌明,姚晓冬,等.客车车身轻量化分析.客车技术与研究.2003,25(3):8-10.
    [26]王宏雁,徐少英.车门的轻量化设计.汽车工程.2004,26(3):349-353.
    [27]王宏雁,陈君毅.复合材料后举门结构设计探索.汽车研究与开发.2005,22(12):23-25.
    [28]田浩彬,林建平,刘瑞同,等.汽车车身轻量化及其相关成形技术综述.汽车工程.2005,27(3):381-384.
    [29]肖军.现代轿车全铝车身的研究和发展趋势.铝加工.2005,165(6),32-35.
    [30]贺岩松,杨诚.镁合金在轻量化汽车中的应用.汽车工艺与材料.2002,22(6),25-27.
    [31]桂良进,周长路,范子杰.某型载货车车架结构轻量化设计.汽车工程.2003,25(4):404-407.
    [32]朱平,张宇,葛龙,等.基于耐撞安全性仿真的轿车车身材料轻量化研究.机械工程学报.2005,41(9):207-211.
    [33]张宇,朱平,陈关龙,林忠钦.基于有限元法的轿车发动机罩板轻量化设计.上海交通大学学报.2006,40(1):163-166.
    [34] Taguchi G. Introduction to Quality Engineering. Tokyo: Asian Productivity Organization,1986.
    [35]陈立周.稳健设计.北京:机械工业出版社,2000.
    [36] Geoff R.V., Raymond H. M. Combining Taguchi and response surface philosophics: a dualresponse approach. Journal of Qualify Technology.1990,22(1):38-45.
    [37] Wu D. H., Chang M. S. Use of Taguchi method to develop a robust design for the magnesiumalloy die casting process. Materials Science and Engineering A.2004,379(1-2):366-371.
    [38] Hwang K. H., Lee K. W., Park G. J. Robust optimization of an automobile rearview mirror forvibration reduction. Struct Multidisc Optim.2001,21(4):300-308.
    [39] Rai B., Nanua S., et al. Robust design of an interior hard trim to improve occupant safety in avehicle crash. Reliability Engineering and System Safety.2005,89(3):296-304.
    [40] Yeniay O., Unal R., Lepsch R. A. Using dual response surfaces to reduce variability in launchvehicle design: A case study. Reliability Engineering and System Safety.2006,91(4):407-412.
    [41] Chen D. C., Chen C. F. Use of Taguchi method to develop a robust design for the shape rollingof porous sectioned sheet. Journal of Materials Processing Technology.2006,177(1-3):104-108.
    [42]李玉强,崔振山,陈军,等.基于双响应面模型的6σ稳健设计,机械强度.2006,28(5):690-694.
    [43] Parkinson A. Robust mechanical design using engineering models. ASME J. Mech. Des.1995,117(2):48-54.
    [44] Chen W., Allen J. K., Mistree F., et al. A procedure for robust design: minimizing variationscaused by noise factors and control factors. ASME J. Mech. Des.,1996,118(4):478-485.
    [45] Chen W., Sahai A., Messac A., et al. Exploration of the Effectiveness of PhysicalProgramming in Robust Design. ASME J. Mech. Des.2000,122(2):155-163.
    [46] Parkinson D. B. The application of a robust design method to tolerance. ASME J. Mech. Des.2000,122(2):149-154.
    [47] Gupta K. C., Li J. M. Robust design optimization with mathematical programming neuralnetworks. Computers and Structures.2000,76(4):507-516.
    [48] Du X. P., Chen W. Towards a Better Understanding of Modeling Feasibility Robustness inEngineering Design. ASME J. Mech. Des.2000,122(4):385-394.
    [49] Du X. P., Chen W. Efficient uncertainty analysis methods for multidisciplinary robust design.AIAA J.2002,40(3):545-552.
    [50] Lee K. H., Park G. J. Robust optimization considering tolerances of design variables.Computers and Structures.2001,79(1):77-86.
    [51] Zhu J. M., Ting K. L. Performance Distribution Analysis and Robust Design. ASME J. Mech.Des.2001,123(1):11-17.
    [52] Au F. T. K., Cheng Y. S., Tham L. G., et al. Robust design of structures using convex models.Computers and Structures.2003,81(28-29):2611-2619.
    [53] Doltsinis I., Kang Z. Robust design of structures using optimization methods. Comput.Methods Appl. Mech. Engrg.2004,193(23-26):2221-2237.
    [54] Gunawan S., Azarm S. Non-Gradient Based Parameter Sensitivity Estimation for SingleObjective Robust Design Optimization. ASME J. Mech. Des.2004,126(1):395-402.
    [55] Gunawan S., Azarm S. Multi-objective robust optimization using a sensitivity region Concept.Struct Multidisc Optim.2005,29(1):50-60.
    [56] Koksoy O. Multiresponse robust design: Mean square error (MSE) criterion. AppliedMathematics and Computation.2006,175(2):1716-1729.
    [57] Salazar A. D. E., Rocco S. C. M. Solving advanced multi-objective robust designs by means ofmultiple objective evolutionary algorithms (MOEA): A reliability application. ReliabilityEngineering and System Safety.2007,92(6):697-706.
    [58] Apley D. W., Liu J., Chen W. Understanding the Effects of Model Uncertainty in RobustDesign With Computer Experiments, ASME J. Mech. Des.2006,128(2):945-958.
    [59]郭惠昕.稳健设计研究现状与模糊稳健设计研究进展.机械设计.2005,22(2):1-4.
    [60]朱学军,王安麟,张惠侨.非稳态罚函数遗传算法及其用于机械/结构系统的健壮性设计.机械科学与技术.2000,19(1):49-51.
    [61]曹衍龙,杨将新,吴昭同,等.面向制造环境的稳健公差设计方法.中国机械工程.2003,14(2):134-137.
    [62]谭晓兰,韩建友,陈立周.基于随机模型的轨迹发生机构稳健设计研究.燕山大学学报.2004,28(5):395-399.
    [63] Kocvara M., Zowe J., Nemirovski A. Cascading-an approach to robust material optimization.Computers and Structures.2000,76(1-3):431-442.
    [64] Lee K. H., Park G. J. Robust optimization considering tolerances of design variables.Computers and Structures.2001,79(1):77-86.
    [65] Monu K., Kurt H., Kemper L. A Comprehensive Robust Design Approach for DecisionTrade-Offs in Complex Systems Design. ASME J. Mech. Des.2001,123(1):1-10.
    [66] Sandgren E., Cameron T. M. Robust design optimization of structures through consideration ofvariation. Computers and Structures.2002,80(20-21):1605-1613.
    [67] McAllister C. D., Simpson T. W. Multidisciplinary Robust Design Optimization of an InternalCombustion Engine. ASME J. Mech. Des.2003,125(1):124-130.
    [68] Widyan A. K., Angeles J. A Model-Based Formulation of Robust Design. ASME J. Mech. Des.2005,127(2):388-396.
    [69] Murphy T. E., Tsui K. L., Allen J. K. A review of robust design methods for multipleresponses. Research in Engineering Design.2005,15(4):201-215.
    [70] Zang C., Friswell M. I., Mottershead J. E. A review of robust optimal design and itsapplication in dynamics. Computers and Structures.2005,83(4-5):315-326.
    [71] Cho B. R., Park C. Robust design modeling and optimization with unbalanced data. Computers&Industrial Engineering.2005,48(2):173-180.
    [72] Mourelatos Z. P., Liang J. H. A Methodology for Trading-Off Performance and RobustnessUnder Uncertainty. ASME J. Mech. Des.2006,128(2):856-863.
    [73] Allen J. K., Seepersad C., Choi H. J., et al. Robust Design for Multiscale and MultidisciplinaryApplications. ASME J. Mech. Des.2006,128(2):832-843.
    [74]贺向东,张义民,刘巧伶.非正态分布的汽车半轴凸缘的可靠性稳健设计.汽车工程.2005,27(1):100-102.
    [75]申焱华,张文明,樊百林.基于稳健设计的非公路汽车转向杆系优化分析.北京科技大学学报.2005,27(6):720-723.
    [76]黄洪钟,刘鸿莉,古莹奎,等.基于物理规划的模糊稳健优化设计.清华大学学报(自然科学版).2005,45(8):1020-1022.
    [77]程贤福,肖人彬.基于容差模型和正交试验的四连杆变幅机构稳健优化设计.中国机械工程.2006,17(21):2274-2277.
    [78] Lee J. O., Yang Y. S., Ruy W. S. A comparative study on reliability-index andtarget-performance-based probabilistic structural design optimization. Computers andStructures.2002,80(3-4):257-269.
    [79] Pan Z. L., Chen L., Zhang G. Z. A Neural Network Method for Reliability Optimizations ofComplex Systems. Wuhan University Journal of Natural Sciences.2007,12(1):139-142.
    [80] Youn B. D., Choi K. K. A new response surface methodology for reliability-based designoptimization. Computers and Structures.2004,82(2-3):241-256.
    [81] Youn B. D., Choi K. K., Park Y. H. Hybrid Analysis Method for Reliability-Based DesignOptimization. ASME J. Mech. Des.2003,125(2):221-232.
    [82] Youn B. D., Xi Z. M. Reliability-based robust design optimization using the eigenvectordimension reduction (EDR) method. Struct Multidisc Optim.2009,37(5):475-492.
    [83] Tu J., Choi K. K. A New Study on Reliability-Based Design Optimization. ASME J. Mech.Des.1999,121(4):557-564.
    [84] Cheng G. D., Xu L., Jiang L. A sequential approximate programming strategy forreliability-based structural optimization. Computers and Structures.2006,84(21):1353-1367.
    [85] Liang J. H., Mourelatos Z. P., Nikolaidis E. A Single-Loop Approach for SystemReliability-Based Design Optimization. ASME J. Mech. Des.2007,129(4):1215-1224.
    [86] Ahn J., Kwon J. H. An efficient strategy for reliability-based multidisciplinary designoptimization using BLISS. Struct Multidisc Optim.2006,31(5):363-372.
    [87] Du X. P., Sudjianto A., Chen W. An Integrated Framework for Optimization UnderUncertainty Using Inverse Reliability Strategy. ASME J. Mech. Des.2004,126(2):562-570.
    [88] Du X. P., Chen W. Collaborative Reliability Analysis under the Framework ofMultidisciplinary Systems Design. Optimization and Engineering.2005,6(1):63-84.
    [89] Du X. P., Huang B. Q. Reliability-based design optimization with equality constraints. Int. J.Numer. Meth. Engng.2007,72(11):1314-1331.
    [90] Yang D. X., Li G., Cheng G. D. Convergence analysis of first order reliability method usingchaos theory. Computers and Structures.2006,84(8-9):563-571.
    [91] Nikolaidis E. Decision-Based Approach for Reliability Design. ASME J. Mech. Des.2007,129(2):466-475.
    [92] Shan S. Q., Wang G. G. Failure Surface Frontier for Reliability Assessment on ExpensivePerformance Function. ASME J. Mech. Des.2006,128(4):1227-1235.
    [93] Ba-abbad M. A., Nikolaidis E., Kapania R. K. New Approach for System Reliability-BasedDesign Optimization. AIAA journal.2006,44(5):1087-1096.
    [94] Lee T. H., Jung J. J. A sampling technique enhancing accuracy and e ciency ofmetamodel-based RBDO: Constraint boundary sampling. Computers and Structures.2008,86(13-14):1463-1476.
    [95]顾金梅,黄风立,张海军.多目标模糊优化方法及其在可靠性设计中的应用.机械设计与制造.2008,45(1):43-45.
    [96]姜封国,安伟光.基于混合遗传算法的随机结构可靠性优化设计.华南理工大学学报(自然科学版).2008,36(1):152-156.
    [97] Chau K. W. Reliability and performance-based design by artificial neural network. Advancesin Engineering Software.2007,38(3):145-149.
    [98] Yu H. Y., Chu C. B., Chatelet E., et al. Reliability optimization of a redundant system withfailure dependencies. Reliability Engineering and System Safety.2007,92(12):1627-1634.
    [99] Zhao J. H., Liu Z. H., Dao M. T. Reliability optimization using multiobjective ant colonysystem approaches. Reliability Engineering and System Safety.2007,92(1):109-120.
    [100] Kaymaz I., Marti K. Reliability-based design optimization for elastoplastic mechanicalstructures. Computers and Structures.2007,85(10):615-625.
    [101] Youn B. D., Choi K. K., Yang R. J., et al. Reliability-based design optimization forcrashworthiness of vehicle side impact. Struct Multidisc Optim.2004,26(3-4):272-283.
    [102] Aoues Y., Chateauneuf A. Reliability-based optimization of structural systems by adaptivetarget safety-Application to RC frames. Structural Safety.2008,30(2):144-161.
    [103] Mogami K., Nishiwaki S., Izui K. Reliability-based structural optimization of frame structuresfor multiple failure criteria using topology optimization techniques. Struct Multidisc Optim.2006,32(4):299-311.
    [104] Fan H., Li W. J. An Efficient Method for Reliability-based Multidisciplinary DesignOptimization. Chinese Journal of Aeronautics.2008,21(4):335-340.
    [105] Jensen H. A., Valdebenito M. A., Schueller G. I. An e cient reliability-based optimizationscheme for uncertain linear systems subject to general Gaussian excitation. Comput. MethodsAppl. Mech. Engrg.2008,198(1):72-87.
    [106] DIppolitoa R., Hackb M., Donders S., et al. Improving the fatigue life of a vehicle knucklewith a reliability-based design optimization approach. Journal of Statistical Planning andInference.2009,139(5):1619-1632.
    [107] Pellissetti M., Capiez-Lernout E., Pradlwarter H. Reliability analysis of a satellite structurewith a parametric and a non-parametric probabilistic model. Comput. Methods Appl. Mech.Engrg.2008,198(2):344-357.
    [108]孙春一,马玉华.多层包扎压力容器模糊可靠性优化设计.石油和化工设备.2008,10(2):6-9.
    [109]张义民,王世鹏,解艳彩.广义随机空间内汽车零部件的可靠性优化设计.汽车工程.2008,30(3):268-271.
    [110]王世鹏,刘金刚.含有相关变量的螺旋管簧的可靠性优化设计,机械设计制造.2008,45(5):36-38.
    [111]车晓毅,罗佑新,徐静蓉.基于同伦优化设计的机械零件可靠性优化设计.机械传动.2008,32(2):43-46.
    [112] Box G. E. P., Wilson K. B. On the Experimental Attainment of Optimum Conditions (withDiscussion). Journal of Royal Statistical Society.1951,13:1-45.
    [113] Myers R. H., Montgomery D. C. Response Surface Methodology. New York: JohnWiley&Sons, Inc.,1995.
    [114]赵洁,机械可靠性分析的响应面法研究[D],西北工业大学:西安,2006.
    [115] Wang G. G., Shan S. Q. Review of Metamodeling Techniques in Support of EngineeringDesign Optimization. ASME J. Mech. Des.2007,129(4):370-380.
    [116] Jin R., Chen, W., Simpson T. W. Comparative Studies of Metamodeling Techniques UnderMultiple Modeling Criteria. Structural and Multidisciplinary Optimization.2001,23(1):1-13.
    [117] Hussain M. F., Barton R. R., Joshi S. B. Metalmodeling: Radial basis functions versuspolynomials. European Journal of Operational Research.2002,138(1):142-154.
    [118] Redhe M., Giger M., Nilsson L. An investigation of structural optimization in crashworthinessdesign using a stochastic approach. Struct Multidisc Optim.2004,27(6):446-459.
    [119] Fang H., Rais R. M., Liu Z., et al. A comparative study of metamodeling methods formultiobjective crashworthiness optimization. Computers and Structures.2005,83(25-26):2121-2136.
    [120] Chen V. C. P., Tsui K. L., Barton R. R., et al. A review on design, modeling and applicationsof computer Experiments. IIE Transactions.2006,38(4):273-291.
    [121] Yang R. J., Wang N., Tho C. H., et al. Metamodeling Development for Vehicle Frontal ImpactSimulation. ASME J. Mech. Des.2005,127(3):1014-1020.
    [122] Goel T., Haftka R. T., Shyy W., et al. Ensemble of surrogates. Struct Multidisc Optim.2007,33():199-216.
    [123] Gano S. E., Renaud J. E., Martin J. D., et al. Update strategies for kriging models used invariable fidelity optimization. Struct Multidisc Optim.2006,32(4):287-298.
    [124] Sanchez E., Pintos S., Queipo N. V. Toward an optimal ensemble of kernel-basedapproximations with engineering applications. Struct Multidisc Optim.2008,36(3):247-261.
    [125] Jin R., Du X. P., Chen W. The use of metamodeling techniques for optimization underuncertainty. Struct Multidisc Optim.2003,25(2):99-116.
    [126] Queipo N. V., Haftka R. T., Shyy W., et al. Surrogate-based analysis and optimization.Progress in Aerospace Sciences.2005,41(1):1-28.
    [127] Mullur A. A., Messac A. Metamodeling using extended radial basis functions: a comparativeApproach. Engineering with Computers.2006,21(3):203-217.
    [128] Acar E., Rais R. M. Ensemble of metamodels with optimized weight factors. Struct MultidiscOptim.2009,37(3):279-294.
    [129] Glaz B., Goel T., Liu L., et al. Multiple-Surrogate Approach to Helicopter Rotor BladeVibration Reduction. AIAA Journal.2009,47(1):271-282.
    [130] Haldar A., Mahadevan S. Probability, Reliability and Statistical Methods in EngineeringDesign. New York: John Wiley&Sons, Inc.,2000.
    [131]陈立周,等.工程随机变量优化设计方法原理与应用.北京:科学出版社,1997.
    [132]武清玺,结构可靠性分析及随机有限元法.北京:机械工业出版社,2005.
    [133] Kleiber M., Hien T. D. The stochastic finite element method. New York: John Wiley&Sons,Inc.,1992.
    [134] Xu H., Rahman S. A generalized dimension-reduction method for multidimensionalintegration in stochastic mechanics. Int J Numer Methods Eng.2004,61():1992-2019.
    [135] Charnes A., Cooper W. W. Chance constrained programming. Management Science.1959,6(1):73-79.
    [136] Vapnik V., Golowich S., Smola, A.1997,“Support Vector Method for FunctionApproximation, Regression Estimation, and Signal Processing,” Advances in NeuralInformation Processing Systems, M. Mozer, M. Jordan, and T. Petsche, eds., MIT Press,Cambridge, MA, pp.281-287.
    [137] Clarke S. M., Griebsch J. H., Simpson T. W. Analysis of Support Vector Regression forApproximation of Complex Engineering Analyses. ASME J. Mech. Des.2005,127(4):1077-1087.
    [138]邓乃扬,田英杰.数据挖掘中的新方法――支持向量机.北京:科学出版社,2004.
    [139] Kim H. S., Wierzbicki T. Effect of the cross-sectional shape on crash behavior of a3-D spaceframe. Impact and Crashworthiness Laboratory Report No.34. May2000, MIT.
    [140] Simpson T. W., Lin D. K. J., Chen W., Sampling Strategies for Computer Experiments:Design and Analysis. International Journal of Reliability and Applications. August2001.
    [141] Fang K. T., Lin D. K. J., Winker P., et al. Uniform Design: Theory and Application.Technometrics.2000,39(3):237-248.
    [142]谢庆生,尹健,罗延科.机械工程中的神经网络方法.北京:机械工业出版社,2003.
    [143] Tang Q. Y., Feng M. G. DPS DATA PROCESSING SYSTEM-Experimental Design,Statistical Analysis and Data Mining. Beijing: Science Press,2007.
    [144] Shan S. Q., Wang G. G. Reliable design space and complete single-loop reliability-baseddesign optimization. Reliability Engineering and System Safety.2008,93(8):1218-1230.
    [145] Du X. P., Guo J., Beeram H. Sequential optimization and reliability assessment formultidisciplinary systems design. Struct Multidisc Optim.2008,35(2):117-130.
    [146]阳明盛,罗长童.最优化原理、方法及求解软件.北京:科学出版社,2006.
    [147] Hogg R. V., Craig A. T. Introduction to Mathematical Statistics. Beijing: Pearson Educationand Higher Education Press,2004.
    [148] Yang R. J., Gu L. Experience with approximate reliability-based optimization. Struct MultidiscOptim.2004,26(1-2):152-159.
    [149] Sobieszczanski S. J., Kodiyalam S., Yang R. J. Optimization of car body under constraints ofnoise, vibration, and harshness (NVH), and crash. Struct Multidisc Optim.2001,22(4):295-306.
    [150] Lam K.P., Behdinan K., Cleghorn W.L. A material and gauge thickness sensitivity analysis onthe NVH and crashworthiness of automotive instrument panel support. Thin-Walled Structures.2003,41(11):1005-1018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700