用户名: 密码: 验证码:
预应力桥梁结构耐久性与剩余寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代预应力桥梁结构因其良好的使用性能和优越的跨越能力而得到公路、铁路桥梁建设领域的大规模使用。预应力桥梁在气候、环境等自然因素的影响下,预应力混凝土材料同样逐渐老化,而日益增加的汽车重载作用损伤也使构件力学性能不断衰减。不仅如此,高强度预应力钢材带来的高应力工作状态也加剧了应力腐蚀后发生脆性破坏的风险。因而,对预应力桥梁的耐久性和继续正常服役的剩余寿命展开研究,可以真实的了解预应力桥梁在腐蚀环境中的可靠度,揭示桥梁耐久性寿命的时变规律,并且为预应力桥梁结构的正常安全的使用以及桥梁耐久性设计、评定提供理论基础和实践参考。
     本文针对预应力混凝土桥梁使用环境特点和结构的力学以及构造特征,在总结已有的耐久性和可靠度研究成果的基础上,基于可靠度对预应力桥梁耐久性及剩余寿命问题进行了深入的研究,主要研究内容为:
     1.对时变可靠度常用的时间综合法,时间离散法和首次超越概率法进行对比研究,给出了基于时间离散法的首次超越概率求解时变可靠度的分析方法,阐明了简明的求解思路。
     2.提出预应力混凝土结构的保护层体系的概念,通过对应力状态下碳化扩散模型的探讨,对多因素下完全碳化区和部分碳化区的碳化反应和扩散过程进行分析,提出了碳化失钝长度求解方程。建立一般大气环境预应力混凝土结构耐久性极限状态方程,并以之作为结构保护层厚度取值的重要条件。提出了碳化腐蚀条件下预应力混凝土保护体系最小厚度的确定方法,并给出了部分代表城市的推荐预应力混凝土保护体系最小厚度取值。进一步的,对应力状态下氯离子侵蚀和普通钢筋修正模型进行分析,建立氯离子侵蚀环境预应力混凝土结构耐久性极限状态方程,从而导出氯盐侵蚀条件下预应力混凝土保护体系最小厚度的确定方法,并据此给出了部分沿海代表城市的推荐氯盐腐蚀环境预应力混凝土保护体系最小厚度取值。
     3.从预应力桥梁结构的预应力钢筋锈蚀脱钝问题和预应力结构中普通钢筋锈胀开裂问题出发,以耐久性寿命时间历程为分析手段,探讨了碳化和氯离子侵蚀两类腐蚀环境下PC桥梁结构的预应力钢筋锈蚀脱钝时间和预应力结构中普通钢筋锈胀开裂时间,建立了与之对应的预应力钢筋的腐蚀耐久寿命和普通钢筋的锈胀开裂寿命,得出了两种耐久性寿命随腐蚀环境和时空特征变化的规律:碳化环境下,北方地区预应力桥梁结构预应力钢筋腐蚀耐久寿命小于其普通钢筋的锈胀开裂寿命,而南方地区由于高温湿热环境的影响,预应力桥梁结构预应力钢筋腐蚀耐久寿命大于其普通钢筋的锈胀开裂寿命。沿海氯盐环境下,氯离子的侵蚀较快,预应力钢筋的初锈时间和普通钢筋的锈胀时间都很短,并且沿海地区预应力结构中的普通钢筋锈胀开裂往往先于预应力钢筋锈蚀,其耐久性外观检查评定可以作为预应力桥梁结构的耐久性评价依据。
     4.以概率极限状态设计方法作为耐久性设计的方法,将PC桥梁结构耐久性极限状态和寿命终结标准各划分为三类,即PC桥梁预应力钢筋初锈极限状态、PC桥梁结构普通钢筋锈胀极限状态和预应力结构受力开裂极限状态;相对应的预应力钢筋初锈寿命准则、预应力桥梁普通钢筋锈胀寿命准则和预应力结构受力开裂寿命准则。推导了各腐蚀环境极限状态方程形式,给出了3种耐久性极限状态的目标可靠指标建议值。
     5.针对我国桥梁结构尤其是预应力桥梁结构耐久性病害呈现出的巨大的地域差异特征,对桥梁耐久性环境展开研究。通过对预应力桥梁结构耐久性的分析和论证,确定了以预应力保护体系厚度的环境区划作为桥梁耐久性环境区划研究的核心内容,完成了各环境影响因素敏感度因子的求解,确立了混凝土强度,温度和相对湿度作为桥梁耐久性环境区划指标。最后,通过对碳化和氯盐环境中的敏感度因子分析,分别给出了碳化和氯盐环境预应力保护体系厚度全国区划,为不同环境下耐久性设计和评定的开展建立了理论基础。
     6.针对预应力结构的荷载和抗力时变规律展开研究,通过对桥梁耐久性寿命基准期和评估基准期的讨论,分析了目前桥梁标准荷载对应的一般运行状态、密集运行状态荷载变化规律,推导了基于实测拟合荷载运行状态的桥上运营荷载在不同评估期内的荷载变化规律(该荷载为桥梁实测通行荷载统计数据分析后仿真模拟而得)。对碳化和氯盐腐蚀环境下预应力受力开裂极限状态对应的抗力衰减模式进行了分析,并最终给出了基于预应力受力开裂寿命准则的预应力桥梁耐久性剩余寿命时变可靠度分析方法,通过对30m跨径标准T形PC梁的分析,得到了碳化和氯盐腐蚀环境下结构可靠度指标随继续服役期的变化规律,揭示了腐蚀环境不同运营荷载下桥梁耐久性的变化规律,计算结果定量的解释了目前公路超载和重载交通导致桥梁耐久性下降、服役期急剧减少的事故原因,并验证了该计算方法的有效性。
Because of good performance characteristics and superior spanning capacity, modern prestressed concrete bridge structure are being used at a large-scale in the highway and railway construction areas. Under the influence of natural factors such as climate, environment, the material in prestressed concrete deteriorated gradually. And the structure damage caused by increasing overloading make its mechanical properties has constantly attenuated. High stress state of the high strength prestressed steel aggravates the risk of brittle fracture after stress corrosion. Therefore, through the study for the durability and service life prediction of the prestressed bridge, the PC (prestressed concrete)bridge reliability in the real corrosion environment can be known, the laws of time-dependent reliability can be disclosed. It can present theoretical basis and practice reference for the safty use and durability design, evaluation of the PC bridges.
     Considering the characteristics of using environment, mechanics properties and the structure features, some efforts have been made for the durability analysis and life prediction of PC bridge structure based on reliability. The major contents are presents as follows:
     1. After comparative study of the common time-dependent reliability methods such as the time comprehensive method, time discrete method and first excursion probability method,it presents the first excursion probability method basing on the time discrete to analysis the time-dependent structure reliability.and a clear solution approach for it is also be given.
     2. Presents the concept of the prestressed concrete covering layer system,then taking into consideration of the effect of stress level in concrete diffusion process, the carbonization reaction and diffusion process in the complete carbonated zone and the half-carbonated one under multi factor is analyzed. The carbonization loss-blunt length solving equation is presented frist, and the durability limit state equation for prestressed concrete structures under carbonization condition is proposed, which can determine the depth of the covering layer system for prestressed concrete structures. Then the paper proposes a method for determining covering layer system depth, and the depth of the covering layer system in some representative cities is given. Furthermore considering the effect of stress level in concrete and the non-prestressed reinforcement, it also presents a chloride ingress corrosion model. The durability limit state equation for prestressed concrete structures is established, which can determine the depth of the covering layer system for prestressed concrete structures. The paper then proposes a method for determining covering layer system depth, and the depth of the covering layer system for some representative coastal city in the chloride corrosion environment is even be given.
     3. basing on the problem about loss-blunt of the prestressed steel and the corrosion crack caused by steel rust of the common non-prestressed reinforcement structure, it studies the time of the loss-blunt of the prestressed steel and the corrosion crack of non-prestressed steel in the main two kinds of the corrosion environment (carbonization and the chloride ingress) by the method of the durability service life analysis. Therefore the durable life of the prestressed steel and the corrosion cracking span-life of common steel are established and the variation law of the two kinds of service life are obtained, which effected by the corrosion environment, time and position. In the carbonization circumstances, the durable life of the prestressed steel is less than the corrosion cracking span-life of common steel in the north of China, and the law will be in a reversal of phenomenon in the south of China. In the chloride ingress environment, chlorine ion ingressed rapidly, and the both kind of service life is less than common. The corrosion cracking span-life of common steel is less than the service life of prestressed steel, and its durability appearance check assessment can be used as a durability assessment for PC bridge.
     4. Using the method of the extreme state design as the durability design of the PC bridge, the durability limit state and service life standards of the PC bridge structure are divided into three categories, the PC bridge beginning rust extreme state of prestressed steel, the PC bridge corrosion cracking limit states of common steel and the load cracking limit states of the PC bridge. Then the three life criterions correspond to the limit states are proposed. Therefore the extreme state equation expression is deduced and the target reliable index values for the three durability of limit state are suggested.
     5. After studying the huge geographical differences of the PC bridge disease, it presents the environment zonation of the depth of the covering layer system as the key content of durability environment division. After sensitivity analysis of the effect factors in the environment sensitive factors in different environment is suggested as the index of the environment zonation. Basing on the environment sensitive factors analysis in the carbonization and the chloride ingress environment, the the division regions for the PC bridge covering layer system depth of the different region in China is proposed.
     6. After analysis about the variation rule of PC bridge load and time-dependent resistance, the durability service reference period and the assessment reference period of the PC bridge is proposed. The variation rules of the load in different reference period are studied, which are the general run load state and Intensive run load state of the the present standard load in the bridge code and the fitting load state on the basis of statistical analysis load test data on site.The resistance attenuation pattern of the PC bridge cracking extreme state in different environment is analysed and the time-dependent durability for the service life of PC bridge basing on the the load cracking limit states are finally proposed. Through analysis for a30m standard T beam of PC bridge, the variation rule of service life in different environment obtained, and the results show that the overload and the corrsiong condition is the real reason of the bridge durability accident of the rapidly decreased service life. Therefore the computing method of the bridge durability service life is proved to be effective
引文
[1]P. Kumar Mehta. Durability of concrete-fifty years of progress:Durability of Concrete-G. M. Idorn International Symposium. SP-126, American ConcreteInstitute, Detroit,1991
    [2]洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社,1998
    [3]P. Kumar Mehta. Durability-Critical issues for the future. Concrete International,1997, (7)
    [4]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [5]陈宇峰,余武军,徐君兰.改善预应力连续箱梁耐久性措施探讨[J],公路交通技术2007,No。3
    [6]张德峰.吕志涛.现代预应力混凝土结构耐久性的研究现状及其特点[J]工业建筑.2000.30(11):1-4.
    [7]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    [8]土建结构工程的安全性与耐久性[R].工程科技论坛,北京.2001
    [9]M. Yunovich. Highway Bridges Appendix. D Corrosion Costs and Preventive Strategies in the United States Report FHWA-RD-O1-156, Sept 2001.
    [10]M arLirr Perez B. Zibara H.H ooton R D, et al. A Study of the effect of chloride on service life predictions [J] Cement and Concrete Research.2000 30:1215-1223
    [11]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    [12]土建结构工程的安全性与耐久性[R].工程科技论坛,北京.2001
    [13]M. Yunovich. Highway Bridges Appendix. D Corrosion Costs and Preventive Strategies in the United States Report FHWA-RD-O1-156, Sept 2001.
    [14]Ton Siemes. Introduction to DuroNet:Services Life Design of Concrete Structures—From Theory to Standardization[R].3rd DuraNet Workshop Troms Norway 2001, PP8-11.
    [15]P. A. M. Basheer, S. E. Chidiact, A. E. Long. Predictive models for deterioration of concrete structures[J]. Construction and Building Materials,1996,10(1):27-37.
    [16]混凝土结构耐久性及耐久性设计研讨会[R].北京.2002
    [17]李田,刘西拉.混凝土结构的耐久性分析与设计[M].科学出版社.1999
    [18]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑.1997(5)
    [19]屈文俊,车惠民.既有混凝土桥梁的碳化分析[J].铁道学报1996(3)
    [20]牛荻涛.混凝土结构耐久性与寿命预测[M].北京.科学出版社.2003
    [21]刘荣桂,陆春华大气环境下预应力结构的耐久性设计理论[J].江苏大学学报(自然科学版)Nov2006 Vo1.27 No 6
    [22]刘荣桂,陆春华,雷丽恒,吕志涛.现代预应力结构耐久性(碳化)模型研究.[J].工业建筑.2004年第34卷第4期
    [23]陈好,刘荣桂,付凯.冻融循环下海工预应力混凝土结构的耐久性[J].建筑材料学报.Feb.2009Vo1.12 No 1
    [24]王钧利.在役预应力混凝土桥梁的耐久性分析[J].混凝土.2006 No.2
    [25]陆春华.现代预应力结构耐久性分析及数值试验研究(硕士学位论文)江苏镇江江苏大学2006
    [26]黄素辉.预应力混凝土结构抗氯离子侵蚀的耐久性研究(硕士学位论文)长沙中南大学2007
    [27]薛鹏飞.预应力混凝土连续刚构桥结构.性能退化预测评估研究(博士学位论文)杭州浙江大学2009
    [28]蔺恩超.预应力钢筋应力腐蚀后预应力混凝土梁的受力性能试验研究(硕士学位论文)江苏扬州扬州大学2006
    [29]赵涛.在役预应力混凝土桥梁耐久性评价研究(硕士学位论文)西安长安大学2008
    [30]刘荣桂,陆春华.海工预应力混凝土氯离子侵蚀模型及耐久性.[J].江苏大学学报(自然科学版).Nov.2005 Vo1.26 No.6
    [31]涂永明,吕志涛.应力状态下混凝土结构的盐雾侵蚀试验研究[J].工业建筑Vo1.34.No.5.2004
    [32]徐力,杨小平,刘荣桂,姜小云.预应力结构设计使用寿命模型[J].江苏大学学报(自然科学版).Jan.2002 Vo1.23 No.1
    [33]岳希峰.基于损伤力学的预应力混凝土结构应力腐蚀寿命研究(硕士学位论文)重庆重庆交通大学2007
    [34]刘海,姚继涛,牛荻涛.一般大气环境下既有混凝土结构的耐久性评定与剩余寿命预测[J].建筑结构学报Vo1.30 No.2 April2009
    [35]朱平华,金伟良,倪国荣.役混凝土桥梁结构耐久性评估方法[J].浙江大学学报(工学版)Vo1.40No.4 Apr2006
    [36]涂永明,吕志涛预应力混凝土试件碳化试验及碳化深度预测模型研究[J].工业建筑Vo1.36.No.12006
    [37]A. M. Freudenthal. Safety of Structures. Trans, ASCE,1947,112:125-180
    [38]中华人民共和国建设部.(GBJ68-84)建筑结构设计统一标准[S].中国建筑工业出版社,1985
    [39]M.Hohenbichler and R.Rackwitz. First-order concepts in systemreliability. Structural Safety,1983, 1:177-188
    [40]T. V.Galambos. Systems reliability and structural systems. Structural Safety.1990,7:101-108
    [41]S.Engelund and Rackwitz. A benchmark study on importance sampling techniques in structural reliability. Structural Safety,1993,12:255-276
    [42]Frangopol D.M., Kai-Yung Lin, Estes A. C.Reliability of reinforced concrete girders under corrosion attack. Journal of Structural Engineering,1997,123(3):286-297
    [43]Val, D. V., Melchers, R. E.Reliability of deteriorating RC slab bridges. Journal of Structural Engineering 1997,123(12):1638-1644
    [44]Enright M.P.,Frangopol D.M.Service-life prediction of deteriorating concrete bridges. Journal of Structural Engineering,,1998 124(3):309-317
    [45]Mori,Y., Ellingwood, B.R.Reliability-based service-life assessment of aging concrete structures. Journal of Structural Engineering,1992,119(5):1600-1621
    [46]G Somerville. The design life of structures. Edi. and Son Ltd.1992
    [47]赵鹏飞,对预测混凝土结构剩余寿命的探讨,工业建筑,1998 28(7):30-33
    [48]赵尚传,赵国藩,基于可靠性的在役混凝土结构剩余使用寿命预测,建筑科学,2001
    [1]张树仁,郑绍挂,黄侨,鲍卫刚.钢筋混凝土及预应力棍凝十桥梁结构设计原理[M].北京:人民交通出版社,2004
    [2]林正炎,陆传荣,苏中根.概率极限理论丛础[M].北京:高等教育出版社,2001
    [3]张建仁,刘扬,许福友,郝海霞.结构可靠度理沦及其在桥梁工程中的应用[M].北京:人们交通出版社,2003.
    [4]Armen Der Kiureghian, Pei-Ling Liu. Structural Reliability under Incomplete Probability Information. Journal of Engineering Mechanics. Vol.112,No.1, pp85-105,1986.
    [5]Pei-Ling Liu, Armen Der Kiureghian. Finite Element Reliability of Geometrically Nonlinear Uncertain Structures. Journal of Engineering Mechanics. Vol.117, No.8, pp 1806-1825,1991.
    [6]穆加宇.结构可靠性理论在桥梁工程中的应用[D].浙江大学硕士学位论文.2002.6
    [7]贡金鑫.结构可靠指标求解的一种新的迭代方法f J].计算结构力学及其应用,1995,12(3):369-373
    [8]高娟,罗奇峰,车伟.蒙特卡罗法理论及其在ANSYS中的实现[[J].青岛理工大学学报,2008(4):18-22
    [9]牛荻涛,王庆霖.服役结构的动态可靠性[[J].工程力学(增),1996,692-695
    [10]欧进萍,土光远.结构随机振动.北京:高等教育出版社,1998
    [11]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    [12]刘西拉.重大土木与水利工程安全性及耐久性的基础研究[J]土木工程学报1998,34(6):1-7
    [1]Guidelines on Risk Assessment [S].Australian National Committee on large dames (ANCOLD),2003
    [2]张德峰.现代预应力混凝土结构耐久性研究[D].南京:东南大学,2001.
    [3]陆春华.现代预应力结构耐久性分析及数值试验研究[D].硕士学位论文,江苏大学,镇江,2006
    [4]袁承斌,张德峰等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版),2003,Vo1.31.No.1,51-54.
    [5]袁承斌,刘荣桂,梁正平,吕志涛.混凝土不同应力状态下碳化速度的研究[J]第七届后张预应力学术交流会.2002:120-128
    [6]陈玮.预应力混凝土空心板设计施上偏差对结构性能的影响[D].硕士学位论文重庆交通学院,重庆,2004
    [7]周志祥.高等钢筋混凝土结构[M]北京:人民交通出版社,2002
    [8]封洁纯,徐勇,钟云健.预应力混凝土T梁防纵裂的保护层厚度计算[J].重庆交通大学学报(自然科学版),2009,Vo1.28.No.4,660-663
    [9]Parrott L J, et al. A Study of Carbonation-induced Corrosion. Magazine of Concrete Research, 1994(46):23-28
    [10]蒋利学.混凝土部分碳化长度的分析与计算[J].工业建筑,199929(1):4-7
    [11]乐建元.粉煤灰混凝土碳化深度预测模型[D].硕士学位论文,武汉理工大学,武汉,2008
    [12]V. G.Papadakis, C. G. Vayenas and M. N. Fardis. Fundamental Modeling and Experimental Investigation of Concrete Carbonation [J].ACI Materials Journal,1991, V 88, No.4:363-373
    [13]Siernes A J M, Rostam. Durable Safety and Serviceability-A Performance Based Design Format[C].Design and Actions on Structures Background and Application of Eurocodel.1996
    [14]赵卓,赵水伟,张龚.基于保护层施工偏差的预应力混凝土结构碳化耐久性研究.[J].混凝土,2008V 208,No.10:18-20
    [15]陈立亭.混凝土碳化模型及其参数研究[D].硕士学位论文,西安建筑科技大学,2007
    [16]M arLirr Perez B. Zibara H. H ooton R D, et al. A Study of the effect of chloride on service life predictions [J] Cement and Concrete Research 2000 30:1215-1223
    [17]Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concrete marine structures: an environmental methodology [J].ACI Structural Journal,1998,95(1):27-36
    [18]Mangat P S, Molloy B T. Prediction of long term chloride concentration concrete [J].Materials and Structures,1994,27:338-346.
    [19]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J]武汉理工大学学报,2005,27(6):45-47
    [20]罗小勇,黄素辉.氯离子侵蚀作用下预应力混凝土结构中预应力钢筋表面氯离子浓度的模型研究.第十四届全国混凝土及预应力混凝土学术会议论文,2007
    [21]田冠飞.氯离子环境中钢筋混凝土结构耐久性与可靠性研究[博士学位论文],清华大学,北京 2006
    [22]Richard E.Weyers.Service Life Model for Concrete Structures in Chloride Laden Environments.ACI.Materials journal,V.95.No.4.July-August 1998.
    [23]吴瑾,吴胜兴.海洋环境下混凝土中钢筋表面氯离子浓度的随机模型[J]河海大学学报(自然科学版),Vo1.32 No.1.Jan.2004
    [24]屈文俊,车惠民.混凝土桥梁的优化等耐久性设计.土木工程学报,1998,31(4):23-30
    [25]Syed Ehtesham Hussain, Ahmad S.AI-Gahtani, and Rasheeduzzafar. Chloride Threshold for Corrosion of Reinforcement in Concrete. ACI, Materials Journal,V.94.No.6.November-December 1996.
    [26]王银刚.基于钢筋初始锈蚀时间预测的混凝土桥梁寿命预测[D].硕士学位论文,华中科技大学,武汉
    [1]张誉,蒋利学,张伟平.混凝土耐久性概论.上海:上海科学技术出版社.2003.
    [2]王名杏.混凝土中钢筋锈蚀膨胀的应力分析[J].福建建材,2004,(4):19-21.
    [3]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报,2005,36(8):939-945
    [4]危险房屋鉴定标准(JGJ125-99)[S].中国建筑工业出版社,北京:2000
    [5]袁承斌,刘荣桂,吕志涛等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版).2003(1):50-54
    [6]袁承斌,刘荣桂,梁正平,吕志涛.混凝土不同应力状态下碳化速度的研究[J]第七届后张预应力学术交流会.2002:120-128
    [7]董振平,牛荻涛,刘西芳,王庆霖.一般大气环境钢筋开始锈蚀时间的计算方法[J].西安建筑科技大学学报.2006.38(2):204~209
    [8]张誉,蒋利学.基于碳化机理的碳化深度实用数学模型[J].工业建筑,1998,28(1):16-19
    [9]《混凝土结构耐久性评定标准》(CECS 220-2007),[S]中国工程建筑标准化协会,北京,中国计划出版社,2007
    [10]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [11]郭敬姐.钢筋混凝土桥梁耐久性分析及剩余寿命预测[D]硕士论文.长安大学.2007.
    [12]杨灵江.钢筋锈蚀引起的混凝土保护层开裂过程及影响因素分析[D]硕士论文.浙江大学.2007.
    [1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    [2]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京,中国建筑工业出版社,2000
    [3]李乔.混凝土设计原理[M].北京,中国铁道出版社,2001.8
    [4]水工混凝土结构设计规范[S](SL/T-1996),
    [5]铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S]TB 10002.3-2005,
    [6]混凝土结构耐久性设计规范》(GB/T 50476-2008)北京,中国建筑工业出版社,2008
    [7]American Concrete Institute. ACI Committee 318 Building code requirements for structural concrete (ACI 318-99) and commentary (ACI 318R-99).Farmington Hills:American Concrete Institute,1999.
    [8]Euro Code 2. Design of concrete structures EN 1992,2002
    [9]牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社,2003
    [10]Siemes A J M, Rostam S Durable Safety and Serviceability-A Performance Based Design Format[C]II IABSE Report 74; Proceedings IABSE Colloquium'Basis of Design and Actions on Structures-Background and Application of Eurocode 1'Delft[sn]1996
    [11]刘海.基于概率的混凝土结构耐久性设计与评定[D].博士学位论文.西安建筑科技大学.西安.2008
    [12]周锡武.关于混凝土结构耐久性设计的若干问题研究[D].博士学位论文.华中科技大学.武汉.2008
    [13]杜斌.既有预应力混凝土桥梁结构可靠度与寿命预测研究[D].博士学位论文.西南交通大学.成都.2009
    [14]高永航.既有钢筋混凝土结构耐久性评定的概率方法[D].硕士学位论文.西安建筑科技大学.西安.2009
    [1]British Transportation Ministry. Repair and maintenance of Midlands Link Express:Working Group 1988 Report[J].Concrete Journal,1990:23-27.
    [2]Report of the National Materials Advisory Board. Concrete Durability-A Multibillion Dollar Opportunity, Publication No. NMAB-437[R].National Academy of Sciences, Washington DC., PP 94, 1987.
    [3]Office of Highway Policy Information 2003(USA). Conditions, Performance and Safety[R].Washington D C.,2003.
    [4]Federal Highway Administration(USA). Fiscal Year 2003 Performance Plan [D].Washington D C.,2002.
    [5]金伟良,赵羽习.混凝土结构耐久性[M],北京:科学出版社,2002.
    [6]万德友.我国铁路桥梁病害浅析与对策[C].中国铁道学会桥梁病害诊断及剩余寿命评估学术讨论会,大连,1995.
    [7]Comite Euro-International du beton (1991) "CEB-FIP Model Code 1990".Thomas Telford Services LTD (London).
    [8]The European Union—Brite EuRam Ⅲ. DuraCrete—Final Technical Report:DuraCrete Probabilistic Performance based Durability Design of Concrete Structures[D]. Contract BRPR-CT95-0132, Project BE95-1347, Document BE95-13471817, May 2000.
    [9]邸小坛,周燕.混凝土结构的耐久性设计方法[[J].建筑科学,1991,1.
    [10]覃维祖.混凝土结构耐久性的整体论[[J].建筑技术,2003,30(1).
    [11]陈肇元.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003.
    [12]洪乃丰.氯盐环境中混凝土耐久性与全寿命经济分析[J].混凝土,2005,190(8).
    [13]Organization for Economic Co-operation and Development, Durability of Concrete Road Bridges [R],1990.
    [14]中华人民共和国国家标准:混凝土结构设计规范((GBJ 10-89)[S].中国建筑工业出版社,北京,1989.
    [15]李田,刘西拉.混凝土结构耐久性分析与设计[M].北京:科学出版社,1999.
    [16]Tuutti, K. Service life of stmctures with regard to corrosion of embedded steel. Rilem quality control of concrete structures. Stockholm, Sweden:1979.293-299.
    [17]蒋德稳,李林,袁迎曙.温度、湿度对钢筋锈蚀速度的影响[[J].淮海工学院学报,2004(3):59-62
    [18]张伟,崔维成,刘秉汉,张圣坤.结构可靠性分析中灵敏度因子研究的新方法[J].上海交通大学学报.1998.32(11):26-29
    [19]袁新朋.公路预应力混凝土桥梁的可靠度分析[D].硕士学位论文.西南交通大学.成都.2009
    [20]赵卓,赵水伟,张龚.基于保护层施工偏差的预应力混凝土结构碳化耐久性研究.[J].混凝土,2008.208(10):18-20
    [21]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J].武汉理工大学学报.2005.27(6)45-47
    [22]田冠飞.氯离子环境中钢筋混凝土结构耐久性与可靠性研究[D].博士学位论文.清华大学.北京.2006
    [23]Richard E.Weyers.Service Life Model for Concrete Structures in Chloride Laden Environments.ACI Materials journal, V.95.No.4.July-August 1998.
    [24]施养杭,罗刚.含多种因素的氯离子侵入混凝土的有限差分计算模型[J].工业建筑,2004.34(5):7-10
    [25]屈文俊,车惠民.混凝土桥梁的优化等耐久性设计.土木工程学报.1998.31(4):23-30
    [26]吴瑾,吴胜兴.海洋环境下混凝土中钢筋表面氯离子浓度的随机模型[J].河海大学学报(自然科学版),2004.32(1):38-41
    [27]应敬伟,赵治超,张喜德.地方气候环境下氯离子扩散系数的研究[J].广西大学学报.2008.33:32-35
    [28]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].博士学位论文.浙江大学.杭州.2007
    [29]王艳.混凝土结构耐久性环境区划研究[D].硕士论文.西安建筑科技大学.西安.2007
    [1]袁新朋.公路预应力混凝土桥梁的可靠度分析[D].硕士学位论文.西南交通大学.成都.2009
    [2]闫磊.服役期砼桥梁加固前后的可靠度研究[D].博士学位论文.长安大学,西安.2010
    [3]索清辉.基于概率理论的既有桥梁承载力评估方法研究[D].博士学位论文.西南交通大学.成都.2005
    [4]公路工程可靠度设计统一标准(GB/T50283-1999)[S].北京:中国计划出版社,1999
    [5]李扬海,鲍卫刚,郭修武.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997:96~98
    [6]黄华,刘鸣.公路桥梁荷载谱的计算机模拟[C].中国公路学会2004年学术年会论文集,桥梁工程篇/20
    [7]王瑞琦,马小刚,王继忠.城市桥梁与公路桥梁汽车荷载的比较和分析[J].科技研究,2006年9月第5期
    [8]罗霞,杜进有,霍娅敏.车头间距分布规律的研究[J].西南交通大学学报,2001,Vo1.36
    [9]王锋君.对国内外公路桥规荷载标准的初步探讨[M].中南公路工程,2001,Vol 26(1)
    [10]李广惠,张存超,王东炜.高速公路桥梁活荷载参数研究[J].郑州大学学报,2005
    [11]高鹏遐.公路桥梁车辆荷载效应的结构可靠性模型[J].福建师范大学学报,1994
    [12]欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑,1995.25(8):11-16
    [13]王有志,王广洋,任锋等.桥梁的可靠性评价与加固[M].北京:中国水利水电出版社,2002
    [14]民用建筑可靠性鉴定标准(GB 50292-1999)[S].北京:中国建筑工业出版社,1999
    [15]李运生,张彦铃.在役公路钢筋混凝土梁剩余寿命估算方法研究[[J].铁道标准设计,2003 1:13~16
    [16]寇海燕.基于时变的预应力钢筋锈蚀模型研究[D].硕士学位论文.中南大学,长沙.2008
    [17]郑亚明,欧阳平,安琳.锈蚀预应力钢筋力学性能的试验研究[J],现代交通技术》2005(6),33-36
    [18]罗小勇,李政.无粘结预应力预应力钢筋锈蚀后力学性能研究[J].铁道学报,2008(2),108-112
    [19]Vu K A T, Stewait M G. Structural reliability of concrete bridges including improved chloride induced corrosion models [J].Stmctural Safety,2000,22:313-333.
    [20]张建仁,刘扬,混凝土桥梁构件服役期的抗力概率模型[J],长沙理工大学学报(自然科学版),Vo1.1 No.1 Jun.2004
    [21]杜斌.既有预应力混凝土桥梁结构可靠度与寿命预测研究[D].博士学位论文.西南交通大学.成都.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700