用户名: 密码: 验证码:
AlGaN/GaN HEMT功率器件建模研究及高效率放大器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信和雷达探测等领域的快速发展,现代电子设备对微波功率晶体管的工作频率和功率密度等方面的要求越来越高。与第一代和第二代半导体材料相比,以SiC和GaN为代表的宽禁带半导体材料,具有更高的耐压性能、更快的电子迁移率、更高的热导率以及更好的抗辐射性能,因此成为半导体器件研究的热点。其中,由于GaN功率器件具有更好的高频性能和更高的功率品质因子,使得它比SiC器件在高频大功率的应用上有着更为广阔的发展前景。目前,GaN功率器件的制备已经取得了一定进展,但其建模工作却相对滞后。GaN功率器件的模型在电路设计中起着关键性作用,模型的适用性和准确性对微波电路设计结果有着非常重要的影响。与传统功率器件相比,AlGaN/GaN HEMT在沟道形成和电流密度上都存在不小差异。目前的功率器件模型对其自热效应和非线性特性的描述还存在一定误差,这在一定程度上限制了GaN功率器件的发展。为加速GaN功率器件的应用,改进电路设计,促进GaN功率器件全面发展,急需对GaN功率器件进行建模研究。本文对AlGaN/GaN HEMT功率器件的关键特性进行了分析,围绕功率器件的经验基模型展开研究,改进了非线性等效电路模型;拓展了建立表格模型的思路;在X参数和Volterra级数的基础上,建立了功率器件的Volterra级数描述公式;并以等效电路模型为基础,设计了GaN高效率放大电路。具体研究内容包括:
     1. AlGaN/GaN HEMT功率器件等效电路模型
     针对AlGaN/GaN HEMT微波器件小信号等效电路参量多,数值提取复杂的特点,将待定系数法引入计算公式,配合优化软件,提高了小信号等效电路的预测精度。根据AlGaN/GaN HEMT微波器件电流电压曲线和芯片表面温度分布特性,以Angelov大信号模型为基础,对非线性电流和电容公式进行了改进,使新电流模型能够描述不同栅压时电流随漏压增加而上升或下降的趋势,反映温度对漏极电流的影响,预测了静态I-V曲线的自热效应和温度分布效应。并且将公式嵌入ADS软件中,形成完整的等效电路模型,对AlGaN/GaN HEMT功率器件的电流特性、频率特性和输出性能进行了仿真,与实测结果对比显示,新的大信号非线性模型可以提高预测结果的准确性。
     2. K最邻近算法为基础的AlGaN/GaN HEMT功率器件表格模型
     AlGaN/GaN HEMT功率器件的黑匣子表格模型无需考虑器件的内部结构和导电机理,可以用纯数学运算对器件进行建模和预测,因此能够充分运用数学方法,有效保护知识产权。但其建模过程需要大量测试数据,算法代码往往比较复杂。本文以漏极电流数据和S参数为基础,建立了非线性等效元件数据库,根据放大器的特点将K最邻近算法做了改进,建立了GaN HEMT功率器件表格模型,节约了建模数据,简化了模型结构,结合泰勒级数提取放大器的非线性元件数值,配合寄生元件和线性元件对输出特性进行计算,预测精度较高。
     3. X参数和Volterra级数为基础的AlGaN/GaN HEMT放大器模型
     X参数在频域内能够精确描述器件各个端口,每个频率分量之间的数值关系,但难以对器件时域特性进行描述。Volterra级数对器件的时域和频域特性描述都很准确,但提取过程太繁杂。本文将X参数和Volterra级数相结合,以AlGaN/GaNHEMT功率放大器的X参数为基础,提取Volterra核函数,得到时域和频域的Volterra级数模型,很好的描述和预测了放大器的时域和频域特性,节省了测试工作量,获得了较好的预测精度。
     4.以等效电路模型为基础的GaN HEMT高效率放大电路设计与测试
     以等效电路模型为基础,设计了一组AB类50W GaN功率放大电路和基于谐波调制技术的10W GaN功率放大电路,为了直观显示GaN HEMT功率器件的效率提升幅度,设计了相似功率量级的LDMOS功率放大电路。将电路仿真数据、GaN放大器和LDMOS放大器测试数据,以及近几年发表的GaAs pHEMT功率放大器测试数据进行比较分析,对比结果显示等效电路模型具有较好的预测效果,同时直观显示了GaN功率器件较传统功率器件的效率提升幅度。
     综上所述,改进的非线性电流公式和电容公式作为等效电路模型的核心,能够方便的嵌入主流微波仿真软件中,具有较好的适用性和预测准确度。在表格模型中引入KNN算法和用X参数提取Volterra级数的方法,拓宽了微波器件建模领域的思路,有望促进建模工作的进一步发展。
With the development of wireless communication and radar exploration, modernelectronic equipment requires microwave power transistor with higher and higherfrequency and power density. In comparison with the first and second generationsemiconductor material, wide band gap semiconductor represented by SiC and GaN hasbetter voltage performance, faster electron drift mobility, higher conductivity and betterresistance of radioactive property. So the wide band gap semiconductor is focused onthe research of semiconductor device. Because of better frequency property and higherpower factor, GaN has wider development in the high frequency band and high powerapplication compared with SiC. Now, the manufacturing of GaN power device has madesome progress, but the model is relatively backward. The model of GaN power device isa very important factor in the design of microwave circuit, the applicability andaccuracy of the model has important effect in the design result. Compared withtraditional power device, AlGaN/GaN HEMT has a lot of difference in the channelformation and current density. The current power device model has some error in thecalculation of self-heating effect and nonlinear characteristics, which limits the overalldevelopment of GaN power device. In order to expedite the application of GaN powerdevice, improving the design of circuit, accelerating the development of GaN device,the model of GaN power device is instant needed. In this paper, the factorcharacteristics of AlGaN/GaN power device was analysed, and the research wascentered around on the experience model. The nonlinear equivalent circuit model wasimproved and the approach of establishing table model was broadened. Based on theX-parameters and Volterra series, the method of model was presented. According to theequivalent circuit model, high efficiency amplifier was designed. Following is thespecific research content:
     1. Equivalent circuit model of AlGaN/GaN HEMT power device
     Since the number of equivalent component is large and the extraction program iscomplex, the method of undetermined coefficients is used in the calculation programwith help of optimization software. The accuracy is improved. According to the curve of I-V, the formulas of nonlinear current and capacitance are improved which can describethe downward of current with the growth of voltage and the influence of the temperature.This description can reflect the effect of self-heating and temperature distribution. Theformulas are used in ADS software and based on which the current characteristics,frequency and output performance are calculated. Compared with measured data, theimproved nonlinear model can improve the accuracy of predication.
     2. Table model of AlGaN/GaN HEMT power device based on K nearestneighbors algorithm
     The “black box” table model of AlGaN/GaN HEMT power device can neglect thestructure and conduct mechanism and use mathematics operation to model and predictpower device which could apply mathematics method adequately and protectintellectual property effectively. However, the model process needs a lot of measureddata and the algorithm code is always complicated. Based on the drain current andS-parameters data this research established table model of nonlinear equivalentcomponent in which the K nearest neighbors algorithm was improved. The model savesmeasured data and simplifies model structure. With help of Taylor series, nonlinearcomponents are extracted. The output performance is predicted and the accuracy isgood.
     3. Model of AlGaN/GaN HEMT power device based on X-parameters andVolterra series
     X-parameters can describe precisely the correlation coefficient between everyfrequency component in each port of power device. However, it can difficult reflect theperformance of device in time domain. Volterra series can describe the performance ofpower device in both time domain and frequency domain, but the extracting process istoo complex. X-parameters was conjunction with Volterra series in this research. Basedon X-parameters, kernel function of Volterra series was extracted easily with help ofwhich Volterra model can be used to predict the property of device in time domain andfrequency domain. The method which is a new idea for model can save measurementwork and get good accuracy.
     4. High effective GaN HEMT amplifier design and measurement based onequivalent circuit model
     A class AB GaN power amplifier with50W output and a10W output power GaN amplifier were designed based on each equivalent circuit model. In order to quantizationanalysis the efficiency improvement, two LDMOS amplifier with similar output weredesigned and measured. The comparisons between prediction data, GaN amplifiermeasured data and LDMOS amplifier measured result show that the equivalent circuitmodel has a good accuracy and the GaN amplifier has a high efficiency.
     To sum up, the current formula in the equivalent circuit model presented in thispaper can be used in simulation software easily and has a good accuracy. The methodsof using KNN algorithm in table model and extracting Volterra series by usingX-parameters provide new approaches for device model and broaden the mind of modelwhich may improve the development of device model.
引文
[1] Eastman L F, Mishra U K. The toughest transistor yet GaN transistors [C]. IEEE Spectrum,2002,Vol.39(5),28-33.
    [2] Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation andApplications [J]. Proceedings of the IEEE.2002, Vol.90(6),1022-1031.
    [3] F. Sehwierz, and J. J. Liou,Mieroeleetronics Reliability[M]. USA,2001,145-155.
    [4] E.0.Johnson. Physiea limitation frequency and Power Parameters of transistors [J]. RCA Reviwer,1963, vol.26,160-163.
    [5] A.J.Baligaower. semiconductor device figure of merit for high frequency application [J]. IEEEElectron Device Letter.1989, Vol10,155-159.
    [6] Eastman. L. F.The GaN transistors [M]. IEEE Spectrum,2002, Vol.39(5),28-33.
    [7] Cai shujun, Pan Hongshu, Chen Hao, et al. S-Band1mm SiC MESFET with2W output onsemi-insulated SiC substrate [J]. Chinese Journal of Semiconductors.2006,27(2),266-269.
    [8] Cheng Gang, Bai song, Wang hao, et al. Fabrication and characterization of150um total gateperiphery4H-SiC MESFET [M].2006China-Japan Joint Microwave Conference Proceedings,Cheng du,2006,23-25.
    [9] M. A. Khan, J. N. Kuznia, D. T. Olson, et al. Microwave performance of0.2um gate AlGaN/GaNheterostructure field effect transistor [J].Appl. Phys. Lett.,2001, vol65,38-41.
    [10] Wu Lu, J. W. Yang, M. A. Khan, et al.AlGaN/GaN HEMTs on SiC with over100GHz and lowmicrowave noise [J], IEEE Trans. Electron Device.2001, vol.48, no.3,581-584.
    [11] Bruce M.Green,et al. The effect of surface passivation on the microwave characteristics ofundoped AlGaN/GaN HEMTs [J]. IEEE Electron Device Letters.2001,26-31.
    [12] B.J.Ansell, I.Harrison,et al. The effect of surface passivation and Illumination on the deviceproperties of AlGaN/GaN HEMTs [J]. Physica Status Solid,2001,188-279.
    [13] Lee.C, H.Tserng,et al. Effects of RF stress on power and pulsed Ivcharacteristic of AlGaN/GaNHEMTs with field plate gate [J]. IEE Eletronics Letters.2004,40,1547-1548.
    [14] Karm Alkars, Shurms Simin, et al. Field plate engineering for HFETs. IEEE Trans on ElectronDevice [J].2005,52,2534-2540.channel electric field in a HEMT with a field plate [J]. IEEE Trans on Electron Device,2006,53,2430-2437.
    [16] Y.-F. Wu, M. Moore, A. Saxler, et al.40-W/mm double field-plated GaN HEMTs [C]. IEEE64th Device Research Conference, PA USA,2006,151–152.
    [17] M.Higashiwaki,T.Matsui,T.Mimura.AlN/GaN Insulated Gate HFETs Uing Cat-CVD SiN [J],IEEE Eleetron Device Letter.2006,27(l),719-721.
    [18] M.Higashiwakia,T.Mimura,T.Matsui,et al.GaN-based FETs using Cat-CVD SiN passivationfor millimeter-wave applications [J]. Thin Solid Films,2008,516(5),548-552.
    [19] M.A. Darwish, F.M. Al-Awadhi, A.M. Darwish. Energy and water in Kuwait. Part I. Asustainability view point [J]. Elsevier Desalination J,2008, vol.225,341-355.
    [20] Canfield P.C., Lam S.C.F. and Allstot D.J. Modeling of frequency andtemperature effect inGaAs MESFETs [J]. IEEE Journal of Solid-State Circuits,1990,vol.25,299-306.
    [21] Jianjun Gao, Xiuping LI, Hong Wang and Georg Boeck. A new method for determination ofparasitic capacitances for PHEMTs [J]. Semicond. Sci. Technol.2005,vol.20,586-591.
    [22] P.M.White and R.M.Healy. Improved equivalent circuit for determination of MESFET andHEMT parasitic capacitances from Cold-FET measurements [J]. IEEE Microwave GuidedWave Lett.1993,vol.3,453-454.
    [23]高建军.场效应晶体管射频微波建模技术[M].北京:电子工业出版社,2007,147-419.
    [24] J.A.Jargon,K.C.Gupta, and D.C.DeGroot. Application of artificial neural networks to RF andmicrowave measurements [J]. Int. J.RF Microwave CAE,2002.vol(12),3-24.
    [25] Li T, Joshi R P, Fazi C. Monte Carlo evaluations of degeneracy and interface roughness effectson electron transport in AlGaN/GaN hetero junctions [J]. Proceeding of SPIE,2001,88,829-839.
    [26] Green B M, Chu K K, Chumbes E M, et al. Design and fabrication of aluminum galliumnitridegallium nitride based heterojunction field effect transistors for microwave applications [C]. Adissertation of the faculty of the graduate school of Cornell University,2000,289-294.
    [27] Lugli P, Morkoc H. Spontaneous and piezoelectric. Polarization effects on the outputcharacteristics of AlGaN/GaN heterojunction modulation doped FETs [J]. IEEEElectron.Device Lett.,2001,(48),450-457.
    [28] Chigaveva E, Walthes W, Wiegner K, et al. Determination of small-signal parameters of GaNbased HEMTs [C]. High Performance Devices Proceedings, IEEE Lester EastmanConference,2000,115-122.
    [29] Chigaeva E, Wieser N, Grozing M, et al. Dynamic large signal I-V nanlysis and nonlinearmodeling of AlGaN/GaN HEMTs [C]. The Eruopean Gallium Arsenide and Related III-VCompounds Application symposium, London,2002,631-634.
    [30] Bruce M Green, Hyungtak Kim, Kenneth K, et al. Validation of an analytical large signal modelfor AlGaN/GaN HEMTs [J]. IEEE MTT-Symposium Digest,2000, WE2B-5,761-764.
    [31] Antonio Raffo, Valeria Vadalà, et al. Nonlinear Dispersive Modeling of Electron DevicesOriented to GaN Power Amplifier Design [J]. IEEE Transactions on Microwave Theory andTechniques,2010, VOL.58, NO.4,28-39.
    [32] Anwar Jarndal, Asdesach Z. Markos, and Günter Kompa. Improved Modeling of GaN HEMTson Si Substratefor Design of RF Power Amplifiers [J]. IEEE Transactions on MicrowaveTheory and Techniques,2011,VOL.59, NO.3,39-50.
    [33] F. Kharabi, J.R.F. McMacken, J.M. Gering. A Verilog-A Large-Signal GaN HEMT Model forHigh Power Amplifier Design [C]. Corporate Engineering RFMD Greensboro, USA,134-140.
    [34] Y. Xu,Y. Guo, R. Xu, and Y. Wu. Modeling of SiC MESFETs by Using Support Vector MachineRegression [J]. J. Electromagnetic Waves and Applications.,2007,21(11),1489-1498.
    [35] Sebastien Nuttinck, Edward Gebara, Joy Laskar, etal. Study of self-heating effects,temperature-dependent modeling and pulsed load-pull measurements on GaN HEMTs [J]. IEEETransactions on Microwave Theory and Techniques,2001,49(12),2445-2452.
    [36] Jeong Park, Moo Whan Shin, Chin C.Lee. Thermal modeling and measurement of GaN-basedHFETdevices [J]. IEEE Electron Device Lett.,2003,24(7),424-426.
    [37]姜霞. AlGaN/GaNHEMT模型研究及MMIC功率放大器设计[D].石家庄:河北工业大学,2011,27-80.
    [38] Strite and H. Morkoc. GaN, AlN and InN: A review [J]. J. Vac. Sci. Technol.,1992, no.10,1237-1239.
    [39] B. M. Green, K. K. Chu, E. M. Chumbes,et al. Design and fabrication of aluminum galliumnitride/gallium nitride based heterojunction field effect transistors for microwave applications
    [C]. A dissertation of the faculty of the graduate school of Cornell University,2000,297-302.
    [40] B.Jaeobs, M.C.J.C.M.Kramer, E.J.Guluk,et al. Optimisation of the Ti/Al/Ni/Au ohmic contacton AlGaN/GaN FET structures [J], Journal of Crystal Growth,2002,241(1),1-10.
    [41] Changzhi Lu, Hongnai Chen, Xiaoliang Lv. Temperature and doping-dependent resistivity ofTi/Au/Pd/Au multilayer ohmic contact to n-GaN [J]. Journal of Applied Physics,2002,92(11),8-16.
    [42] T.Inagaki, T.Hashizume, H.Hasegawa, et al. Leakage mechanism in GaN and AlGaN Schottkyinterfaces [J]. Appl. Phys. Lett,2004,(84),4884-4888.
    [43] O. ambacher, J Majewski, C. Miskys, A. link, M. Hermann, etal. Pyroelectric properties ofAl(In)GaN/GaN hetero and quantum well structures [J]. J. Phys. Condens.2002, Matter14,3399-3434.
    [44] Vincenzo Fiorentini, Fabio Bernardini and Oliver Ambacher. Evidence for nonlinearmacroscopic polarization in III-V nitride alloy heterostructures [J]. Appl. Phys. Lett.,2002, vol.80, no.7,1204-1206.
    [45] M.S. Shur, A.D. Bykhovski, R. Gaska. Pyroelectric and piezoelectric properties of GaN basedmaterials [J]. MRS Internet J. Nitride Semicond.1999. Res.4S1, G1.6.
    [46] Tsung-Hsing Yu, Kevin F. Brennan. Theoretical study of a GaN-AlGaN high electron mobilitytransistor including a nonlinear polarization model [J]. IEEE Trans. Electron Devices,2003. vol.50, no.2,315-323.
    [47] O. Ambacher, F Smart, J. R. Shealy, N. G. Weimann, et al. Two-dimensional electron gasesinduced by spontaneous and piezoelectric polarization charges in N-Ga-face AlGaN/GaNheterostructures [J]. J. Appl. Phys.,1999.vol.85, no.6,.3222-3233.
    [48] F. Sacconi Aldo Di Carlo, P. Lugli, H. Morkoc. Spontaneous and piezoelectric polarizationeffects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs [J].IEEE Electron. Device Trans,2001, vol.48, no.3,450-457.
    [49] F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constantsof III-V nitrides [J]. Phys. Rev. B (Cond. Matter),1997,vol.56,Issue16,:10024-10027.
    [50] Ambacher O., Smart J., Shealy J. R, et al. Two dimension electron gases induced byspontaneous andpiezoelectric polarization changes in N and Ga face AlGaN/GaNheterostructrue [J]. J. Appl. Phys.1999,85,:3222-3233.
    [51] Ambacher O., Foutz B., Smart J.Two dimension electron gases induced by spontaneous andpiezoelectric in undoped and doped AlGaN/GaN heterostructrues [J]. J. Appl. Phys.2000,87(1),334-344
    [52] Shen L., Heikman S., Moran B., et al. AlGaN/AlN/GaN higher power microwave HEMT [J].IEEE Electron Device Lett,2001,22(3),457-459.
    [53] Sacconi Aldo Di Carlo F., Lugli P., H. Morkoc. Spontaneous and piezoelectric polarizationeffects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs [J].IEEE Electron Device Trans,2001,48(3),450-457.
    [54] Lee. J. S, Kim J. W., Lee J. H., et al. Reduction of current collapse in AlGaN/GaN HFETs usingAlN interfacial layer [J]. Electronics Letters,2003, Vol.39(9),750-752.
    [55] Parish G., Umana-Membreno G. A., Jolley S. M., et al. AlGaN/AlN/GaN High ElectronMobility Transistors with Improved Carrier Transport [C].2004Conference on Optoelectronicand Microelectronic Materials and Devices,2004,29-32.
    [56] Kumar V., Lu W., Khan F. A., et al. Recessed0.25μm gate AlGaN/GaN HEMTs on SiC withhigh gate-drain breakdown voltage using ICP-RIE [J]. Electronics Letters,2001, Vol.37(24),67-71.
    [57] Ando Y., Okamoto Y., Hataya K., et al.12W/mm recessed-gate AlGaN/GaN heterojunctionfield-plate FET [C].2003IEEE International Electron Devices Meeting (IEDM '03TechnicalDigest),2003,2311-2314.
    [58] Vetury R., Zhang N. Q., Keller S, et al. The impact of surface states on the DC and RFcharacteristics of AlGaN/GaN HFETs [J]. IEEE Trans Electron Devices,2001, Vol.48(3),560-566.
    [59] Saito W., Takada Y., Kuraguchi M., et al. High breakdown voltage AlGaN-GaN power HEMTdesign and high current density switching behavior [J]. IEEE Trans Electron Devices,2003,Vol.50(12),2528-2531.
    [60] Xing H., Dora Y., Chini A., et al. High breakdown voltage AlGaN-GaN HEMTs achievedbymultiple field plates [J]. IEEE Electron Device Letters,2004, Vol.25(4),161-163.
    [61] Uemoto Y., Shibata D., Yanagihara M, et al.8300V Blocking Voltage AlGaN/GaN PowerHFETwith Thick Poly-AlN Passivation [C].2007IEEE International Electron Devices Meeting,IEDM,2007,861-864.
    [62] Wataru Saito,Yorito Kakiuchi,Tomohiro Nitta, et al. Field-Plate Structure Dependence ofCurrent Collapse Phenomena in High-Voltage GaN-HEMTs [J].2010IEEE ELECTRONDEVICE LETTERS,2010, Vol31,39-44.
    [63] Ye P. D., Yang B., Ng. K. K., et al. GaN MOS-HEMT using atomic layer deposition Al2O3asgate dielectric and surface passivation [J]. International Journal of High Speed Electronics andSystems,2004, Vol.14(3),167-172.
    [64] R. Chu, Y. Zhou, J. Liu, et al. AlGaN-GaN double-channel HEMTs [J]. IEEETrans. ElectronDevices2005,52(4),438~446.
    [65] J. Liu, Y. Zhou, R. Chu, et al. Al0.3Ga0.7N/Al0.05Ga0.95N/GaN composite-channel HEMTs withenhanced linearity [J]. IEDM Tech. Dig2004,811~814.
    [66] J. Liu, Y. Zhou, R. Chu, et al. Highly linear Al0.3Ga0.7N-Al0.05Ga0.95N-GaN compositechannel HEMTs [J]. IEEE Electron Device Letter.2005,26(3),145~147.
    [67]姜霞,赵正平,张志国等.适用于SiC和蓝宝石两种衬底的AlGaN/GaN HEMT热解析模型[J].半导体技术.2009,35(2),125-128.
    [68] Tigran T. Mnatsakanov, Michael E. Levinshtein, Lubov I. Pomortseva, et al. Carrier mobility forGaN [J], Solid State Electronics,2003,vol.47,111-115.
    [69] Gabriela E. Bunea, S. T. Dunham, T. D. Moustakas. Modeling of a GaN based static inductiontransistor [J]. MRS Internet J. Nitride Semiconductors Res.1999,4S1,G6.41,129-144.
    [70] Vladimir M., Polyakov, Frank Schwierz. Influence of electron mobility modeling of DC I-Vcharacteristics of WZ-MESFET [J]. IEEE Trans. Electron Devices,2001, vol.48, no.3,512-516.
    [71] Jon C. Freeman. Channel temperature model for microwave AlGaN/GaN power HEMTs on SiCand sapphire [C]. Microwave Symposium Digest, IEEE MTT-S International,2004, vol.3,2031-2034.
    [72] Jeong Park, Chin C. Lee, J. W. Kim, et al. Therma. Effects of substrates on performances ofAlGaN/GaN HEMTs [J]. Phys.Stat. Sol.,2003, no.7,2364-2367.
    [73] F. Sacconi Aldo Di Carlo, P. Lugli, H. Morkoc. Spontaneous andpiezoelectric polarizationeffects on the output characteristics of AlGaN/GaNheterojunction modulation doped FETs [J].IEEE Electron. Device Trans,2001, vol.48, no.3,450-457.
    [74] Canfield P.C., Lam S.C.F., Allstot D.J. Modeling of frequency and temperature effect in GaAsMESFETs [J]. IEEE Journal of Solid-State Circuits,1990,vol.25,299-306.
    [75] Tsung-Hsing Yu, Kevin F. Brennan. Theoretical study of a GaN-AlGaN high electron mobilitytransistor including a nonlinear polarization model [J]. IEEE Trans. Electron Devices,2003,vol.50, no.2,315-323.
    [76] M. Akita, S. Kishimoto, T. Mizutani. High-frequency measurements of AlGaN/GaN HEMTs athigh temperatures [J]. IEEE Electron Device Lett,2001,vol.22, no.8,376-377.
    [77] U. K. Mishra, L. Shen, T. E. Kazior,Y-F. Wu. GaN-based RF power devices and amplifiers [J].Proc. of the IEEE,2008, vol.96, no.2,287-305.
    [78] Anwar Jarndal, Cunter Kompa. An accurate small-signal model for AlGaN-GaN HEMT suitablefor scalable larger-signal model construction [J]. IEEE Microwave wireless Components Letter.,2006, vol.16, no.6,333-335.
    [79] Jing Lu, Yan Wang, Long Ma,et al. A new small-signal modeling and extraction method inAlGaN/GaN HEMTs [J]. Solid-State Electronics,2008, vol.52, issue1,115-120.
    [80] Qian Fan, Jacob H. Leach, Hadis Morkoc. Small signal equivalent circuit modeling forAlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaNHFET [J]. Proceedings of the IEEE,2010, vol.98,No.7,129-137.
    [81] G.Dambrine, A.Cappy, et al. A new method for determining the FET small-signal equivalentcircuit [J]. IEEE Trans,Microwave Theory Tech,1998, vol.36,no.7,1151-1159.
    [82] P.M.White, R.M.Healy. Improved equivalent circuit for determination of MESFET and HEMTparasitic capacitances from Cold-FET measurements [J]. IEEE Microwave Guided Wave Lett.,1993, vol.3,453-454.
    [83] Lai,Y.L,and Hsu,K.H. A new pinch-off cold-FET method to determine parasitic capacitances ofFET equivalent circuit [J]. IEEE Trans, Microwave. Theory Tech.2001,49,(8),1410-1418.
    [84] B.L.Ooi, J.Y.Ma. Consistent and reliable MESFET parasitic capacitance extraction method [J].IEE Proceedings-Microwave, Antennas and Propagation,2004,vol.151, no.1,81-84.
    [85] Jianjun Gao, C.L.Law, H wang,et al. An approach for extracting small signal equivalent circuitfor double heterojunction δ-doped PHEMTs for millimeter wave applications [J].InternationalJournal of Infrared and Millimeter Wave,2002, Volume23,Number3,345-364.
    [86] L.Yang, S.Long. New method to measure the source and drain resistance of the GaAs MESFET[J]. IEEE Electron Device Lett.1986,vol.7,75-77.
    [87] J.Gao, C.L.Law,H Wang,S Aditya. An Approach to linear scalable DH-PHEMT model [J],International Journal of Infrared and Millimeter Wave.2002,Volume23,No.12,1787-1801.
    [88] K.Shirakawa, H.Oikawa,,et al. An approach to determining an equivalent circuit for HEMTs [J].IEEE Trans, Microwave Theory Tech,1995,vol.43,no.3,499-503.
    [89] H.Statz,P.Newman,IRL.W.Smith,et al. GaAs FET device and circuit simulation in SPICE[J].IEEE Trans.ED,1987,vol.34.no.2,160-169.
    [90] S.D.Agostino, G.D Inzeo,et al. Analytic physics based expression for the empirical parametersof the Statz Pucel MESFET model [J]. IEEE Transactions on Microwave Theory andTechniques,1992, vol.40,no.7,36-47.
    [91] A.J.Mccamant,G.D.Mccormack,D.H.Smith. An improved GaAs MESFET model for SPICE [J].IEEE Transaction on Microwave Theory and Techniques,1990, vol.38,no.6,150-159.
    [92] W.R.Curtice. A MESFET Model for use in the design of GaAs integrated circuits [J]. IEEETransaction on Microwave Theory and Techniques,1980,vol.28, no.5,448-456.
    [93] W.R.Curtice. GaAs MESFET modeling and nonlinear CAD [J]. IEEE Transaction onMicrowave Theory and Techniques,1988, vol.36, no.2,220-230.
    [94] T.Kacprzak, A.Materka. Compact dc model GaAs FETfor large signal computer calculation [J].IEEE Journal of solid state circuits,1983, vol.SC-18, NO.2,211-213.
    [95] Angelov,V. Desmaris, et al. On the large-signal modeling of AlGaN/GaN HEMTs and SiCMESFETs [J], Gallium Arsenide and Other Semicond. Appl. Symp.,2005,309–312.
    [96] Kelvin S. Yuk, George R. Branner, David J. McQuate. A Wideband Multiharmonic EmpiricalLarge-Signal Model for High-Power GaN HEMTs With Self-Heating and Charge-TrappingEffects [J]. IEEE Transactions on Microwave Theory and Techniques,2009, vol.57, No.12,3322-3332.
    [97] O. Jardel, F. De Groote, T. Reveyrand, et al. An Electrothermal Model for AlGaN/GaN PowerHEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on HighVSWR [J]. IEEE Transactions on Microwave Theory and Techniques,2007, vol.55, no.12,2660-2669.
    [98] Y.Yang. Effective and efficient learning from human decisions in text categorization andretrieval [C]. Proc of the Seventeenth Int'l ACM SIGIR conference on research anddevelopment in information retrieval,Dublin,1994,13-22.
    [99] Mehdi Hosseinzadeh Aghdam,et al. Text feature selection using ant colony optimization [J].Expert Systems with Applications,2009, vol.36,6843–6853.
    [100] S.J.Back, K.M.Sung. Fast K-nearest-neighbour search algorithm for non parametricclassification [J]. Ctronics Letters,2000, vol.36,1821-1822.
    [101] Yufei Tao,Dimitris Papadias,et al. An efficient cost model for K-NN search technical report[R].HKUST,2001,1-14.
    [102] M.Bacauskiene, A.Verika. A feature selection technique for generation of classificationcommittees and its application to categorization of laryngeal images [J]. Pattern Recognition,2009, vol.42,645–654.
    [103] Yiming Yang, Xin Liu. A re-examination of text categorization methods[C]. Proceedings ofACM SIGIR conference on research and development in information retrieval,1999,42-49.
    [104] Engin Avci,Abdulkadir Sengur,Davut Hanbay. An optimum feature extraction method forexture classification[J]. Expert Systems with Applications,2009, vol.36,6036–6043.
    [105] T.Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text[C]. Proc ofthe14th International Conference on Machine Learning ICML,1997,143-151.
    [106]桑应宾.基于K近邻的分类算法研究[D].重庆:重庆大学,2009,20-50.
    [107]曾志浩. KNN分类算法研究及其在中毒诊断中的应用[D].长沙:湖南大学,2005,12-50.
    [108]杨建良,王永成.基于KNN与自动检索的迭代近邻法在自动分类中的应用[J].情报学报,2004,23(2),137-141.
    [109] Fabrizio Sebastiani. Machine Learning in Automated Text Categorization[J], ACM ComputingSurveys,2002,34(1),1-47.
    [110] D.D.Lewis, K.A.Knowles. Threading electronic mail:a preliminary study[J]. InformationProcessingand Management,1997,33(2),209-217.
    [111] T.M.Mitchell. Machine Learning[J]. McGraw Hill Companies Inc,1997,230-247.
    [112] Wai Lam,Chaoyang Ho. Using a generalized instance set for automatic text categorization[C].In Proceedings of the21th Ann Int ACM SIGIR conference on research and developmentininformation retrieval,1998,81-89.
    [113] J.He,A.H.Tan, C.L.Tan. A comparative study on chinese text categorization methods[C].PRICAI2000workshop on text and web mining,Melbourne,2000,24-35.
    [114]孙岩,吕世聘,王秀坤等.基于结构学习的KNN分类算法[J].计算机科学,2007,34(12),23-31.
    [115] H.B.Mitchell,P.A.Schaefer. A“soft”K-nearest neighbor voting scheme[J]. International journalof intelligent systems,2001,vol16,459-468.
    [116] Yiming Yang. An evaluation of statistical approaches to text categorization[J]. Journal ofInformation Retrieval,1999,vol1,67-88.
    [117] Wlodzislaw Duch, Karol Grudzi Nski. The weighted K-NN with selection of features anditsneural realization [C]. Fourth conference on neural networks and their applications,Zakopane,1999,191-196.
    [118] Pedro, J.C.and J.Perez. Accurate simulation of GaAs MESFETs intermodulation using a newdrain-source current model [J]. IEEE Transactions Microwave Theory and Techniques,1994,Vol.42,25-33.
    [119] Peter Blockley. RF Phase Measurement and Analysis [D]. Australia:Macquarie University,2007,12-51.
    [120] Jan Verspecht, Dylan F.Williams, Dominique Schreurs. Linearization of Large SignalScattering Functions [J]. IEEE Transactions on Microwave Theory and Technique,2005,53(4),1369-1376.
    [121] Jan Verspecht, David E.Root, John Wood, et al. Broad-band multi harmonic frequencydomain behavioral models from automated large signal vectorial network measurements [C].Microwave Symposium Digest2005IEEE MTT-S International,2005,12-17.
    [122] Verspecht Jan, Horn Jason M, Betts Loren, et al. Extension of X-parameters to includelong-term dynamic memory effects [C]. Microwave Symposium Digest2009MTT '09IEEEMTT-S International,2009,741-744.
    [123] Jan Verspecht, David E.Root. Polyharmonic Distortion Modeling [J]. IEEE MicrowaveMagazine,2006,7(3),44-57.
    [124] David E.Root, Jan Verspecht, David Sharrit. Broad-Band Poly Harmonic Distortion (PHD)Behavioral Models From Fast Automated Simulations and Large-Signal Vectorial NetworkMeasurements [J]. IEEE Trans.MTT,2005,53(11),3656-3664.
    [125] Jan Verspecht. Scattering Functions for Nonlinear Behavioral Modeling in the FrequencyDomain [EB/OL]. http://www.janverspecht.com2003work shop notes. pdf,2003,06.
    [126] D.E.Root, J.Horn, L.Betts, et al. X parameters the new paradigm for measurement modelingand design of nonlinear RF and microwave component [J]. Microwave Engineering,2008,16-21.
    [127] G. Simpson. High Power Load Pull with X-Parameters-A New Paradigm for Modeling andDesign [C]. Wireless and Microwave Technology Conference,2010,1-4.
    [128] Gustaaf Sutorius. Nonlinear Vector Network Analyzer Applications [P/OL]. http://www.feebel.2009.05.
    [129] V. Volterra. Theory of functionals and of intergral and integro diferential equations [M]. Dover,New York,1959,20-300.
    [130] S.A.Mass. Nonlinear Microwave Circuit [M]. Artech House,1998,128-311.
    [131] Tomlinson G.R.,Mansong. A simple criterion for establishing an upper limit to the harmonicexcitation level of the duffing oscillator using the volterra series [J]. Journal of Sound andVibration,1996,190(5),751-762.
    [132] Koh T., Powers E.J.. Second order Volterra filtering and its application to nonlinear systemdentification [J]. IEEE Trans Acoust, Speech, Signal Processing,1985,33(6),1445-1448.
    [133] Worden K.,Manson G.,Tomlinson G.R. Harmonic probing algorithm for the multi-inputVolterra series[J]. Journal of Sound and Vibration,1997,201(Compendex),67-84.
    [134] Chatterjee A.,Vyas Nalinaksh. Convergence analysis of Volterra series response of nonlinearsystems subjected to harmonic excitation[J]. Journal of Sound and Vibration,2000,236(Compendex),339-358.
    [135] V. John Mathews. Adaptive poly nomial Filters [J]. IEEE Magazine.1999,10-20.
    [136] Peng Z.K.,Lang Z.Q.,Chu F.L. On the Nonlinear Effects Introduced by Crack Using NonlinearOutput Frequency Response Functions [J]. Computers&Structures,2008,86,1809-1818.
    [137] Lang Z.Q, Billings S.A. Energy transfer properties of non-linear systems in the frequencydomain [J]. International Journal of Control,2005,78(5),345-362.
    [138] Thouverez F. A new convergence criteria of Volterra series for harmonic inputs [J]. Society ofPhoto-Optical Instrumentation Engineers,1998,723-727.
    [139] Billings S.A.,Tsang K.M. Interpretation of non-linear frequency response functions [J].Mechanical Systems and Signal Processing,1989,3(4),341-359.
    [140] Schetzen M. The Volterra and Wiener theories of nonlinear systems [M]. Malabar: Krieger,1980.12-78.
    [141] Peng Z.K., Lang Z.Q., Billings S.A. Non-linear output frequency response functions formulti-input non-linear Volterra systems [C]. International Journal of Control,2007,80(6),843-855.
    [142] Rugh Wilson J. Nonlinear System Theory Charles Village [M]. The Johns Hopkins UniversityPress,2002,23-99.
    [143] Jing X.J.,Lang Z.Q.,Billings S.A. Output frequency properties of nonlinear Systems [J].International Journal of Nonlinear Mechanics,2010,45(7),681-690.
    [144]丁瑶.高效率射频功率放大器的研究[D].合肥:中国科学技术大学,2012,20-90.
    [145] L.E.Larson,et al. Integrated Circuit Technology Options of RF IC’s—Present Status and FutureDirections [J]. IEEE Journal Solid State Circuits,September1998, Vol.31,387-399.
    [146] Reinhold Ludwig, Pavel Bretchko, et al. RF Circuit Design:Theory and Applications [M].USA:Prentice-Hall, Inc,464-465
    [147]张玉兴等.非线性电路与系统[M].北京:机械工业出版社,2007,165-167.
    [148] Frederick H.Raab, et al. Class-F Power Amplifiers with Maximally Flat Waveforms [J]. IEEETransactions on Microwave Theory and Techniques,November1997, Vol.45,2007-2012.
    [149] Marian K.Kazimierczuk. RF Power Amplifiers [M]. USA:John Wiley&Sons, Inc.2008,190-191.
    [150] F.H.Raab. Class-F power amplifiers with maximally flat waveforms [J]. IEEE Transactions onMicrowave Theory and Techniques,1997, vol.45,2007-2012.
    [151] T.Brabetz, V.F.Fusco,et al. Voltage-driven Class E Amplifier and Applications [J]. IEE ProcMicrow. Antenans Propag,2005,Vol.152(No.5),373-377.
    [152] N.O.Sokal and A.D.Sokal. Class E-A new class of high-efficiency tuned single-endedswitching power amplifiers [J]. IEEE Journal of Solid-State Circuits,1975, vol.10,168-176.
    [153] Renato Negra. Lumped-Element Load-Network Design for Class E Power Amplifiers [J].IEEE Transactions on Microwave Theory and Techniques, June2006, Vol.54,2684-2690.
    [154] T.Sowlati. Low voltage high efficiency GaAs class E power amplifiers for wirelesstransmitters[J]. IEEE Journal of Solid-State Circuits,1995, vol.30,1074-1080.
    [155] Andrei Grebrnnikov.射频与微波功率放大器设计[M].北京:电子工业出版社,2006,284-287.
    [156]郑光明.射频功率放大器关键技术研究[D].成都:电子科技大学,2011,30-72.
    [157] C.P.Conradi, R.H.Johnston, J.G.McRory. Evaluation of a lossless combiner in a LINCtransmitter [C].1999IEEE Canadian Conference on Electrical and Computer Engineering,1999,vol(1),105–110.
    [158] Colantonio Paolo, Giannini, Franco, Giofrè, Rocco,et al. A Two Stage High Frequency Class FPower Amplifier [C]. Integrated Nonlinear Microwave and Millimeter-Wave Circuits,2006,187-190.
    [159] Staudinger Joseph, Benjamin, Newman David, et al. High efficiency CDMA RF poweramplifier using dynamic envelope tracking technique [C]. Microwave Symposium Digest.2000IEEE MTT-S International,Tempe,AZ.USA,873-876.
    [160]刘洪利. S波段固态功率放大器的研究[D].成都:电子科技大学,2007,30-45.
    [161] Gao, S., Butterworth, Peter, Sambell, A.,et al. Microwave Class-F and Inverse Class-F PowerAmplifiers Designs using GaN Technology and GaAs pHEMT[C]. Microwave Conference,2006.36th European,1719-1722.
    [162] Schmelzer David, Long I. Stephen. A GaN HEMT Class F Amplifier at2GHz with>80%PAE[C]. Compound Semiconductor Integrated Circuit Symposium, CSIC2006,96-99.
    [163] F.N. Khan, F.A. Mohammadi, M.e.E. Yagoub. A GaN HEMT Class-F Amplifier for UMTSWCDMA Applications[C].2008IEEE infrared and Microwave Conference, NCEP poceedings,2008,Kuala Lumpur,478-482.
    [164] Kenta Kuroda, Ryo Ishikawa, Kazuhiko Honjo. Parasitic Compensation Design Technique fora C-Band GaN HEMT Class-F Amplifier [J]. IEEE Transactions on Microwave Theory andTechniques,2010,(18),2741-2750.
    [165] Charinrat Wongtanarak, Suramate Chalermwisutkul. Design and Implementation of a1GHzGaN HEMT Class-F Power Amplifierfor Transistor Model Evaluation [C]. The8th ElectricalEngineering Electronics, Computer, Telecommunications and Information Technology,2011,Thailand,152-155.
    [166] Miura Osamu, Ishikawa Ryo, Honjo Kazuhiko. Parasitic-Element Compensation Based onFactorization Method for Microwave Inverse Class-F/Class-F Amplifiers[J]. Microwave andWireless Components Letters,2012,(22),521-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700