用户名: 密码: 验证码:
氨基功能化多孔氧化硅材料合成及其CO_2吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,由于人类排放至大气中的CO2数量不断增加且CO2与气候变化密切相关,因此CO2的排放引起了世人的高度关注。本文以氨基功能化SBA-15和以阴离子表面活性剂为模板剂合成氨基功能化多孔氧化硅(AFPS)为研究体系,主要采用优化实验条件(如pH值、陈化温度、阴离子类型等)方式,提高室温和常压下氨基功能化多孔氧化硅的CO2吸附量。同时,还利用(原位)红外、N2吸-脱附、元素分析、SEM、TG-DTA、TPD、XRD和TEM等技术对合成的多孔氧化硅进行了表征。本文的主要研究内容和结果如下:(1)氨基功能化SBA-15的直接合成及其CO2吸附性能。
     通过直接法合成了氨基功能化的介孔氧化硅材料。实验结果表明,当合成体系中APTES(氨丙基三乙氧基硅烷)与(APTES+TEOS)的摩尔比小于0.20或APTMS(氨丙基三甲氧基硅烷)与(APTMS+TEOS)的摩尔比小于0.10时,所合成的材料均具有SBA-15介孔结构。由于氨基对SBA-15结构的形成产生副作用,当上述两比值分别大于0.20和0.10时,介孔结构将会坍塌。但是,引入F-后,即使上述两比值达到0.25和0.30时,所合成的材料仍具有有序的介孔结构,且材料的孔容和比表面积较高。CO2吸附实验表明,随着反应体系中氨基功能化物质(APTES或APTMS)含量增加,所合成的材料吸附CO2的能力提高;在F-辅助下合成的材料吸附CO2的能力远远高于无F-辅助下合成材料的。(2)表面羟基高密度化SBA-15的合成、氨基功能化及其CO2吸附性能。
     在HCl溶液中引入HAc后,由于Ac-可降低硅羟基的水解与聚合反应,因此可合成表面羟基高密度化的SBA-15材料。通过填充TEPA(tetraethylenepentamine)可获得氨基功能化SBA-15(AF-SBA-15)材料。实验表明,当TEPA与SBA-15的质量比(x)小于0.6时,所获得的AF-SBA-15均具有与纯SBA-15一样的结构。CO2吸附实验说明,当x为0.1时,随着吸附温度升高,AF-SBA-15对CO2的吸附能力降低;当x为0.6时,随着吸附温度升高,AF-SBA-15对CO2的吸附能力增加。
     (3)萃取方式、陈化温度、pH值和反应物组成等对以阴离子表面活性剂为模板剂合成氨基功能化多孔氧化硅吸附CO2的影响。
     分别以十二烷基肌氨酸钠(Sar-Na)、APTMS和TEOS为结构导向剂(SDA)、共结构导向剂(CSDA)和硅源合成了氨基功能化介孔氧化硅预产物。分别用乙醇-乙醇胺和盐酸-乙睛混合液萃取预产物中的模板剂。研究表明,乙醇-乙醇胺的萃取效果好于盐酸-乙晴的,且萃取后获得的材料对CO2的吸附能力优于由盐酸-乙睛萃取后获得材料的。
     从元素分析和TEM表征结果可知,陈化温度和pH值对介孔材料内氨基含量影响较大。当在较低的陈化温度和相对较低的pH值下,所合成材料对CO2的吸附量较高。
     CO2吸附实验表明,在以阴离子表面活性剂为模板剂合成介孔氧化硅中,APTMS与TEOS的比值对合成材料的C02吸附性能起重要作用。当加入0.6 ml APTMS和3.0 mlTEOS至含39 ml HCl (0.1 mol/1),70 ml H2O和1.76 g Sar-Na的混合溶液中时,所合成材料的CO2吸附能力优于其它条件下(如加入0.3 ml的APTMS和3.0 ml的TEOS至含13 mlHCl (0.1 mol/1),70ml H2O和0.59 g的Sar-Na昆合溶液中)合成材料的。
     (4)以月桂酸为模板剂合成氨基功能化多孔氧化硅及其CO2吸附性能。
     分别使用月桂酸为SDA、APTMS为CSDA、TEOS为硅源,采用溶胶-凝胶法,通过乙醇胺-乙醇体系萃取模板剂后,合成了氨基功能化多孔氧化硅。CO2吸附实验表明,随着反应体系中APTMS含量提高,所合成材料对CO2的吸附能力不断提高;但当APTMS与月桂酸体积比大于2.2:3.0时,随着APTMS含量提高,所合成材料对CO2的吸附量降低。此外,通过调查甲醇、乙醇、丙醇和正丁醇等对吸附剂的CO2吸附性能影响时表明,使用乙醇为共溶剂合成的材料对CO2的吸附效果最好。
It is well known that carbon dioxide (CO2) has become an important global issue due to the significant and continuous rise in anthropic CO2 emissions to the atmosphere and their connection with global climate change. Two kinds of amino-functionalized porous silicas (AFPS), i.e. amino-functionalized SBA-15 and porous silicas templated by anionic surfactants, have been studied in this dissertation. To improve adsorption capacity of CO2 on the AFPS at ambient temperature and atmospheric pressure, this study has been focused on investigating the effects of experimental conditions such as pH value, aging temperature, types of anionic surfactant etc., on AFPS adsorption properties for CO2. Inherently, the synthesized porous silicas have been characterized by the FT-IR, in-situ FT-IR, N2 adsorption-desorption, elemental analysis, SEM, TG-DTA, TPD, XRD, and TEM techniques. The obtained results are summarized as follows:
     (1) One-pot synthesis of amino-functionalized SBA-15 and their CO2-adsorption properties.
     Amino-functionalized SBA-15 mesoporous materials were synthesized by a one-pot strategy. The characterized results show that all the obtained materials have a typical meso-SBA-15 structure when the molar ratios of APTES to (APTES+TEOS) in the synthetic solutions are below 0.20 or the molar ratios of APTMS to (APTMS+TEOS) in the synthetic solutions are below 0.10, while the meso-structure could be collapsed when these ratios are more than the corresponding values (0.20 or 0.10) because of the adverse effect of amino groups on the formation of SBA-15. However, with the aid of fluoride ions, even at a molar ratio of APTES to (APTES+TEOS) of 0.25 or a molar ratio of APTMS to (APTMS+TEOS) of 0.30, the amino-functionalized SBA-15 mesoporous material with a larger pore size and a higher BET surface area could be synthesized. The results from CO2 adsorption on the synthesized amino-functionalized SBA-15 mesoporous materials show that under the same conditions the adsorbed amount of CO2 increases with increasing the APTES (APTMS) amount in the synthetic solution and the amino-functionalized SBA-15 mesoporous material synthesized with the aid of fluoride ions has a higher amount adsorbed for CO2 adsorption at 101 kPa and 25℃, compared to those prepared without introduction of fluoride ions.
     (2) Synthesis, amino-functionalization of SBA-15 with a high Si-OH density and their C02-adsorption properties.
     SBA-15 materials with a high Si-OH density have been successfully prepared by adding HAc solution into HCl solution, because Ac- can slow down the hydrolysis-condensation reaction of silica alkoxides. The amino-functionalized SBA-15 (AF-SBA-15) materials have been obtained via tetraethylenepentamine (TEPA) loaded onto the SBA-15 with a high Si-OH density. The experimental results show that when the mass ratios of TEPA to SBA-15 are below 0.6, the structure of AF-SBA-15 are identical to that of pure SBA-15. When the mass ratio of TEPA to SBA-15 is 0.1, the adsorption capacity of CO2 on the prepared AF-SBA-15 decreases with increasing temperature, while when the mass ratio of TEPA to SBA-15 is 0.6, the adsorption capacity of CO2 on the synthesized AF-SBA-15 increases with increasing temperature.
     (3) Effects of extractive method, aging temperature, pH value and and reactant composition on the adsorption properties of CO2 over the amino-functionalized porous silicas templeted by anion surfactants.
     Using N-lauroylsarcosine sodium (Sar-Na),3-aminopropyltrimethoxysilane (APTMS) and TEOS as structure-directing agent (SDA), co-structure-directing agent (CSDA) and silicon source, respectively, the pre-products of amino-functionalized mesoporous silicas have been prepared by a sol-gel method. The template in the pre-products can be efficiently removed by extraction either using a basic solution of monoethanol amine (MEA) in ethanol or an acetonitrile solution acidified with HCl. The experimental results indicate that, when compared to the adsorbent treated with acidic acetonitrile, the adsorbent treated with the MEA-ethanol solution has a much higher adsorption capacity towards CO2, exhibits a higher degree of reversibility in the adsorption process, and has a much higher CO2/N2 selectivity.
     The results from both elemental analysis and TEM characterizations show that the amount of amino groups inside the mesoporous materials is greatly controlled by the aging temperature and pH value of the synthetic solution. The adsorption of CO2 on the synthesized materials implies that the low aging temperature and relatively low pH value of the synthetic solution would be benefit to enhance the adsorbed amount of CO2 on the resulted materials.
     The results from CO2 adsorption on the amino-functionalized mesoporous silicas templeted by anion surfactants also show that the ratio of APTMS to TEOS is a key parameter that affects the CO2 adsorption capacity. When a miture of 0.6 ml APTMS and 3.0 ml TEOS is added into a solution containing 39 ml HCl(0.1 mol/l),70 ml H2O and 1.76 g Sar-Na, the synthesized adsorbent exhibites a much higher CO2 adsorption capacity, compared to those synthesized under other conditions, for example, a mixture of 0.3 ml APTMS and 3.0 ml TEOS added into a solution containing 13 ml HCl (0.1 mol/1),70 ml H2O and 0.59 g Sar-Na.
     (4) Preparation of amino-functionalized porous silicas templeted by dodecanoic acid and their CO2-adsorption properties.
     Using dodecanoic acid (DAA), APTMS and TEOS as SDA, CSDA, and silicon source, respectively, the pre-products of amino-functionalized mesoporous silicas have been prepared by a sol-gel method. The template in the pre-products can be efficiently removed by extraction using a basic solution of MEA in ethanol. The results from CO2 adsorption show that, when the content of APTMS in the synthetic system is increased, the adsorption capacity of CO2 adsorption on the synthesized adsorbent is increased as well. However, when the volume ratio of APTMS to DAA is above 2.2:3.0, the adsorption capacity of CO2 decreases with increasing the content of APTMS. Additionally, a systematic investigation on the effects of the use of alcohols, such as methanol, ethanol, propanol, and butanol, on the adsorption properties of CO2 on the resulted adsorbents indicates that the adsorbent synthesized by the use of ethanol has the highest adsorption capacity towards CO2.
引文
[1]金红光,张希良,高林,岳立何建坤,蔡睿贤.控制C02排放的能源科技战略综合研究.尹厚殍学艳纭2008,38(9):1495-1506.
    [2]Bello A, Idem R O. Comprehensive Study of the Kinetics of the Oxidative Degradation of CO2 Loaded and Concentrated Aqueous Monoethanolamine (MEA) with and without Sodium Metavanadate during CO2 Absorption from Flue Gases. Ind. Eng. Chem. Res.,2006, 45 (8):2569-2579.
    [3]Paul S, Ghoshal A K, Mandal B. Removal of CO2 by Single and Blended Aqueous Alkanolamine Solvents in Hollow-Fiber Membrane Contactor:Modeling and Simulation. Ind. Eng. Chem. Res.,2007,46 (8):2576-2588.
    [4]Veawab A, Tontiwachwuthikul P, Chakma A. Investigation of Low-Toxic Organic Corrosion Inhibitors for CO2 Separation Process Using Aqueous MEA Solvent. Ind Eng. Chem. Res., 2001,40 (22):4771-4777.
    [5]Kazama S, Teramoto T, Haraya K. Carbon Dioxide and Nitrogen Transport Properties of Bis(phenyl)fluorene-Based Cardo Polymer Membranes. J. Membr. Sci.,2002,207 (1): 91-104.
    [6]Sandru M, Kim T J, Hagg M B. High Molecular Fixed-Site-Carrier PVAM Membrane for CO2 Capture. Desalination,2009,240 (1-3):298-300.
    [7]Teramoto M. Approximate Solution of Facilitation Factors for the Transport of CO2 through a Liquid Membrane of Amine Solution. Ind. Eng. Chem. Res.,1995,34 (4):1267-1272.
    [8]Schumacher C, Gonzalez J, Perez-Mendoza M, Wright P A, Seaton N A. Design of Hybrid Organic/Inorganic Adsorbents Based on Periodic Mesoporous Silica. Ind. Eng. Chem. Res., 2006,45(16):5586-5597.
    [9]Kim S, Ida J, Guliants V V, Lin J Y S. Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2. J. Phys. Chem. B.,2005,109 (13):6287-6293.
    [10]王林芳,马磊,王爱琴,刘茜,张涛.氨基硅烷修饰的SBA-15用于C02的吸附.磋化学扼2007,28(9):805-811.
    [11]Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion Behavior of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions. Ind. Eng. Chem. Res.,1999,38 (10):3917-3924.
    [12]Tanthapanichakoon W, Veawab A. Electrochemical Investigation on the Effect of Heat-Stable Salts on Corrosion in CO2 Capture Plants Using Aqueous Solution of MEA. Ind. Eng. Chem. Res.,2006,45 (8):2586-2593.
    [13]Lawal O, Bello A, Idem R. The Role of Methyl Diethanolamine (MDEA) in Preventing the Oxidative Degradation of CO2 Loaded and Concentrated Aqueous Monoethanolamine (MEA)-MDEA Blends during CO2 Absorption from Flue Gases. Ind. Eng. Chem. Res., 2005,44(6):1874-1896.
    [14]DeMontigny D, Tontiwachwuthikul P, Chakma A. Comparing the Absorption Performance of Packed Columns and Membrane Contactors. Ind. Eng. Chem. Res.,2005,44 (15): 5726-5732.
    [15]陈道远.变压吸附法脱除二氧化碳的研究[硕士学位论文].南京,南京工业大学,2003,3-4.
    [16]Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P. Amine-Modified SBA-12 Mesoporous Silica for Carbon Dioxide Capture:Effect of Amine Basicity on Sorption Properties. MicroporousMesoporons Mater.,2008,116, (1-3):358-364.
    [17]Knofel C, Descarpentries J, Benzaouia A, Zelenak V, Mornet S, Llewellyn P L, Hornebecq V. Functionalised Micro-/Mesoporous Silica for the Adsorption of Carbon Dioxide. Microporous Mesoporous Mater,2007,99 (1-2):79-85.
    [18]Sakamoto Y, Nagata K, Yogo K, Yamada K. Preparation and CO2 Separation Properties of Amine-Modified Mesoporous Silica Membranes. Microporous Mesoporous Mater,2007, 101 (1-2):303-311.
    [19]Belmabkhout Y, Sayari A. Effect of Pore Expansion and Amine Functionalization of Mesoporous Silica on CO2 Adsorption over a Wide Range of Conditions. J. Int. Adsorpt. Soc.,2009,15 (3):318-328.
    [20]Berlier K, Frere M. Adsorption of CO2 on Microporous Materials.1. On Activated Carbon and Silica Gel. J. Chem. Eng. Data,1997,42 (3):533-537.
    [21]Mao D, Yao J X, Wang D. Effect of Organic Solvents on the Preparation of Silica Microspheres by Hydrolysis of TEOS. Rar. Met. Mater. Eng.,2007,36 (Suppl.1):180-183.
    [22]Vollet D R, Donatti D A, Ruiz A I, Maceti H. Effect of the Temperature on the TMOS Sono-Hydrolysis and a Study of the Structure of the Resulting Aged Sonogels. J. Non-Cryst. Solids,2003,324 (3):201-207.
    [23]Matsuzawa T, Mase K, Inoue S. Synthesis and Application of a Silica Nanocomposite Filler Using Water Glass and a Resole-Type Phenol Resin. J. Appl. Polym. Sci.,2009,112 (6): 3748-3753.
    [24]Shewale P M, Rao A V, Gurav J L, Rao A P. Synthesis and Characterization of Low Density and Hydrophobic Silica Aerogels Dried at Ambient Pressure Using Sodium Silicate Precursor. J. Porous Mater.,2009,16 (1):101-108.
    [25]Fu H P, Hong R Y, Zhang Y J, Li H Z, Xu B, Zheng Y, Wei D G Preparation and Properties Investigation of PMMA/Silica Composites Derived from Silicic Acid. Polym. Adv. Technol., 2009,20 (2):84-91.
    [26]Kim S H, Ahn S H, Hirai T. Crystallization Kinetics and Nucleation Activity of Silica Nanoparticle-Filled Polyethylene 2,6-naphthalate). Polymer,2003,44 (19):5625-5634.
    [27]Senkevich J J, Desu S B. Near-Room-Temperature Thermal Chemical Vapor Deposition of Poly(chloro-p-xylylene)/SiO2Nanocomposites. Chem. Mater,1999,11 (7):1814-1821.
    [28]Zhu J J, Xie J M, Lu X M, Synthesis and Characterization of Superhydrophobic Silica and Silica/Titania Aerogels by Sol-Gel Method at Ambient Pressure. Colloids Surf. A,2009, 342 (1-3):97-101.
    [29]Venditti F, Angelico R, Palazzo Q Colafemmina G, Ceglie A, Lopez F. Preparation of Nanosize Silica in Reverse Micelles:Ethanol Produced during TEOS Hydrolysis Affects the Microemulsion Structure. Langmuir,2007,23 (20):10063-10068.
    [30]Zou H, Wu S, Shen J. Polymer/Silica Nanocomposites:Preparation, Characterization, Properties, and Applications. Chem. Rev.,2008,108 (9):3893-3957.
    [31]. Brinker C J. Hydrolysis and Condensation of Silicates:Effects on Structure. J. Non-Cryst. Solids,1988,100 (1-3):31-50
    [32]陈同来,陈铮.催化方式和水硅比对正硅酸乙酯的溶胶凝胶过程的影响.华东船舶工业学院学报(自然科学版),2003,7(3):62-65.
    [33]顾宇辉,古宏晨,徐宏,韩哲文.正硅酸乙酯水解过程的半经验量子化学研究.石猊化学学报2003,19(12):1301-1306.
    [34]Donatti D A, Vollet D R. Effects of the Water Quantity on the Solventless TEOS Hydrolysis under Ultrasound Stimulation. J. Sol-Gel Sci. Technol.,2000,17 (1):19-24.
    [35]Strawbridge I, Craievich A F, James P F. The Effect of the H2O/TEOS Ratio on the Structure of Gels Derived by the Acid Catalysed Hydrolysis of Tetraethoxysilane. J. Non-Cryst. Solids,1985,72 (1):139-157.
    [36]Venditti F, Angelico R, Palazzo Q Colafemmina G,Ceglie A, Lopez F. Preparation of Nanosize Silica in Reverse Micelles:Ethanol Produced during TEOS Hydrolysis Affects the Microemulsion Structure. Langmuir,2007,23 (20):10063-10068.
    [37]霍玉秋,翟玉春,童华南.3种共溶剂对正硅酸乙酯水解的影响.东北大学学报(自然科学版),2004,25(2):133-135.
    [38]Bernards T N M, Janssen M J C H, Bommel M J V. Influence of Butanol on the Hydrolysis-Condensation Behaviour of TEOS. J. Non-Cryst. Solids,1994,168 (3): 201-212.
    [39]Harris M T, Brunson R R, Byers C H. The Base-Catalyzed Hydrolysis and Condensation Reactions of Dilute and Concentrated TEOS Solutions. J. Non-Cryst. Solids,1990,121 (1-3):397-403.
    [40]Cihlar J. Hydrolysis and Polycondensation of Ethyl Silicates.1. Effect of pH and Catalyst on the Hydrolysis and Polycondensation of Tetraethoxysilane (TEOS). Colloids Surf. A, 1993,70 (3):239-251.
    [41]徐超,周斌,解德滨,沈军,倪星元,徐展.超低密度Si02气凝胶快速制备的新方法.材料导报,2006,20(6):105-107.
    [42]Hwang S W, Jung H H, Hyun S H, Effective Preparation of Crack-Free Silica Aerogels via Ambient Drying. J. Sol-Gel Sci. Techno;.,2007,41 (2):139-146.
    [43]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered Mesoporous Molecular Sieve Synthesized by a Liquid-Crystal Template Mechanism. Nature,1992,359 (6397):710-712.
    [44]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., 1992,114(27),10834-10843.
    [45]Raman N K, Anderson M T, Brinker C J. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater,1996,8 (8):1682-1701.
    [46]Sayari A. Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater,1996,8 (8): 1840-1852.
    [47]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev.,1997,97 (6):2373-2420.
    [48]Bhattacharyya S, Lelong Q Saboungi M L. Recent Progress in the Synthesis and Selected Applications of MCM-41:a Short Review. J. Exp. Nanosci.,2006,1 (3):375-395.
    [49]Galacho C, Carrott M M L R, Carrott P J M. Evaluation of the Thermal and Mechanical Stability of Si-MCM-41 and Ti-MCM-41 Synthesised at Room Temperature. Microporous Mesoporous Mater,2008,108 (1-3):283-293.
    [50]Zukal A, Siklova H, Cejka J, Thommes M. Preparation of MCM-41 Silica Using the Cationic Surfactant Blend. Adsorpt.-J. Int. Adsorpt. Soc.,2007,13 (3-4):247-256.
    [51]Frasch J, Lebeau B, Soulard M, Patarin J, Zana R. In Situ Investigations on Cetyltrimethyl Ammonium Surfactant/Silicate Systems, Precursors of Organized Mesoporous MCM-41-Type Siliceous Materials. Langmuir,2000,16 (23):9049-9057.
    [52]Lin H P, Cheng S, Mou C Y Mesoporous Molecular Sieves MCM-41 with a Hollow Tubular Morphology. Chem. Mater.,1998,10(2):581-589.
    [53]Huo Q S, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P, Leon R, Petroff P M, Schuth F, Stucky G D. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials. Nature,1994,368 (6469):317-321.
    [54]Huo Q S, Margolese D I, Ciesla U, Demuth D Q Feng P, Gier T E, Sieger P, Firouzi A, Chmelka B F, Schuth F, Stucky G D. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater.,1994,6 (8): 1176-1191.
    [55]Huo Q S, Margolese D I, Stucky G D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater,1996,8 (5):1147-1160.
    [56]Van der Voort P, Mathieu M, Mees F, Vansant E F. Synthesis of High-Quality MCM-48 and MCM-41 by Means of the Gemini Surfactant Method. J. Phys. Chem. B,1998,102 (44): 8847-8851.
    [57]Romero F J, Jimenez C, Hue I, Oda R. Room Temperature Synthesis of Ordered Porous Silicas Templated by Symmetric and Dissymmetric Gemini Surfactants [CnH2n+1N(CH3)2(CH2)2(CH3)2NCmH2m+1]Br2. Microporous Mesoporous Mater,2004,69 (1-2):43-48.
    [58]Gianotti E, Berlier Q Costabello K, Coluccia S Meneau F. In Situ Synchrotron Small-angle X-ray Scattering Study of MCM-41 Crystallisation Using Gemini Surfactants. Catal.Today, 2007,126 (1-2):203-210.
    [59]Hernandez-Pineda J, Manuel del Rio J, Carreto E, Terres E, Montoya J A, Zuniga-Gonzalez M J, Morgado J. Synthesis of PdO/MCM-41 Nanocomposites Using Trans-[PdCl2(PEt3)2] as the Source of Metal. J. Alloys Compd,2009,481 (1-2):526-530.
    [60]Yang X, Zhou L, Chen C, Li X, Xu J. Direct Synthesis and Characterization of Bifunctional Me-Zr-MCM-41. Mater. Lett.,2009,63 (20):1754-1756.
    [61]zheng S, Gao L A, Zhang Q H, Guo J K. Synthesis, Characterization and Photocatalytic Properties of Titania-Modified Mesoporous Silicate MCM-41. J. Mater. Chem.,2000,10(3): 723-727.
    [62]Bhoware S S, Singh A P. Characterization and Catalytic Activity of Cobalt Containing MCM-41 Prepared by Direct Hydrothermal, Grafting and Immobilization Methods. J. Mol. Catal. A:Chem.,2007,266 (1-2):118-130.
    [63]Demel J, Cejka J, Bakardjieva S, Stepnicka P. Grafting of Palladium Nanoparticles onto Mesoporous Molecular Sieve MCM-41:Heterogeneous Catalysts for the Formation of an N-Substituted Pyrrol. J. Mol. Catal A:Chem.,2007,266 (1-2):259-265.
    [64]Jeon J K, Park Y K, Kim S, Kim S S, Yim, J H, Sohn J M. Catalytic Degradation of Polyethylene by Al-MCM-41:Comparison of Post-Synthetic Metal Grafting and Direct Sol-Gel Synthesis Methods. J. Ind. Eng. Chem.,2007,13 (2):176-181.
    [65]Solovyov L A, Belousov O V, Dinnebier R E, Shmakov A N, Kink S D. X-ray Diffraction Structure Analysis of MCM-48 Mesoporous Silica. J. Phys. Chem. B,2005,109 (8): 3233-3237.
    [66]Solovyov L A, Zaikovskii V I, Shmakov A N, Belousov OV, Ryoo R. Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy. J Phys. Chem. B,2002,106 (47):12198-12202.
    [67]Alfredsson V, Anderson M W, Ohsuna T, Terasaki O, Jacob M, Bojrup M. Cubosome Description of the Inorganic Mesoporous Structure MCM-48. Chem. Mater.,1997,9 (10): 2066-2070.
    [68]Galarneau A, Driole M F, Petitto C, Chiche B, Bonelli B, Armandi M, Onida B, Garrone E, di Renzo F, Fajula F. Effect of Post-Synthesis Treatment on the Stability and Surface Properties of MCM-48 Silica. Micropowus Mesoporous Mater.,2005,83 (1-3):172-180.
    [69]王树国,吴东,孙子罕,钟炳,邓风,岳勇,罗睛.MCM-48介孔分子筛的高压合成.物理化学学报,2001,17(1):659-661.
    [70]Wang K, Lin Y, Morris M A, Holmes J D. Preparation of MCM-48 Materials with Enhanced Hydrothermal Stability. J. Mater. Chem.,2006,16 (41):4051-4057.
    [71]Wang L, Shao Y, Zhang J, Anpo M. Synthesis of MCM-48 Mesoporous Molecular Sieve with Thermal and Hydrothermal Stability with the Aid of Promoter Anions. Microporous Mesoporous Mater.,2006,95 (1-3):17-25.
    [72]Wang L, Shao Y, Zhang J. Short-Time Formation of Weil-Ordered Cubic Mesoporous MCM-48 Molecular Sieve with the Aid of Fluoride Ions. Mater. Lett.,2005,59 (28): 3604-3607.
    [73]Shao Y, Wang L, Zhang J, Anpo M. Novel Synthesis of High Hydrothermal Stability and Long-Range Order MCM-48 with a Convenient Method. Microporous Mesoporous Mater, 2005,86(1-3):314-322.
    [74]Boote B, Subramanian H, Ranjit K T. Rapid and Facile Synthesis of Siliceous MCM-48 Mesoporous Materials. Chem. Commun.,2007, (43):4543-4545.
    [75]Bandyopadhyay M, Gies H. Synthesis of MCM-48 by Microwave-Hydrothermal Process. C. R. Chim.,2005,8 (3-4):621-626.
    [76]Vartuli J C, Schmitt K D, Kresge C T, Roth W J, Leonowicz M E, McCullen S B, Hellring S D, Beck J S, Schlenker J L. Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves:Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications. Chem. Mater.,1994,6 (12):2317-2320.
    [77]Kong L, Liu S, Yan X, Li Q, He H. Synthesis of Hollow-Shell MCM-48 Using the Ternary Surfactant Templating Method. Microporous Mesoporous Mater.,2005,81 (1-3):251-257.
    [78]Zhao W, Hao Z, Hu C. Synthesis of MCM-48 with a High Thermal and Hydro-Thermal Stability. Mater. Res. Bull,2005,40 (10):1775-1780.
    [79]孔令东,刘苏,颜学武,贺鹤勇,李全芝.缓冲体系中高热和水热稳定的MCM-48介孔分子筛的合成.化学学报,2005,63(13):1241-1244.
    [80]翟尚儒,蒲敏,张晔,吴东,孙予罕.纯硅MCM-48的合成研究.无机化学学报,2002,18(11):1081-1085.
    [81]翟尚儒,蒲敏,巩雁军,张晔,吴东,孙予罕.用双表面活性剂为模板剂合成中孔分子筛MCM-48.物理化学学报,2002,18(10):911-915.
    [82]翟尚儒,张晔,吴东,孙予罕.混合表面活性剂与调节pH值法高效合成MCM-48.化学学报,2003,61(3):345-349.
    [83]Van der Voort P, Mathieu M, Mees F, Vansant E F. Synthesis of High-Quality MCM-48 and MCM-41 by Means of the Gemini Surfactant Method. J. Phys. Chem. B,1998,102 (44): 8847-8851.
    [84]Benjelloun M, Van der Voort P, Cool P, Collart O, Vansant E F. Reproducible Synthesis of High Quality MCM-48 by Extraction and Recuperation of the Gemini Surfactant. Phys. Chem. Chem. Phys.,2001,3 (1):127-131.
    [85]Han S H, Xu W Q Yu X M, Wang Y S. Synthesis of High-Quality MCM-48 Mesoporous Silica Using Gemini Surfactant Dimethylene-1,2-bis (dodecyldimethylammonium bromide). J. Phys. Chem. B,2004,108 (39):15043-15048.
    [86]Xu J, Han S H, Hou W Q Dang W X, Yan X. Synthesis of High-Quality MCM-48 Mesoporous Silica Using Cationic Gemini Surfactant C12-2-12. Colloids Surf. A,2004, 248 (1-3):75-78.
    [87]Czechura K Sayari A. Synthesis of MCM-48 Silica Using a Gemini Surfactant with a Rigid Spacer. Chem. Mater,2006,18 (17):4147-4150.
    [88]金忠秀,童红武,雍国平,盛良全,刘清亮,刘少民.Ce-MCM-48介孔分子筛的合成、 表征和催化性能.化学钐理学报,2005,18(6):1057-1061.
    [89]Zhan W, Guo Y, Wang Y, Liu X, Guo Y, Wang Y, Zhang Z, Lu G Synthesis of Lanthanum-Doped MCM-48 Molecular Sieves and Its Catalytic Performance for the Oxidation of Styrene. J. Phys. Chem. B,2007,111 (42):12103-12110.
    [90]李亚男,郭晓红,周广栋,吕学举,程铁欣,吴通好,甄开吉.Co-MCM-41和Co-MCM-48分子筛的合成与表征及其对临CO2乙烷脱氢反应的催化性能.催化学报,2005,26(7):591-596.
    [91]Shao Y, Wang L, Zhang J, Anpo M. Synthesis of Hydrothermally Stable and Long-Range Ordered Ce-MCM-48 and Fe-MCM-48 Materials. J. Phys. Chem. B,2005,109 (44): 20835-20841.
    [92]Shao Y, Wang L, Zhang J, Anpo M. Synthesis and Characterization of High Hydrothermally Stable Cr-MCM-48. Microporous Mesoporous Mater.,2008,109 (1-3):271-277.
    [93]Meng Q Q Boutinaud P, Franville A C, Zhang H J, Mahiou R Preparation and Characterization of Luminescent Cubic MCM-48 Impregnated with an Eu3+ β-diketonate Complex. Microporous Mesoporous Mater.,2003,65 (2-3):127-136.
    [94]张继龙,孙学政,范彬彬,李瑞丰.含锡介孔分子筛MCM-48的合成,表征及催化性能,无机化学学报,2006,22(8):1525-1529.
    [95]Gomez S, Garces L J, Villegas J, Ghoshb R, Giraldod O, Suib S L. Synthesis and Characterization of TM-MCM-48 (TM=Mn, V, Cr) and their Catalytic Activity in the Oxidation of Styrene. J. Cata.,2005,233 (1):60-67.
    [96]Gomez S, Giraldo O, Garces L J, Villegas J, Suib S L. New Synthetic Route for the Incorporation of Manganese Species into the Pores of MCM-48. Chem.Mater,2004,16 (12):2411-2417.
    [97]Zhao D Y, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science,1998,279 (5350):548-552.
    [98]Zhao D Y, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc.,1998,120 (24):6024-6036.
    [99]Newalkar B L, Komarneni S, Katsuki H. Rapid Synthesis of Mesoporous SBA-15 Molecular Sieve by a Microwave-Hydrothermal Process. Chem. Commun.,2000, (23): 2389-2390.
    [100]Celer E B, Jaroniec M. Temperature-Programmed Microwave-Assisted Synthesis of SBA-15 Ordered Mesoporous Silica. J. Am. Chem. Soc,2006,128 (44):14408-14414.
    [101]Chareonpanich M, Nanta-ngern A, Limtrakul J. Short-Period Synthesis of Ordered Mesoporous silica SBA-15 Using Ultrasonic Technique. Mater Lett.,2007,61 (29): 5153-5156.
    [102]Fulvio P F, Pikus S, Jaroniec M. Short-Time Synthesis of SBA-15 Using Various Silica Sources. J. Colloid Interface Sci.,2005,287 (2):717-720.
    [103]Jarry B, Launay F, Nogier J P, Montouillout V, Gengembre L, Bonardet J L. Characterisation, Acidity and Catalytic Activity of Ga-SBA-15 Materials Prepared Following Different Synthesis Procedures. Appl. Catal. A,2006,309 (2):177-186.
    [104]Timofeeva M N, Jhung SH, Hwang Y K, Kim D K, Panchenko VN, Melgunov M S, Chesalov Yu A, Chang J S. Ce-Silica Mesoporous SBA-15-Type Materials for Oxidative Catalysis:Synthesis, Characterization, and Catalytic Application. Appl. Catal. A,2007, 317(1):1-10.
    [105]Dai Q, Wang X, Chen G,Zheng Y, Lu G Direct Synthesis of Cerium(Ⅲ)-Incorporated SBA-15 Mesoporous Molecular Sieves by Two-Step Synthesis Method. Microporous Mesoporous Mater,2007,100 (1-3):268-275.
    [106]Li Y, Feng Z, Lian Y, Sun K, Zhang L, Jia Q Yang Q, Li C. Direct Synthesis of Highly Ordered Fe-SBA-15 Mesoporous Materials Under Weak Acidic Conditions. Microporous Mesoporous Mater.,2005,84 (1-3):41-49.
    [107]Shah P, Ramaswamy AV, Lazar K, Ramaswamy V. Direct Hydrothermal Synthesis of Mesoporous Sn-SBA-15 Materials under Weak Acidic Conditions. Microporous Mesoporous Mater,2007,100(1-3):210-226.
    [108]Ying F, Li J, Huang C, Weng W, Wan H. Direct Synthesis and Superior Catalytic Performance of V-containing SBA-15 Mesoporous Materials for Oxidative Dehydrogenation of Propane. Catal. Lett.,2007,115, (3-4):137-142.
    [109]Wang Y M, Wu Z Y, Wei Y L, Zhu J H. In Situ Coating Metal Oxide on SBA-15 in One-Pot Synthesis. Microporous Mesoporous Mater.,2005,84 (1-3):127-136.
    [110]Newalkar B L, Olanrewaju J, Komarnen S. Microwave-Hydrothermal Synthesis and Characterization of Zirconium Substituted SBA-15 Mesoporous Silica. J. Phys. Chem. B, 2001,105 (35):8356-8360.
    [111]Wu Z Y, Wang H J, Zhuang T T, Sun L B, Wang Y M, Zhu J H. Multiple Functionalization of Mesoporous Silica in One-Pot:Direct Synthesis of Aluminum-Containing Plugged SBA-15 from Aqueous Nitrate Solutions. Adv. Funct.Mater,2008,18 (1):82-94.
    [112]Aguado J, Calleja G,Carrero, Moreno J. One-Step Synthesis of Chromium and Aluminium Containing SBA-15 Materials. Chem. Eng. J.,2008,137 (2):443-452.
    [113]Han P, Wang X, Qiu X, Ji X, Gao L. One-Step Synthesis of Palladium/SBA-15 Nanocomposites and Its Catalytic Application. J. Mol.Catal. A:Chem.,2007,272 (1-2): 136-141.
    [114]Hu L, Ji S, Jiang Z, Song H, Wu P, Liu Q. Direct Synthesis and Structural Characteristics of Ordered SBA-15 Mesoporous Silica Containing Tungsten Oxides and Tungsten Carbides. J. Phys. Chem. C,2007,111 (42):15173-15184.
    [115]Han Y F, Chen F, Ramesh K, Zhong Z, Widjaja E, Chen L. Preparation of Nanosized Mn3O4/SBA-15 Catalyst for Complete Oxidation of Low Concentration EtOH in Aqueous Solution with H2O2. Appl. Catal. B,2007,76 (3-4):227-234.
    [116]Jung W Y, Baek S H, Yang J S, Lim K T, Lee M S, Lee G D, Park S S, Hong S S. Synthesis of Ti-containing SBA-15 Materials and Studies on their Photocatalytic Decomposition of Orange Ⅱ. Catal.Today,2008,131 (1-4):437-443.
    [117]Liang X, Li J, Lin Q, Sun K. Synthesis and Characterization of Mesoporous Mn/Al-SBA-15 and Its Catalytic Activity for NO Reduction with Ammonia. Catal. Commtm.,2007,8 (12):1901-1904.
    [118]Shah P, Ramaswamy A V, Lazar K, Ramaswamy V Synthesis and Characterization of Tin Oxide-Modified Mesoporous SBA-15 Molecular Sieves and Catalytic Activity in Trans-Esterification Reaction. Appl.Catal. A,2004,273 (1-2):239-248.
    [119]王奂玲,闫亮,赵睿,索继栓.氨丙基官能化SBA-15介孔分子筛的合成及催化性能的研究.分子磋化,2005,19(1):1-6.
    [120]Zhu S, Zhou Z, Zhang D, Wang H. Synthesis of Mesoporous Amorphous MnO2 from SBA-15 via Surface Modification and Ultrasonic Waves. Microporous Mesoporous Mater., 2006,95 (1-3):257-264.
    [121]Kim M J, Ryoo R. Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1. Chem. Mater.,1999,11 (2):487-491.
    [122]Pan Y C, Wu H Y, Lee L P, Cyanide- and Carboxylate-Functionalized Cubic Mesoporous Silicas SBA-1:Synthesis, Characterization and Reactivity of Organic Functional Groups. Microporous Mesoporous Mater.,2009,123 (1-3):78-90.
    [123]Hunter H M, Wright P A. Synthesis and Characterisation of the Mesoporous Silicate SBA-2 and Its Performance as an Acid Catalyst. Microporous Mesoporous Mater,2001, 43 (3):361-373.
    [124]Zapilko C, Anwander R. Size-Selective Surface Silylation of Cagelike Mesoporous Silica SBA-2 with Disilazane Reagents. Chem. Mater.,2006,18 (6):1479-1482.
    [125]Li H C, Sakamoto Y, Li, Y S, Terasaki O, Thommes M, Che, S A. Synthesis of Carbon Replicas of SBA-1 and SBA-7 Mesoporous Silicas. Microporous Mesoporous Mater., 2006,95(13):193-199.
    [126]El Haskouri J, Cabrera S, Caldes M, Guillem C, Latorre J, Beltran A, Beltran D, Marcos M D, Amoros P. Surfactant-Assisted Synthesis of the SBA-8 Mesoporous Silica by Using Nonrigid Commercial Alkyltrimethyl Ammonium Surfactants. Chem. Mater.,2002,14 (6): 2637-2643.
    [127]Sakamoto Y, Diaz I, Terasaki O, Zhao D Y, Perez-Pariente J, Kim J M, Stucky G D. Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography. J. Phys. Chem. B,2002,106 (12):3118-3123.
    [128]Campelo, J M, Conesa, T D, Gracia, M J, Jurado, M J, Luque, R, Marinas, J M, Romero, A A. Microwave Facile Preparation of Highly Active and Dispersed SBA-12 Supported Metal Nanoparticles. Green Chem.,2008,10 (8):853-858.
    [129]Sierra L, Valange S, Guth J L. Formation Mechanism and Morphology of Mesoporous SBA-16 Type Silica Particles Prepared with the Triblock Copolymer Surfactant PEO140PPO39PEO140. Microporous Mesoporous Mater.,2009,124 (1-3):100-109.
    [130]Shah A T, Li B S, Abdalla Z E A. Direct Synthesis of Ti-Containing SBA-16-Type Mesoporous Material by the Evaporation-Induced Self-Assembly Method and Its Catalytic Performance for Oxidative Desulfurization. J. Colloid Interface Sci.,2009,336 (2):707-711.
    [131]Che S A, Garcia-Bennett A E, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T. A Novel Anionic Surfactant Templating Route for Synthesizing Mesoporous Silica with Unique Structure. Nature Mater.,2003,2 (12):801-805.
    [132]Gao C, Qiu H, Zeng W, Sakamoto Y, Terasaki O, Sakamoto K, Chen Q, Che S A. Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater., 2006,18 (16):3904-3914.
    [133]Yokoi T, Yoshitake H, Tatsumi T. Synthesis of Anionic-Surfactant-Templated Mesoporous Silica Using Organoalkoxysilane-Containing Amino Groups. Chem. Mater.,2003,15 (24): 4536-4538.
    [134]Yokoi T, Yoshitake H, Yamada T, Kubota Y, Tatsumi T. Amino-Functionalized Mesoporous Silica Synthesized by an Anionic Surfactant Templating Route. J. Mater. Chem.,2006,16(12):1125-1135.
    [135]Yokoi T, Yamataka Y, Ara Y, Sato S, Kubota Y, Tatsumi T. Synthesis of Chiral Mesoporous Silica by Using Chiral Anionic Surfactants. Microporous Mesoporous Mater,2007,103 (1-3):20-28.
    [136]Yokoi T, Tatsumi T. Synthesis of Mesoporous Silica Materials by using Anionic Surfactants as Template. J. Jpn. Prtrol Inst.,2007,50 (6):299-311.
    [137]Che S A. Liu Z, Ohsuna T, Sakamoto K, Terasakl O, Tatsumi T. Synthesis and Characterization of Chiral Mesoporous Silica. Nature,2003,429 (6989):281-284.
    [138]Wu X, Jin H, Liu Z, Ohsuna T, Terasaki O, Sakamoto K, Che S A. Racemic Helical Mesoporous Silica Formation by Achiral Anionic Surfactant. Chem. Mater,2006,18 (2): 241-243.
    [139]Garcia-Bennett A E, Terasaki O, Che S A, Tatsumi T. Structural Investigations of AMS-n Mesoporous Materials by Transmission Electron Microscopy. Chem. Mater.,2004,16 (5): 813-821.
    [140]Zheng H, Gao C, Che S A. Amino and Quaternary Ammonium Group Functionalized Mesoporous Silica:An Efficient Ion-Exchange Method to Remove Anionic Surfactant from AMS. Microporous Mesoporous Mater,2008,116 (1-3):299-307.
    [141]Wang J Q Xiao Q, Zhou H J, Sun P C, Yuan Z Y, Li B H, Ding D T, Shi A C, Chen T H. Budded, Mesoporous Silica Hollow Spheres:Hierarchical Structure Controlled by Kinetic Self-Assembly. Adv. Mater,2006,18 (24):3284-3288.
    [142]Wang J G,Xiao Q, Zhou H J, Sun P C, Li B H, Ding D T, Chen T H. Radiolaria-like Silica with Radial Spines Fabricated by a Dynamic Self-Organization. J. Phys. Chem. C,2007, 111 (44):16544-16548.
    [143]Wang J G,Xiao Q, Zhou H J, Sun P C, Ding D T, Chen T H. Anionic Surfactant-Templated Mesoporous Silica (AMS) Nano-Spheres with Radially Oriented Mesopores. J. Colloid Interface Sci.,2008,323 (2):332-337.
    [144]Wang W Q, Wang J G,Sun P C, Ding D T, Chen T H. Effect of Alcohol on Morphology and Mesostructure Control of Anionic-Surfactant-Templated Mesoporous Silica (AMS). J. Colloid Interface Sci.,2009,331 (1):156-162.
    [145]Wang J Q Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Silica Hollow Spheres with Ordered and Radially Oriented Amino-Functionalized Mesochannels. Chem. Mater,2009, 21 (4):612-620.
    [146]Shen S C, Chen X, Kawi S. CO2 Adsorption over Si-MCM-41 Materials Having Basic Sites Created by Postmodification with La2O3. Langmuir,2004,20 (21):9130-9137.
    [147]Franchi R S, Harlick P J E, Sayari A. Applications of Pore-Expanded Mesoporous Silica.2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2. Ind. Eng. Chem., Res. 2005,44 (21):8007-8013.
    [148]Harlick P J E, Sayari A. Applications of Pore-Expanded Mesoporous Silicas.3. Triamine Silane Grafting for Enhanced CO2 Adsorption. Ind. Eng. Chem. Res.,2006,45 (9): 3248-3255.
    [149]Harlick P J E, Sayari A. Applications of Pore-Expanded Mesoporous Silica.5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance. Ind Eng. Chem. Res.,2007,46 (2):446-458.
    [150]Xu X, Song C, Miller B G, Scaroni A W. Influence of Moisture on CO2 Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41. Ind. Eng. Chem. Res.,2005,44 (21):8113-8119.
    [151]Serna-Guerrero R, Dana E, Sayari A. New Insights into the Interactions of CO2 with Amine-Functionalized Silica. Ind. Eng. Chem. Res.,2008,47 (23):9406-9412.
    [152]Macario A, Katovic A, Giordano Q Iucolano F, Caputo D. Synthesis of Mesoporous Materials for Carbon Dioxide Sequestration. Microporous Mesoporous Mater.,2005,81 (1-3):139-147.
    [153]Huang H Y, Yang R T, Chinn D, Munson C L. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas. Ind. Eng. Chem. Res.,2003,42 (12):2427-2433.
    [154]Liu X, Zhou L, Fu X, Sun Y, Su W, Zhou Y. Adsorption and Regeneration Study of the Mesoporous Adsorbent SBA-15 Adapted to the Capture/Separation of CO2 and CH4. Chem. Eng. Sci.,2007,62 (4):1101-1110.
    [155]Hiyoshi N, Yogo K, Yashima T. Adsorption Characteristics of Carbon Dioxide on Organically Functionalized SBA-15. Microporous Mesoporous Mater,2005,84 (1-3): 357-365.
    [156]Liu X, Li J, Zhou L, Huang D, Zhou Y Adsorption of CO2, CH4 and N2 on Ordered Mesoporous Silica Molecular Sieve. Chem. Phys. Lett,2005,415 (4-6):198-201.
    [157]Yue M B, Chun Y, Cao Y, Dong X, Zhu J H. CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template. Adv. Funct. Mater,2006,16 (13):1717-1722.
    [158]Yue M B, Sun L B, Cao Y, Wang Z J, Wang Y, Yu Q, Zhu J H. Promoting the CO2 Adsorption in the Amine-Containing SBA-15 by Hydroxyl Group. Microporous Mesoporous Mater,2008,114 (1-3):74-81.
    [159]Zheng F, Tran D N, Busche B J, Fryxell G E, Addleman R S, Zemanian T S, Aardahl C L. Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent. Ind. Eng. Chem. Res., 2005,44 (9):3099-3105.
    [160]Khatri R A, Chuang S S C, Soong Y, Gray M. Carbon Dioxide Capture by Diamine-Grafted SBA-15:A Combined Fourier Transform Infrared and Mass Spectrometry Study. Ind Eng. Chem. Res.,2005,44 (10):3702-3708.
    [161]Chang A C C, Chuang S S C, Gray M, Soong Y. In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane. Energy Fuels,2003,17 (2): 468-473.
    [162]Khatri R A, Chuang S S C, Soong Y, Gray M. Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for COt Capture. Energy Fuels,2006,20 (4): 1514-1520.
    [163]Wang X, Schwartz V, Clark J C, Ma X, Overbury S H, Xu X, Song C. Infrared Study of CO2 Sorption over "Molecular Basket" Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve. J. Phys. Chem. C,2009,113 (17):7260-7268.
    [164]Kim S N, Son W J, Choi J S, Ahn W S. CO2 Adsorption Using Amine-Functionalized Mesoporous Silica Prepared via Anionic Surfactant-Mediated Synthesis. Microporous Mesoporous Mater,2008,115 (3):497-503.
    [165]Blin J L, Carteret C. Investigation of the Silanols Groups of Mesostructured Silica Prepared Using a Fluorinated Surfactant:Influence of the Hydrothermal Temperature. J. Phys. Chem. C,2007,111 (39):14380-14388.
    [166]Bae Y K, Han O H. Removal of Copolymer Template from SBA-15 Studied by 1H MAS NMR. Microporous Mesoporous Mater.,2007,106 (1-3):304-307.
    [167]Grieken R V, Calleja G, Stucky G D, Melero J A, Garcia R A, Iglesias J. Supercritical Fluid Extraction of a Nonionic Surfactant Template from SBA-15 Materials and Consequences on the Porous Structure. Langmuir,2003,19 (9):3966-3973.
    [168]Wei Q, Nie Z R, Hao Y L, Liu L, Chen Z X, Zou J X. Effect of Synthesis Conditions on the Mesoscopical Order of Mesoporous Silica SBA-15 Functionalized by Amino Groups. J Sol-Gel Sci Techn.,2006,39 (2):103-109.
    [169]Pan D, Yuan P, Zhao L, Liu N, Zhou L, Wei Q Zhang J, Ling Y, Fan Y, Wei B, Liu H, Yu C. New Understanding and Simple Approach to Synthesize Highly Hydrothermally Stable and Ordered Mesoporous Materials. Chem. Mater,2009,21 (22):5413-5425.
    [170]Chong A S M, Zhao X S. Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials. J. Phys. Chem. B,2003,107 (46):12650-12657.
    [171]Wang X, Lin K S K, Chan J C C, Cheng S. Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. J. Phys. Chem. B,2005,109 (5):1763-1769.
    [172]赵明,盐酸法饲料磷酸氢钙脱氟机理研究[硕士学位论文],成都,四川大学,2004,41-53.
    [173]Williames D H. Spectroscopicmethods in organic chemistry. London:McGraw-Hill Book Company Limited, Fleming Ⅰ (1987),40-40.
    [174]Choi D G; Yang S M. Effect of Two-Step Sol-Gel Reaction on the Mesoporous Silica Structure. J. Colloid Interface Sci.,2003,261 (1):127-132.
    [175]Popea E J A, Mackenzie J D. Sol-Gel Processing of Silica:Ⅱ. The Role of the Catalyst. J Non-Cryst. Solids,1986,87(1-2):185-198.
    [176]Voegtlin A C, Ruch F, Guth J L, Patarin J, Huve L. F- Mediated Synthesis of Mesoporous Silica with Ionic-and Non-Ionic Surfactants. A New Templating Pathway. Microporous Mater.,1997,9 (1-2):95-105.
    [177]Llusar M, Monros G, Roux C, Pozzo J L, Sanchez C. One-Pot Synthesis of Phenyl- and Amine-Functionalized Silica Fibers through the Use of Anthracenic and Phenazinic Organogelators. J. Mater. Chem.,2003,13 (10):2505-2514.
    [178]赵会玲,胡军,汪建军,周丽绘,刘洪来.介孔材料氨基表面修饰及其对CO2的吸附性能.物理化学学报,2007,23(6):801-806.
    [179]Wang X, Schwartz V, Clark J C, Ma X, Overbury S H, Xu X, Song C. Infrared Study of CO2 Sorption over "Molecular Basket" Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve. J. Phys. Chem. C,2009,113(17):7260-7268.
    [180]Ma X, Wang X, Song C. "Molecular Basket" Sorbents for Separation of CO2 and H2S from Various Gas Streams. J. Am. Chem. Soc.,2009,131 (16):5777-5783.
    [181]Siriwardane R V, Shen M S, Fisher E P, Poston J A. Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy Fuels,2001,15 (2):279-284.
    [182]Bourlinos A B, Karakostas T, Petridis D. "Side Chain" Modification of MCM-41 Silica through the Exchange of the Surfactant Template with Charged Functionalized Organosiloxanes:An Efficient Route to Valuable Reconstructed MCM-41 Derivatives. J. Phys. Chem. B,2003,107 (4):920-925.
    [183]Pasternack R M, Amy S R, Chabal Y J, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces:Dependence on Solution Temperature. Langmuir,2008,24 (22): 12963-12971.
    [184]Gao C B, Qiu H B, Zeng W, Sakamoto Y, Terasaki O, Sakamoto K, Chen Q, Che S A. Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater., 2006,18 (16):3904-3914.
    [185]Agren P, Linden M, Rosenholm J B, Schwarzenbacher R, Kriechbaum M, Amenitsch H, Laggner P, Blanchard J, Schiith F, Kinetics of Cosurfactant-Surfactant-Silicate Phase Behavior.1. Short-Chain Alcohols. J. Phys. Chem. B,1999,103 (29):5943-5948.
    [186]Tan B, Rankin S E, Interfacial Alignment Mechanism of Forming Spherical Silica with Radially Oriented Nanopores. J. Phys. Chem. B,2004,108 (52):20122-20129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700