用户名: 密码: 验证码:
PDMDAAC改性固色剂的控制合成、性能及固色机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固色剂作为提高织物染料色牢度的化学助剂,其所起的作用取决于织物的种类、染料的种类及固色剂自身的特性等。本文基于已有的文献,介绍了从织物纤维,到棉织物染料,再到棉织物活性染料树脂型固色剂的发展历程和研究进展,指出了存在的若干问题,进而给出了本文研究工作的内容和意义。针对聚二甲基二烯丙基氯化铵(PDMDAAC)固色剂对棉纤维活性染料固色后摩擦牢度尤其是湿摩擦牢度较差的弱点,本文以设计改性单体为出发点,对其结构进行改性,同时通过控制制备工艺来调节改性聚合物相对分子质量大小及分布,开展了PDMDAAC改性固色剂的控制合成、性能改进及固色机理研究。具体的研究内容包括以下几个方面。
     第一PDMDAAC固色剂的相对分子质量控制、性能及固色机理
     为了获得提高PDMDAAC固色性能的新途径,依托本课题组的前期工作基础和聚合反应原理,设计通过调节合成工艺条件和加料方式来调控PDMDAAC相对分子质量大小及分布;对系列化相对分子质量PDMDAAC样品进行了结构表征和固色性能测定;对其色淀固色机理进行了验证。结果表明,采用一次性加入单体连续滴加引发剂的方式,通过调节初始单体质量分数及引发剂用量可以获得特征粘度为0.18-0.81dL/g、分散系数为1.22-1.92的PDMDAAC系列化固色剂;固色性能研究发现特征粘度值在1.00-2.00dL/g的样品性能优良且稳定,对两种代表性染料染色的棉织物其干摩、白布沾色及原样褪色等固色牢度为4级、4-5级,湿摩擦牢度为3-4级,优于国产市售的PDMDAAC固色剂0.5级,并接近于市售进口的阳离子型固色剂Fix。红外光谱证实,PDMDAAC与染料间季铵盐与染料中磺酸根的络合反应形成了沉淀物,而固色剂在棉织物的吸附则为分子间范德华作用力。由此可见,通过工艺控制使PDMDAAC在特定的相对分子质量大小范围是提高其固色性能的有效途径之一,但因色淀为离子键易水溶和与棉织物的作用为范氏分子间力的弱作用影响,PDMDAAC的湿摩擦牢度仍然有待提高。
     第二PDMDAAC共聚改性用阳离子单体的设计与合成
     为了PDMDAAC结构改进的需要,选择并设计合成了4种可用于对PDMDAAC进行共聚改性的功能性阳离子单体,交联性阳离子改性单体即三烯丙基甲基氯化铵(TAMAC)和3-氯-2-羟丙基三烯丙基氯化铵(CHTAAC),反应性阳离子改性单体N,N-二烯丙基-3-羟杂氮环丁烷氯化铵(DHAC)和3-氯-2-羟丙基甲基二烯丙基氯化铵(CHMDAAC);以红外分析及核磁共振分析等手段对其结构进行了表征,研究了其与基准单体二甲基二烯丙基氯化铵(DMDAAC)间的共聚反应活性等问题。结果表明,所得的各改性单体均具有预期结构,能与基准单体DMDAAC发生有效的共聚反应,由此为PDMDAAC固色剂进行共聚改性打下基础。
     第三微交联型PDMDAAC改性固色剂的控制合成、性能及固色机理
     为了提高PDMDAAC固色剂的固色性能,设计用交联性单体TAMAC和CHTAAC,分别与基准单体DMDAAC共聚,调节单体摩尔比例和聚合反应条件,以获得系列化微交联型PDMDAAC改性固色剂,对其结构进行表征并研究其固色性能和机理。结果表明,共聚改性获得了一系列结构及相对分子质量大小受控的TAMAC微交联改性PDMDAAC固色剂及CHTAAC微交联改性PDMDAAC固色剂,其固色性能研究表明,受控相对分子质量以特征粘度计为1.00-2.00dL/g左右的PDMDAAC引入摩尔含量为5%左右的交联性结构单元TAMAC时,改性固色剂的固色性能优良,尤其是湿摩擦牢度可进一步提高0.5级;优于市售国产的常用PDMDAAC固色剂1级及市售进口的常用同类阳离子型固色剂Fix0.5级,但优化性能的稳定范围较小。红外光谱(IR)及扫描电镜(SEM)等手段研究其固色机理的结果证实,所得微交联改性固色剂固色时其结构中的季铵盐阳离子结构均与阴离子染料间可形成难溶于水的色淀结构,提高了染料在棉织物上的色牢度,但其与棉织物间的整体作用依然较弱。由此说明,在相对分子质量得以受控的基础上,对PDMDAAC结构进行适当的微交联改性,其固色性能得以进一步提高。
     第四反应性PDMDAAC改性固色剂的控制合成、性能及固色机理
     为了提高PDMDAAC固色剂的固色性能,设计用反应性单体DHAC和CHMDAAC,分别与基准单体DMDAAC共聚,调节单体摩尔比例和聚合反应条件,以获得系列化反应性PDMDAAC改性固色剂,对其结构进行表征并研究其固色性能和机理。结果表明,共聚改性获得了一系列结构及相对分子质量大小受控的DHAC改性PDMDAAC固色剂及CHMDAAC改性PDMDAAC固色剂。其固色性能研究表明,受控相对分子质量以特征粘度计为1.00-2.00dL/g左右的PDMDAAC结构中分别进一步引入摩尔含量为1%左右的反应性结构单元DHAC及1%-5%左右的反应性结构单元CHMDAAC时,改性固色剂的固色性能尤其是湿摩擦牢度明显提高0.5级;优于市售国产的常用PDMDAAC固色剂1级及市售进口的常用同类阳离子型固色剂Fix0.5级。利用红外光谱(IR)及扫描电镜(SEM)等手段研究其固色机理的结果证实:不仅固色剂中的季铵盐阳离子结构与阴离子染料间可形成难溶于水的色淀结构,以此降低了染料的亲水性和增加染料在棉织物上的色牢度,而且,分子中的反应性DHAC或CHMDAAC结构单元在固色时经过180℃温度焙烘处理3min左右的条件,均可以与棉织物羟基形成有效的共价键合,来进一步提高固色剂固色性能。由此说明,在相对分子质量得以受控的基础上,在PDMDAAC基体结构中引入适量的反应性单元,其固色性能得以进一步提高。
Dye-fixatives are usually used to improve the color fastness of anionic dyes on fabric, and their roles are determined by the species of fabrics and dyes, and the characteristics of dyes. The research progresses from fabric fibers, dyes for cotton fabric to resin dye-fixatives for anionic dyes on cotton fabric, were reviewed according to the literatures. The existing problems in the researches were pointed out. Based on these, the researches contents and their significations in this dissertation were illuminated. Considering the shortcomings of Poly (dimethyldiallylammonium chloride)(PDMDAAC) used as dye-fixatives for reactive dyes on cotton fabrics, the structural modifications of PDMDAAC with controlling the products' molecular weights were done in this dissertation, and the studies on the controlled synthesis, properties, and dye-fixing mechanism of PDMDAAC-modified dye-fixatives were carried out, which were listed as follows.
     1. Molecular-weight-controlled synthesis, dye-fixing properties and dye-fixing mechanisms of PDMDAAC
     In order to to access one new way to improve dye-fixing properties, the molecular weights of PDMDAACs and their distrubtions were controlled by adjusting different synthesis conditions during polymerization, and meanwhile the structures, dye-fixing performances, and dye-fixing mechanisms of obtained PDMDAACs were also studied. The results showed, the molecular weight polydispersities and intrinsic viscosities of obtained PDMDAAC were1.22~1.92and0.18-0.81dL/g, respectively. Those PDMDAAC dye-fixatives with the controlled molecular weights represented with intrinsic viscosities of1.00-2.00dL/g and narrow molecular weight distributions could exhibit better dye-fixing properties:the dry rubbing fastness reached respectively4grades, the wet rubbing fastness reached respectively3-4grade, the color fastness to soaping and the white fabric staining both reached4-5grades, respectively. The dye-fixing fastnesses were better than those of commercial general PDMDAAC fixatives and near to that of commercial imported cationic Fixative FIX. In addition, the dye-fixing mechanisms of PDMDAAC dye-fixatives for reactive dyes on cotton fabrics showed, the molecular weights and their distributions of PDMDAAC would both play a important role in the development of the dye-fixing performances, and the basic cationic groups of PDMDAAC could form electrostatic forces with anionic dyes in the form of color lakes, but mainly form the weak Van der Waals forces with cotton fabric. Thus, it could be concluded that the dye-fixing properties of PDMDAAC dye-fixatives could be developed by controlled their molecular weights.
     2. Design and synthesis of cationic monomers for PDMDAAC modification
     For the further modifications of PDMDAAC, several groups of cationic functional monomers:triallylmethylammonium chloride (TAMAC),3-chloro-2-hydroxypropyltriallyl-ammonium chloride (CHTAAC), N-dially-3-hydroxy-azetidinium chloride (DHAC), and3-chloro-2-hydroxypropylmethyldiallylammonium chloride (CHMDAAC) were designed and synthesized. Their structures and copolymerization abilities with DMDAAC were also studied. The results showed, all the obtained monomers exhibited expected strucutues and could be well copolymerized with DMDAAC, which were suitable for application in PDMDAAC modifications.
     3. Controlled-synthesis, dye-fixing properties and dye-fixing mechanisms of slightly crosslinked PDMDAAC
     In order to improve the dye-fixing properties of PDMDAAC-based dye-fixatives, two series of slightly crosslinked PDMDAAC-modified dye-fixatives were synthesized by copolymerization of TAMAC or CHTAAC and dimethyldiallylammonium chloride (DMDAAC), respectively. The structures of obtained dye-fixatives could be controlled by varying molar ratios of TAMAC or CHTAAC to DMDAAC during polymerization, and their molecular weights were possibly controlled by adjusting different polymerization conditions (initial monomer concentrations and initiator amount). The results showed, the dye-fixing properties of PDMDAAC-modified dye-fixatives could be further developed by incorporation of1%molar contents of TAMAC units into the main chains of molecular-weight-controlled PDMDAAC dye-fixatives. The dye-fixing properties of obtained PDMDAAC-modified dye-fixatives were better than those of commercial general PDMDAAC fixatives and commercial imported cationic Fixative FIX. In addition, the dye-fixing mechanisms of slightly crosslinked PDMDAAC-modified dye-fixatives for reactive dyes on cotton fabrics showed that the basic cationic groups of dye-fixatives could form electrostatic forces with anionic dyes, but still mainly form the weak forces with cotton fabric. Thus, the dye-fixing properties could be usually further developed by incorporation of crosslinking units into the main chains of molecular-weight-controlled PDMDAAC dye-fixatives.
     4. Controlled-synthesis, dye-fixing properties and dye-fixing mechanisms of reactive PDMDAAC-modified dye-fixatives
     In order to improve the dye-fixing properties of PDMDAAC-based dye-fixatives, two series of reactive PDMDAAC-modified dye-fixatives were synthesized by the copolymerization of DHAC or CHMDAAC and dimethyldiallylammonium chloride (DMDAAC), respectively. The structures of obtained dye-fixatives could be controlled by varying molar ratios of DHAC to DMDAAC during polymerization, and their molecular weights were possibly controlled by adjusting different polymerization conditions (initial monomer concentrations and initiator amount). The results showed, the dye-fixing properties of PDMDAAC-modified dye-fixatives could be further developed by incorporation of7%molar contents of DHAC units or1%-5%molar contents of CHMDAAC units into the main chains of molecular-weight-controlled PDMDAAC dye-fixatives. The dye-fixing properties of obtained PDMDAAC-modified dye-fixatives were better than those of commercial general PDMDAAC fixatives and commercial imported cationic Fixative FIX. In addition, the dye-fixing mechanisms of PDMDAAC-modified dye-fixatives for reactive dyes on cotton fabrics showed that the reactive units (DHAC and CHMDAAC) of the obtained PDMDAAC-modified dye-fixatives could bring about the expected linking reactions with the hydroxyl groups of cotton (cellulose) baked at180℃for3min, and that the basic cationic groups in the polymers could bring out the electrostatic forces with anionic dyes. Thus, the dye-fixing properties could be usually further developed by incorporation of recctive units into the main chains of molecular-weight-controlled PDMDAAC dye-fixatives.
引文
[1]陈英.影响织物防紫外性能的因素[J].北京服装学院学报,2001,21(2):30-33.
    [2]王华锋,陈宇岳,林红.棉纤维的研究进展及发展趋势[J].苏州大学学报(工科版),2003,23(4):12-19.
    [3]Gorshkova T A, Vadim V S, Chemikosova S B, et al. The snap point:a transition point in Linum usitatissimum bast fiber development [J]. Industrial Crops and Products,2003,18(3):213-221.
    [4]吴佩云.几种动物毛纤维的结构与性能研究[J].上海纺织科技,2008,36(12):47-50.
    [5]李红,赵耀明.丝纤维的结构、性能及仿生丝纤维的合成研究进展[J].材料导报,2004,18(1):43-45,60.
    [6]Chu K Y, Provost J R. The dyeing and printing of silk fabrics [J]. Review of Progress in Coloration and Related Topics,1987,17 (1):23-28.
    [7]Rowland S P, Nelson M L, Welch C M, et al. Cotton Fiber Morphology and Textile Performance Properties [J]. Textile Research Journal,1976,46(3):194-214.
    [8]Mishra V, Goel A. Physical properties of banana- cotton blended yarn [J]. Asian Textile Joural, 1999,8(10):55-56.
    [9]Mihajlidi T. Electrical resist ance of cotton- metal fibre yarn [J]. Fibres and Textiles in Eastern Europe,1999,7 (3):29-31.
    [10]Etters J N, Lange N K. Biological preparation of cotton:Viable process in commercial terms [J]. Textiles Panamericanos,1999,59(5):112-115.
    [11]Zemankova K, Odvarka J, Kovacic V. Sorption of inorganic salts to cotton [J]. Textile Science, 2000,2001:494-497.
    [12]余建华,朱谱新,吴大诚.我国麻纺织业现状和发展趋势[J].纺织科技进展,2007,(4):64-67.
    [13]董政娥.麻纤维及其纺织品的发展前景[J].纤维素科学与技术,2003,11(3):55-62.
    [14]Hao X, Zhang G, Gao M, et al. Processing Line of Bast Fiber [P]. USP 2012/0324677 Al, 2012-12-27.
    [15]杨红穗,张元明.大麻纺织应用前景及研究现状[J].纺织学报,1999,20(8):24,62-64.
    [16]邵松生.麻类纺织品的开发前景[C].2000中国麻纺织发展研讨会论文集.中国麻纺行业协会,2000.83-88.
    [17]周湘祁.野生苎麻产品开发研究初探[J].麻纺织技术,1998(1):37-40.
    [18]姚穆,周锦芳,黄淑珍等.纺织材料[M].北京:科学纺织工业出版社,1997(10):64-89.
    [19]郁崇文,张元明,姜繁昌.苎麻纱线生产与质量控制[M].北京:中国纺织大学出版社,1997(8):12-15.
    [20]许符节.苎麻脱胶与纺纱[R].株洲苎麻纺织情报站,1985(7):1-3.
    [21]Kouznetsov D A, Ivanov A A, Veletsky P R. Detection of alkylated cellulose derivatives in several archaeological_linen textile_samples by capillary electrophoresis/mass spectrometry [J]. Analytical chemistry,1994,66 (23):4359-4365.
    [22]ElSohly M A, Slade D. Chemical constituents of_marijuana:the complex mixture of natural cannabinoids [J]. Life Science,2005,78 (5):539-548.
    [23]Wang W, Xu B, Cai Z, et al. Study on chemical modification and dyeing properties of jute fiber [J]. The Journal of the Textile Institute,2010,101 (7):613-620.
    [24]Goulartsilva G, Desouza D A, Machado J C. Mechanical and thermal characterization coir fiber [J]. Journal of Applied Polymer Science,2000,76:1197-1206.
    [25]兰红艳,靳向煜,张彤彤.麻类纤维在非织造领域的应用[J].中国麻业科学,2006,(1):26-31.
    [26]唐守伟,熊和平.我国麻类生产现状和发展对策[J].中国麻作,1999,21(3):45-48.
    [27]冷鹃,肖爱平,聂睛岚.苎麻纤维品质评价研究[J].中国纤检,2003,(5):31-33.
    [28]刘晓霞,何文元.高性能苎麻改性纤维的研究[J].纺织科学研究,2004,(1):41-42.
    [29]Mussig J, martens R, Harig H. Hemp fiber as a textile resource [J]. Textile Asia,1998, (5): 39-50.
    [30]Naucy Kery, Stanford F, Blade. Characteristics of hemp fiber from low THC hemp varieties [J]. Canadian Textile Journal,2000, (5):24-26.
    [31]成雄伟.我国苎麻纺织工业历史现状及发展[J].中国麻业科学,2007,(29):77-85.
    [32]高莲欣.谈亚麻纤维[J].中国纤检,2003,(8):34-35.
    [33]王启祥.亚麻纤维开发利用初探[J].北京纺织,2003,24(4):28-29.
    [34]Charlet K, Eve S, Jernot J P, et al. Tensile deformation of a_flax fiber [J]. Procedia Engineering, 2009,1 (1):233-236.
    [35]来红林.大麻纤维性能初探[J].上海纺织科技,2004,32(3):10.
    [36]吴红玲,蒋少军,丁丽文.大麻纤维性能及其产品的研制生产[J].毛纺科技,2004,(6):36-39.
    [37]Rysaard Kozlowsky, Stefania Manys. Latest best Fiber Achievements [J]. Textile Asia,1997, (3):161-165.
    [38]杨红穗,张元明.大麻纺织应用前景及研究现状[J].纺织学报,1999,20(4):62-64.
    [39]张瑞寅,薛文良,余燕平,等.黄麻产品的开发及其市场前景[J].纺织导报,2005,(8):50-52.
    [40]吴佩云.几种动物毛纤维的结构与性能研究[J].上海纺织科技,2008,36(12):47-50.
    [41]高飞.等离子体处理对马海毛结构性能的影响[J].毛纺科技,2008,(4):6-9.
    [42]彭伟良,蒋耀兴,袁长泰.山羊绒和细绵羊毛纤维的形态特征分析[J].上海纺织科技,2005,33(1):11-12.
    [43]钱家鹤.丝毛织物染色性能研究[J].苏州大学学报(工科版),1985,(2):27-40.
    [44]李红,赵耀明.丝纤维的结构、性能及仿生丝纤维的合成研究进展[J].材料导报,2004,18(1):43-45,60.
    [45]Kazuei M, Sachiko I, Mitsuo Z, et al. Specifie codon usage pattern and its implications on the secondary structure of silk fibroin mRNA [J]. Journal of Molecular Biology,1988,203 (4): 917-925.
    [46]Masuhiro T, Giuliano F, Masanobu N, et al. Structural changes of silk fibers induced by heat treatment [J]. Journal of Applied Polymer Science,1992,46 (11):1945-1953.
    [47]Hinman M B and Lewis R V. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber [J]. Journal of Biology Chemistry,1992, 267:19320-19324.
    [48]Simmons A, Ray E, Jelinski L W. Solid-state 13C NMR of nephila clavipes dragline silk establishes structure and identity of crystalline regions [J]. Macromolecules,1994,27 (18): 5235-5237.
    [49]Simmons A, Michal C A, Jelinski L W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk [J]. Science,1996,271:84-88.
    [50]Khan M M R, Morikawa H, Gotoh Y, et al. Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds [J]. International Journal of Biological Macromolecules,2008,42 (3):264-270.
    [51]Schwenker R F, Dusenburg J H. Wrinkle resistant properties of dialdehyde [J]. Textile Research Journal,1961,31 (9):800-803.
    [52]Liu Y, Liu H, Qian J, et al. Structure and properties of the composite membrane of regenerated silk fibroin and PVA and its application to amperometric tetrathiafuvalene-mediating glucose sensor [J]. Journal of Macromolecular Science:Pure and Applied Chemistry,1996, A33 (2): 209-219.
    [53]Liu Y, Zhang X, Liu H, et al. Immobilization of glucose oxidase onto the blend membrane of poly (vinyl alcohol) and regenerated silk fibroin:morphology and application to glucose biosensor [J]. Journal of Biotechnology,1996,46 (2):131-138.
    [54]Liu Y, Qian J, L iu H, Deng J, et al. Blend membrane of regenerated silk fibroin poly (vinyl alcohol), and peroxidase and its application to a ferrocene-mediating hydrogen peroxide sensor [J]. Journal of Applied Polymer Science,1996,61 (4):641-647.
    [55]Miyata T. Method of preparation of regenerated fiber collagen condom [P]. US 4 406 853, 1983-09-27.
    [56]刘洪太,冯建永,段亚峰.再生纤维素纤维的开发进展[J].合成纤维,2009,(9):11-15.
    [57]Moigne N L, Bikard J, Navard P. Rotation and contraction of native and_regenerated cellulose fibers upon swelling and dissolution:the role of morphological and stress unbalances [J]. Cellulose,2010,17:507-519.
    [58]余小勇.棉及几种常见再生纤维素纤维的鉴别[J].上海丝绸,2006,(2):14-16.
    [59]李云台,刘华.新型再生纤维素纤维的性能对比与鉴别[J].棉纺织技术,2003,31(9):31-34.
    [60]赵永霞等.再生纤维素纤维的发展与对策[J].纺织导报,2008,(11):37-42.
    [61]罗柄金,蒋艳凤.铜氨织物的性能测试及分析[J].丝绸,2012,49(3):21-23.
    [62]王石磊,张建波,张林.醋酸纤维在纺织中的应用[J].染整技术,2009,9(31):7-10.
    [63]Andrew J. P, Jeffrey S. C, Mickey G. H. Environmentally sustainable fibers from regenerated protein [J]. Biomacromolecules,2009,10 (1):1-8.
    [64]Shao Z Z, Vollrath F, Yang Y, et al. Structure and behavior of regenerated spider silk [J]. Macromolecules,2003,36 (4):1157-1161.
    [65]Happy F. Denaturation in Regenerated Protein Fibres [J]. Nature,1949,164:184-185.
    [66]梅士英.新型再生纤维的特性及练染加工技术(上) [J].染整及纺织化学品,2008,(9):95-98.
    [67]Reinach H A, Bettingen K. Dyeing assistants and their use in dyeing synthetic fibre material [P]. USP 4 252 534,1981-02-24.
    [68]Riehen R B. Thermotransfer process for printing synthetic fibre materials with multi-color effects, and carrier for performing the process [P]. USP 4 265 630,1981-05-05.
    [69]董秋兰,陈国华,李建府,张胜.尼龙-6纤维织物的阻燃研究进展[J].化工进展,2009,28(6):982-985,990.
    [70]韩红丽,李巧玲,崔丽丽.尼龙66的无卤阻燃研究与进展[J].合成技术及应用,2007,22(3):34-36.
    [71]Yoshitsugu K, Arimitsu U, Masaya K, et al. Mechanical properties of nylon 6-clay hybrid [J]. Journal of Materials research,1993, (8):1185-1189.
    [72]Usuki A, Koiwai A, Kojima K, et al. Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid [J]. Journal of Applied Polymer Science,2003,55(1): 119-123.
    [73]Anthony F. Wilde, David K. Roylance, Jos Ph M. Rogers. Photographic Investigation of High-Speed Missile Impact upon Nylon Fabric [J]. Textile Research Journal.1973,43: 753-761
    [74]朱善长.怎样选择锦纶(尼龙)染色用染料?[J].印染,2008,34(9):53.
    [75]董国君,陈天舒.尼龙66的耐光、耐热性能研究[J].化学工程师,2004,(9):61-62.
    [76]Cary E J D, Kim D W, Mallonee W C, et al. Process for Producing a Nylon Non-Woven Fabric [P]. USP 3 542 615,1970-09-24.
    [77]Yip J, Chan K, Sin K M. Low temperature plasma-treated nylon fabrics [J]. Journal of Materials Processing technology,2002,123 (1):5-12.
    [78]Mccord M G, Hwang Y J, Hauser P J, etal. Modifying nylon and polypropylene fabrics with atmospheric pressure plasmas [J]. Textile Research Journal,2002,72:491-498.doi:
    [79]Yamaguchi S. Method of welding nylon and similar [P]. USP 2 992 958,1961-07-18.
    [80]Robert J, Pappas M P, Reedy O L. Antistatic woven coated polypropylene fabric [P]. USP 5 071699,1991-12-10.
    [81]Betiana A A, Maria M R, Norma E M. Effect of coupling agents on the thermal and mechanical properties of polypropylene-jute fabric composites [J]. Polymer International,2006,55 (4): 1104-1113.
    [82]Hine P J, Ward I M, Jordan N D, ea al. The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties [J]. Polymer,2003,44 (4):1117-1131.
    [83]Chand S, Bhat G S, Spruiell J E, et al. Structure and properties of polypropylene fibers during thermal bonding [P]. Thermochimica Acta,2001,367-368:155-160.
    [84]McDowall D J, Sawyer L H, Strack D C, et al. Polyethylene meltblown fabric with barrier properties [P]. USP 5 498 463,1996-03-12.
    [85]Farnworth B, Dolhan P A. Heat and water transport through cotton and polypropylene underwear [J]. Textile Research Journal,1985 (55):627-630.
    [86]Kim S J, Moon J B, Kim G H. Mechanical properties of polypropylene/natural fiber composites:Comparison of wood fiber and cotton fiber [J]. Polymer Testing,2008,27(7): 801-806.
    [87]傅和青,黄洪,陈焕钦.改性聚丙烯纤维研究进展[J].合成纤维工业,2003,26(6):39-41.
    [88]马敬红,梁伯润,许赤峰等.酸性可染聚丙烯短纤维性能研究[J].合成纤维工业,2000,23(2):30-32.
    [89]汤俊宏,宋安泰,林福海等.可染型聚丙烯纤维的研究[J].合成纤维工业,1998,21(1):24-26.
    [90]杨庆,沈新元.熔喷聚丙烯芳香非织造布的开发[J].产业用纺织品,2001,(4):15-18.
    [91]Saxena S, Ray A R, Kapil A, et al. Development of a New_Polypropylene-Based Suture: Plasma Grafting, Surface Treatment, Characterization, and Biocompatibility Studies [J]. Macromolecular Bioscience,2011,11(3):373-382.
    [92]Timmons T K, Stopper S R, Fox N K. Nonwoven fabric laminates [P].1993-02-23.
    [93]张丹,姚洁,王越等.聚对苯二甲酸乙二醇酯合成的研究进展[J].现代化工,2006,26(7):80-83.
    [94]韩晓丽.聚酯聚合过程技术进展[J].山东化工,2000,29(1):27-30.
    [95]曹善文,李朝晖,付乐军.PET缩聚催化剂的发展及展望[J].聚酯工业,2004,17(5):5-9.
    [96]Higashijima M, Yatsugi Y, Yukita N. Catalyst for polyester polycondensation and method for producting polyester resin using thesame [P]. USP 2011/0301020 A1,2011-12-08.
    [97]张天骄,武荣瑞,王继云.稀土催化体系催化酯交换和缩聚反应[J].合成纤维工业,2001,24(3):5-8.
    [98]Astbury W T. Structure of Terylene [J]. Nature,1946,158:871-871.
    [99]Reddish W. The dielectric properties of polyethylene terephthalate (terylene) [J]. Trans. Faraday Soc.,1950,46:459-475.
    [100]Treloar L R G Calculations of elastic moduli of polymer crystals:Ⅱ. Terylene [J]. Polymer, 1960,1:279-289.
    [101]Meredith R, Hsu B S. Dynamic bending properties of fibers:Effect of temperature on nylon 66, terylene, orlon, and viscose rayon [J]. Journal of Polymer Science,1962, (61)172:271-292.
    [102]Chapman B M. Bending stress relaxation and recovery of wool, nylon 66, and terylene fibers [J]. Journal of Applied Polymer Science,1973,17(6):1693-1713.
    [103]Waters E. The Dyeing of Terylene Polyester Fibre [J]. Journal of the Society of Dyers and Colourists,195066 (12):609-615.
    [104]顾浩.涤纶户外休闲面料染色、印花及功能性整理[J].针织工业,2012,(3):44-49.
    [105]Whinfield J R. The Development of Terylene [J]. Textile Research Journal,1953,23: 289-293.
    [106]Heckert W W. Orlon Acrylic Fiber [J]. Textile Research Journal,1957,27:719-725.
    [107]Houtz R C. " Orlon" Acrylic Fiber:Chemistry and Properties [J]. Textile Research Journal, 1950,20:786-801.
    [108]任铃子.我国腈纶工业发展与对策[J].合成纤维工业,2000,(1):14-21.
    [109]任铃子,翟国华.腈纶工业前景展望[J].合成纤维,2001,(1):11-14.
    [110]刘敏惠.我国腈纶工业的发展前景[J].合成纤维工业,2001,(1):6-8.
    [111]KINMONTH J B, TAYLOR G W, LEE R H. Arterial replacement by "Orlon" Cloth [J]. British Medical Journal,1955,11:1406-1409.
    [112]孙晓波,朱利民.我国差别化腈纶发现的现状与对策[J].纺织导报,2007,(8):50-53.
    [113]李秀钢.中国腈纶的现状及未来[J].合成纤维,2008,(9):12-13.
    [114]金离尘.我国腈纶工业的发展[J].合成纤维工业,2007,(5):56-59.
    [115]卢智波,王宇飞.腈纶染色性能的探头[J].合成纤维工业,1998,21(6):42~44.
    [116]刘洪市,季春香,于文彦.腈纶混纺织物的染色与工艺实践[J].针织工业,2005,(1):33-35.
    [117]Das A, Yadaw S S. Study on microclimate conditions for woven fabrics from cotton-acrylic bulked yarn [J]. Journal of The Textile Institute,2012,103 (11):1244-1254.
    [118]李钰,马建辉.大麻/细旦腈纶混纺针织纱的生产实践[J].纺织导报,2006,(5):54-55.
    [119]胡腊梅.改性聚乙烯醇的合成与发展[J].维纶通讯,2010,(4):10-13.
    [120]金立国.2009年中国化纤产量[J].合成纤维,2010,(4):50-50.
    [121]钱伯章.2009年世界化纤产量[J].合成纤维,201 0,(4):50-50.
    [122]施楣梧,任鹏飞.高强维纶的结构和性能[J].中国纤检,2011,(7):76-77.
    [123]Toyonaka M D, Takatsuki K S. Novel nonwoven fabric and method for manufacturing same [P]. USP 4 092 454,1978-05-30.
    [124]Jacobs M I, Schrock F L. Flame retardant fabric structure [P]. USP 4 987 026,1991-01-22.
    [125]于永玲.水溶性维纶伴纺的轻薄毛织物性能分析[J].毛纺科技,2002,(6):49-51.
    [126]Tesoro G C, Meiser C H. Some effects of chemical composition on the flammability behavior of textiles [J]. Textile Research Journal,1970,40:430-436.
    [127]李守群,叶光斗,晏明等.维纶新品种开发应用[J].维纶通讯,1999,19(4):1-4.
    [128]Nagai T, Okawa H, Mizuno T. Woven fabric belt [P]. US P 4 891040,1990-01-02.
    [129]Application of composite fracture models to coated fabrics [J]. Journal of Industrial Textiles, 1994, (24):129-137.
    [130]虞冰清,李萍,张佩华.Study on the pre-process technology of knitted fabric made of cotton/vinylon blended hollow yarn by single-factor experiments [J].国际纺织导报,2010,(6):44-44.
    [131]Kamada H, Tomohiro H. Polyvinyl alcohol fibers, and nonwoven fabric comprising them [P]. EP Patent 1457 591,2010-07-21.
    [132]于参.氯纶产品的开发应用[J].合成纤维,1987,(2):56-58.
    [133]王心明.合成纤维的未来[J].化学世界,1981,(5):61-63.
    [134]潘红琴,邓桦,宋兵等.腈氯纶/棉混纺织物的超级拒水拒油整理[J].印染,2010,(5):22-24.
    [135]唐虹, 黄晓梅, 季涛等.聚丙烯腈预氧化纤维/腈氯纶混纺阻燃织物的开发[J].产业用纺织品,2010,(10):12-14.
    [136]刘玲,黄晓构.腈氯纶/棉混纺纱的结构对其力学性能的影响[J].现代纺织技术,2011,(1):1-4.
    [137]汪青,刘文生,吴笑颜等.阻燃腈氯纶的染色[J].印染,2007,(20):23-25.
    [138]刘玲,黄晓梅.腈氯纶棉混纺织物阻燃性能和力学性能的研究[J].棉纺织技术,2010,(10):26-29.
    [139]Veiga M J. Polyvinyl chloride coated fabrics for use in air bags [P]. USP 2010/0129575-A1, 2010-05-27.
    [140]Wang C, Yang F, Liu L F, et al. Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes [J]. Journal of Membrane Science,2009,345 (1-2):223-232.
    [141]Kang J S, Kim K Y, Lee Y M. Preparation of PVP immobilized microporous chlorinated polyvinyl chloride membranes on fabric and their hydraulic permeation behavior [J]. Journal of Membrane Science,2003,214 (2):311-321.
    [142]Chen S, Ding X, Yi H. On the anisotropic tensile behaviors of flexible polyvinyl Chloride-coated fabrics [J]. Textile Research Journal,2007, (77):369-374.
    [143]Chung H G, Hong J H, Kang Y S. Spandex fiber with excellent chlorine resistance, and preparation method thereof [P]. EP 2 484 821,2012-08-08.
    [144]Gokarneshan N, Thangamani K. An investigation into the properties of cotton/spandex_and polyester/spandex_knitted fabrics [J]. The Journal of the Textile Institute,2010,101 (2): 182-186.
    [145]黄茂松.我国氨纶产业的现状与发展方向[J].聚氨酯,2008,(7):80-83.
    [146]钱伯章.国内外氨纶生产现状和市场分析[J].化学推进剂与高分子材料,2007,(2):33-36.
    [147]安福,惠泉,周树理.国内氨纶产业链的现状及发展趋势[J].当代石油石化,2010,(4):22-26.
    [148]Smith C P, James M O. Spandex fibers made using low unsaturation polyols [P]. USP 5 340 902,1994-08-23.
    [149]Liu H, Otto W J. Polyurethaneureas and spandex made therefrom [P]. USP 5 948 875, 1999-09-07.
    [150]宋心远.氨纶的结构,性能和染整(三)[J].印染,2003,(1):31-38.
    [151]宋心远.氨纶的结构,性能和染整(一)[J].印染,2002,(11):30-35.
    [152]Babaarslan O. Method of producing a polyester/viscose core-spun yarn containing spandex using a modified ring spinning frame [J]. Textile Research Journal,2001, (71):367-371.
    [153]Bhat G, Chand S, Yakopson S. Thermal properties of elastic fibers [J]. Thermochimica Acta, 2001,367-368:161-164.
    [154]章杰.新型纺织纤维染色与染料选择注意点[J].上海染料,2006,34(6):6.
    [155]Morancy W F. Method of making non-run spandex fabric [P]. USP 3 682 731,1972-08-08.
    [156]Morancy W F, Cumberland R L. Spandex fabric and method of making the same [P]. USP 3 578546,1971-05-11.
    [157]Bretches D D, Waynesboro V, Steven P P, et al. Fiber from polyether-based spandex [P]. USP 4973647,1990-09-27.
    [158]Laycock G, Leung R S P, Singewald E T. Method to make circular-knit elastic fabric comprising spandex and hard yarns [P]. USP 6 776 014,2004-08-17.
    [159]Houser N E, Selling G W, Selle B J, et al. Dyeable spandex [P]. USP 7 838 617 B2, 2010-09-23.
    [160]葛瑾.氨纶及其产品开发[J].上海纺织科技,2008,36(9):40-42.
    [161]王新威,胡祖明,刘兆峰.芳香族耐高温纤维及主要品种性能[J].材料导报,2007,21(5):53-58.
    [162]蒋红.耐高温纤维的进展(I).纺织导报,2001,(1):22-27.
    [163]丁雪梅,吴雄英.耐高温纤维的发展现状及应用简介.北京纺织,1997,18(1):47-55.
    [164]吴国梅.21世纪超高性能之PBO高分子纤维材料[J].高科技纤维与应用,2002,27(3):15-18.
    [165]付国太,刘洪军,张柏等.PEEK的特性及应用[J].工程塑料应用,2006,34(1 0):69-71.
    [166]尤秀兰,傅群,刘兆峰.芳纶浆粕纤维的结构性能与应用.产业用纺织品,2001,19(8):27-29.
    [167]袁江,王建营,胡文祥等.聚苯并嗯唑(PBO)的合成及其应用研究,2003,17(8):4-8.
    [168]Shi L, Zhuang X P, Jiao X N, et al. Research on Properties of_Aramid Fiber_Needle-Punched Nonwoven Fabrics [J]. Advanced Materials Research,2011,332-334:1253-1256.
    [169]罗益锋.世界主要高性能纤维简况[J].化工新型材料,2001,29(9):1-5.
    [170]罗益锋.世界高科技纤维的新形势[J].高科技纤维与应用,2005,30(2):1-6.
    [171]吴国梅.21世纪超高性能之PBO高分子纤维材料[J].高科技纤维与应用,2002,27(3):15-18.
    [172]Jiang Z X, Geng L, Huang Y D. Preparation of superhydrophobic poly-p-phenylenebenzobisoxazole (PBO) fiber bundles [J]. Applied Surface Science,2011, 257(8):3455-3462.
    [173]Kitagawa T M. Morphological study on polypphenylenebenzobisoxazole (PBO) fiber [J]. Journal of Polymer Science, Part B:Polymer Physics,1998,36 (1):39-48.
    [174]曹运红,谢雄军,邢娅.21世纪新型材料—PBO纤维[J].飞航导弹,2002,(6):59-61.
    [175]Rule M, Fagerburg D R, Watkins J J, et al. A new melt preparation method for poly (phenylene sulfide) [J]. Die Makromolekulare Chemie, Rapid Communications,1991,12 (4): 221-226.
    [176]肖为维,徐僖.聚苯硫醚纤维研究[J].高分子材料科学与工程,1993,2(3):103-108.
    [177]Mao Y H, Guan Y, Zheng Q K, et al. Carrier dyeing of_polyphenylene_sulphide fabric with disperse dye [J]. Coloration Technology,2012,129 (1):39-48.
    [178]Cheng S Z D, Wu Z Q. A high2performance aromatic polyimide fiber (Ⅰ):Structure, properties an mechanical-history dependence [J]. Polymer,1991,32:1803
    [179]杨东洁.聚酰亚胺纤维及其应用[J].合成纤维,2000,29(6):17-19.
    [180]张清华,陈大俊,丁孟贤.聚酰亚胺纤维[J].高分子通报,2001,(5):66-73.
    [181]张清华.聚酰亚胺高性能纤维研究进展[J].世界科学,2006,(5):33-34.
    [182]邹汉寿,孟家先.高性能纤维的性能及其应用[J].纺织科学研究,2001,(4):23-31.
    [183]Yikai Yu, Yuejun Zhang, Mingzhong Cai. Structure-controlled synthesis of novel soluble and thermally stable poly (aryl ether nitrile ether ketone ketone)/poly (aryl ether nitrile ether ketone biphenyl ketone) copolymers by electrophilic polycondensation[J]. Polymers for Advanced Technologies,2010,2011,22:2543-2549.
    [184]Mingzhong Cai, Meihua Zhu, Yikai Yu. Synthesis and characterization of poly(ether ketone ether ketone ketone)/poly(ether ether ketone ketone) copolymers containing naphthalene and pendant cyano groups[J]. Journal of Applied Polymer Science,2009,112:3225-3231.
    [185]Yikai Yu, Fen Xiao, Mingzhong Cai. Synthesis and Properties of Poly (aryl ether ketoneketone)/Poly (aryl ether ether ketone ketone) copolymers with Pendant Cyano Groups[J]. Journal of Applied Polymer Science,2007,104(6):3601-3606
    [186]余义开,蔡明中,王涛等.含氰侧基联苯型聚芳醚醚酮酮/芳醚醚酮酮共聚物的合成及表征[J].化工新型材料,2010,38(6):52-53,64.
    [187]余义开,蔡明中,彭以元等.新型含氰侧基氯取代聚芳醚醚酮酮的合成与表征[J].化工新型材料,2006,34(8):42-44.
    [188]余义开,桑晓燕,蔡明中等.新型含氰侧基氯取代聚芳醚醚酮酮/芳醚醚酮酮的合成与表征[J].化学与生物工程,2006,23(9):48-50.
    [189]李建英,余义开,蔡明中等.含氰侧基的聚芳醚醚酮酮/聚醚砜醚酮酮的合成及性能研究[J].江西师范大学学报(自然科学版),2006,30(6):536-539.
    [190]李建英,余义开,蔡明中等.含氰侧基聚芳醚醚酮酮/芳醚酮酮醚酮酮共聚物的合成与表征[J].石油化工,2006,35(12):1179-1183.
    [191]徐曲,余义开,蔡明中等,聚芳醚醚酮酮腈的合成与表征[J].石油化工,2003,32(11):999-1002.
    [192]余义开,桑晓燕,蔡明中等.新型含氰侧基氯取代聚芳醚醚酮酮/芳醚醚酮酮的合成与表征[J].化学与生物工程,2006,23(9):48-50.
    [193]Yikai Yu, Mingzhong Cai, Yuejun Zhang. Study on synthesis of novel soluble aromatic polyamides with pendant cyano groups[J]. Polymer Bulletin,2010,65 (4):309-318.
    [194]余义开,蔡明中,黄斌等.新型含氰侧基氯取代可溶性聚芳酰胺的合成及表征[J].化工新型材料,2007,35(9):50-52.
    [195]余义开,蔡明中,姜建文等.新型含醚基结构及氰侧基聚芳酰胺的合成及表征[J].合成纤维工业,2007,30(5):38-40.
    [196]余义开,蔡明中,章明等.新型含氰侧基可溶性聚芳酰胺的合成及表征[J].石油化工,2007,36(12):1261-1265.
    [197]余义开,蔡明中,叶尚辉等.新型含氰侧基聚芳醚酰胺的合成及表征[J].广东化工,2006,156(4):86-88.
    [198]余义开,黄海,张跃军等.新型含氰侧基可溶性聚芳酯的合成与表征[J].化工新型材料, 2008,104(10):70-71,104.
    [199]余义开,章荣立,张跃军等.新型含偶氮结构聚芳醚酮树脂的合成及表征[J].应用化学,2009,(3):342-345.
    [200]余义开,章荣立,张跃军等.新型光敏聚合物氯代聚肉桂酰胺酮的合成研究,现代化工,2008,7:36-38,40.
    [201]余义开,韩小敏,黄海等.新型含偶氮结构聚芳醚砜醚酮酮的合成与表征[J].塑料,2008,(6):70-72.
    [202]章杰.世界纤维素纤维用染料现状和发展趋势[J].精细与专用化学品,2004,12(8):1-5.
    [203]章杰,晓琴.发展迅猛的中国染料工业[J].纺织导报,2003,(3):75-76.
    [204]章杰.现代活性染料的技术发展[J].印染,2004,30(2):37-42.
    [205]Albert Roesslor and Xiunan Jin. State of the art technologies and new electrochemical methods for the reduction of vat dyes [J]. Dyes &Pigments,2003,59 (3):1-8.
    [206]张永金,张波兰.活棉纤维活性染料无盐染色理论研究进展[J].印染,2001,(8):47-49.
    [207]宋心远,沈如.活性染料及其染色的近年进展(一)[J].印染,2001,(2):45-49.
    [208]章杰.节能减排环保型染料的发展和应用[J].印染,2009,(17):47-50.
    [209]杨薇,杨新玮.直接染料的进展概况[J].染料工业,1999,(1):6-17.
    [210]张伟,赵德丰.萘系偶氮型通用染料结构与染色性能之间的关系[J].大连理工大学学报,2011,(1):14-19.
    [211]王文利,位青松,张晓飞.硫化染料的开发及其应用性能的拓展[J].染料与染色,2008,45(6):8-10.
    [212]王梅,杨锦宗.硫化染料的研究进展[J].染料工业,1999,36(6):5-7.
    [213]Guest R A, Wood W E.硫化染料[J].染料工业,1990,27(6):42-51.
    [214]刘灿灿,高双凤,赵亚梅.硫化染料及其应用进展[J].山东纺织科技,2012,(3):46-49.
    [215]勒晓松,王贺兰.还原染料的还原体系探讨[J].染料与染色,2011,48(8):18-22.
    [216]章杰.高价值的还原染料现状和发展[J].上海染料,2005,(5):22-29.
    [217]章杰,晓琴.还原染料现状和发展[J].印染,2005,(20):43-47.
    [218]武达机.活性染料的结构与其活性、染色性能的关系[J].染料与染色,2011,48(5):16-21.
    [219]武达机.活性染料的结构与其活性、染色性能的关系(续)[J].染料与染色,2011,48(6):11-16.
    [220]张兴华,戴东强.浅谈活性染料结构与性能的关系[J].染料与染色,2011,48(8):14-18.
    [221]宋心远.活性染料的染后洗涤和固色处理(一)[J].印染,2008,(11):38-41.
    [222]宋心远.活性染料的染后洗涤和固色处理(二)[J].印染,2008,(12):35-38.
    [223]宋心远.活性染料的染后洗涤和固色处理(三)[J].印染,2008,(13):36-38.
    [224]宋心远.活性染料的染后洗涤和固色处理(四)[J].印染,2008,(14):48-50.
    [225]宋心远.活性染料的染后洗涤和固色处理(五)[J].印染,2008,(15):42-43.
    [226]贺良震.活性染料固色代用碱M-2231P[J].印染,2009,(4):35-37.
    [227]崔浩然.活性染料固色代用碱的实用性研究[J].染整技术,2005,(9):21-25.
    [228]陈亮.活性染料固色用代碱剂的分析[J].印染助剂,2006,23(9):41-44.
    [229]李洪霞,吴赞敏.活性染料染色牢度的研究[J].北京纺织,2005,26(2):35-38.
    [230]高天佑,谭艳君.提高活性染料固色率的一种方法[J].西安工程大学学报,2008,22(4):437-440.
    [231]于广涛.提高棉织物活性染料染色牢度[J].印染,2006,(7):21-23.
    [232]陈林.新型固色碱剂RS-3518在活性染料染色中的应用实践[J].染整技术,2010,32(9):20-22.
    [233]张万伟等.固色代用碱剂在活性染料连续轧染中的应用[J].染整技术,2008,(8):34-35.
    [234]吴娇娇,陈英.新型碱剂S在活性染料浸染中的应用[J].染料与染色,2008,(2):21-23.
    [235]蔡如月,高洁.新型碱剂E在轧染中的应用探讨[J].染整技术,2009,(10):17-20.
    [236]李春光,刘跃霞.代用碱剂在双活性基染料染色固色中的应用[J].染整技术,2009,(4):30-32.
    [237]Fukunishi A, Tsunekawa T, Okamoto M, et al.. Fixation agents for dyeing of cellulosic fibers with reactive dyes [P]. JP 62 282 083,1987-12-7
    [238]杨静新,陈新华.聚阳离子无醛固色剂研制与应用[J].印染助剂,2009,26(3):23-26.
    [239]黄茂福,杨玉琴.无醛固色剂的发展与目前情况[J].印染助剂,2002,19(4):1-4.
    [240]冯见,杜鹃.固色剂的发展情况概述[J].上海丝绸,2003,(2):9-12
    [241]罗来理,武美莲.增进活性染料的固色率和染色牢度途径分析[J].江西科学,2008,26(3):425-428,463.
    [242]Bella O, Clavin M, Robert B, et al. Dye bath and method for reactivedyeing [P]. USP 5 840 084,1998-11-24.
    [243]Chrstie N J, Jones S G. Liquid alkali for reactive dyeing of textiles [P]. USP 5372611,1994-12-13.
    [244]Moore S B. Liquid alkali for reactive dyeing of textiles [P]. USP 6 214 059,2001-04-10.
    [245]Nobuyki Y, Tamio S. Liquid compostions of reative dyestuffs with alkali metal ply(meth) acrylate [P]. USP 4 725 285,1988-02-16.
    [246]Moore S B. Liquid alkali for reactive dyeing of textiles [P]. USP 5 667 532,1997-09-16.
    [247]Moore S B. Process for preparing a supersaturated liquid alkali composition for reactive dyeing of textiles[P]. USP 5 382 262,1995-01-17.
    [248]邓耀明.无醛固色剂的发展概况[J].东莞理工学院学报,2010,17(1):51-56.
    [249]崔连夏,史立新.固色剂Y的生产与应用[J].沈阳化工,1991,(2):37-39.
    [250]杨菊萍.无甲醛固色剂ENF的合成和应用[J].印染助剂,2005,22(2):20-21.
    [251]贺月.浅谈无醛固色剂的研究进展与应用前景[J].中国材料科技与设备,2006,4:23-25,31.
    [252]JUERG H, BRUNO K. Polycondensates, their preparation and their use [P]. DE 3525104, 1984-07-21.
    [253]贾顺田,鞠晓慧,曹丁效,等.无甲醛固色剂JXH的合成与应用[J].印染,2006,20:31-34.
    [254]Juerg H, Bruno K. Polycondensates [P]. DE:3 525 104,1984-07-21.
    [255]李汝富.无甲醛固色剂SH-96的合成与应用[J].印染助剂,1997,10:18-19
    [256]杨建平,邵炳荣.无醛固色剂H的研制[J].宁波高等专科学校学报,1998,10(2):38-40
    [257]董志芳.固色剂的作用原理和新一代固色剂DFRF-1的性能[J].印染,1986,12(2):69-73
    [258]朱国华.环保型固色剂GQ-600研制与应用[J].南通工学院学报,2000,6:28-32
    [259]邓耀明,皮呸,文秀芳,等.阳离子无醛固色剂的合成与应用[J].应用化工,2008,37(2):173-176.
    [260]UEDA T, KAGENO K. Methods for improve color fastness of reactive dyes on cellulose with allylamine copolymers [P]. US 4 678 474,1987-7-7.
    [261]COLLINS G W, BURKINSHAW S M, GORDON R. Dyeing of textiles [P]. US 6 200 351 B1,2001-3-13.
    [262]WANDREY C, HERNANDEZ B J, HUNKERLER D. Diallyildimethylammonium chloride and its polymers [J]. Adv.Polym.Sci,1999,145:123-182.
    [263]ROSUNEE S, CARRE C M. Surface chemical analysis of Tencel treated with a cationic fixing [J]. Journal of Materials Science,2003,38:2179-2185.
    [264]Kishioka H. Fixation of reactive dyes on textiles [P]. JP 56 128 382,1981-10-7
    [265]Komiya K, Kanai S, Beppu K. Agents for improving fastness of reactive-dyed fabrics[P]. JP 63264985,1988-11-1
    [266]张建功.聚阳离子型电解质固色剂制备工艺简化的探讨[J].精细石油化工,1992,(1):36-38
    [267]徐东平,钱理忠,丛君兰,等.固色剂F的研制于应用[J].印染助剂,1994,11(3):25-26.
    [268]解春萍.聚阳离子型固色剂F制备工艺优化的初步研究[D].南京:南京理工大学.
    [269]BLACKBURN R S, BURKINSHAW S M. Treatment of cellulose with cationic,nucleophilic polymers to enable reactive dyeing at neutral PH without electrolyte addition [J]. Journal of Applied Polymer Science,2003,89:1026-1031.
    [270]马斌全,朱志华,左晓良.二甲基二烯丙基氯化铵在纺织印染中的应用[J].印染助剂,2006,23(5):4-7.
    [271]BURKINSHAW S M, GOTSOPOULOS A. Pretreatment of cotton to enhance its dyeability; part 2. Direct dyes [J]. Dyes and Pigments,1999,42:179-195.
    [272]BURKINSHAW S M, GOTSOPOULOS A. The pretreatment of cotton to enhance its dyeability-I. Sulphur dyes [J]. Dyes and Pigments,1996,32(4):209-228.
    [273]SHINBO K, ONISHI K, MIYABAYASHI S, et al. Fabrication and electrochemical properties of layer-by-layer deposited films containing phthalocyanine dyes [J]. Thin Solid Films,2003, 438-439:177-181.
    [274]NIZRI G, LAGERGE S, KAMYSHNY A. Polymer-surfactant interactions:binding mechanism of sodium dodecyl sulfate to poly (diallyldimethylammonium chloride). Journal of Colloid and Interface,2008,320:74-81.
    [275]BURKINSHAW S M, KATSARELIAS D. A study of the wash-off and aftertreatment of dichlorotriazinyl reactive dyes on cotton [J]. Dyes and Pigments,1995,29(2):139-153.
    [276]张雄,毛培,向敏虎.无醛固色剂MRT-1的研制与应用[J].印染助剂,2005,22(2):5-6.
    [277]DANIHER F A, ASPLAND J R. Wet fast dyed cellulosic materials[P]. US 4 735 628, 1988-4-5.
    [278]COLLINS G W, BURKINSHAW S M, Gordon R. Dyeing of textiles [P]. US 2001/0054209 A1,2001-12-27.
    [279]Iwata M, Saka T, Ikeda T, and Kondo N. Production of di-and tri-allylamine copolymer [P]. JP 61 130 317,1986-06-18.
    [280]Yen M S, Chen Y P, and Tsai H C. Synthesis, properties, and dyeing application of nonionic waterborne polyurethanes with different chain length of ethylamines as the chain extenders [J]. Journal of Applied Polymer Science,2003,90:2824-2833.
    [281]曲文超.聚二烯丙基二甲基氯化铵的合成研究-固色剂F的工艺优化和水处理剂的探索[D].南京:南京理工大学,1998.
    [282]Choi Y B, Park O O. Preparation of sulfonated polypropylene and its dyeability:thiol as functionalization template of polypropylene [J]. Journal of Applied Polymer Science,2008, 109:736-748.
    [283]夏建明.环保型植物固色剂在棉织物天然染料染色中的应用[J].纺织学报,2009,30(8):87-91.
    [284]王春梅,胡啸林.无醛固色剂NF-1的合成与应用[J].印染助剂,1999,16(3):22-23.
    [285]庄宝璐.无甲醛固色剂CS的研制与应用[J].印染助剂,2001,18(3):17-18.
    [286]郭振良,蒙延峰,郭相砷.无甲醛固色剂YSE的合成与应用[J].烟台师范学院学报(自然科学版),2002,(3):192-194.
    [287]李仲清.无醛固色剂A-1的合成与应用.福建化工,2005,(3):7-9.
    [288]张小丽,赵振河.新型无甲醛固色刊X对直接和活性染料的固色性能研究[J].印染助剂,2007,24(5):31-34.
    [289]李文霞,洪华星,张辉.棉用反应型无醛固色剂的制备及应用[J].北京服装学院学报,2008,28(2):19-24.
    [290]胡应燕,郭睿,贾顺田.水性聚氨酯固色剂的合成及应用[J].聚氨酯工业,2009,24(1):26-29.
    [291]王国建.影响水性聚氨酯乳液涂膜性能因素的研究[J].中国建筑防水,2003,(2):10-12.
    [292]王利民,樊兆玉,林洁等.阳离子、反应型有机硅固色剂及其制备方法[P].CN1583763,2004-06.
    [293]王生杰,范晓东.紫外光固化聚硅氧烷[J].化学通报,2005,68:1-9.
    [294]刘馨,丁芸芸,张中一等.无醛低温交联固色剂FA与活性染料同浴染色.印染,2005,22:25-26.
    [295]徐蔚.无甲醛固色剂AE的合成与应用[J].印染助剂,2001,18(6):26-30.
    [296]杨菊萍.复合型固色齐FHAD的合成和应用研究[J].染料与染色,2004,41(4):234-235.
    [297]郑雅杰,彭振华.新型复合引发剂APS-TEA引发DMDAAC的聚合及PDMDAAC的应用[J].化学研究与应用,2007,(3):34-37.
    [298]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2003:43,44.
    [299]Ali S A, Al-Muallem H A. Participation of propargyl moiety in Butler's cyclopolymerization process [J]. Polymer,2004,45:8097-8107.
    [300]陈永杰,蒋琳.3-氯-2-羟丙基三烷基氯化胺盐的合成研究[J].沈阳化工学院学报,2001,(1):19-23.
    [301]徐世美,李晓丽.3-氯-2-羟丙基三甲基氯化铵的合成与纯化[J].精细化工,2002,(8):440-442.
    [302]Obokata T, Isogai A. The mechanism of wet-strengh development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin [J]. Colloids and Surfaces A,2007:525-531.
    [303]董秋静,汤嘉陵,梁倩倩,等.丙烯酸复鞣剂均聚过程中分子量的控制研究[J].皮革科学与工程,2006,16(1):26-28,32.
    [304]Assem Y, Wegner G, Agarwal S, et al. Controlled/living ring-closing cyclopolymerization of dimethyldiallylammonium chloride via reversible addition fragmentation chain transfer process [J]. Macromolecules,2007,40:3907-3913.
    [305]Oakes J, Gratton P, Dixon S. Solubilisation of dyes by surfactant micelles. Part 4:influence of dye fixatives [J]. Coloration Technology,2004,12:267-275.
    [306]傅思平.系列化相对分子质量PDMDAAC水溶液性质的初步研究[D].南京:南京理工大学,2009.
    [307]黄茂福.化学助剂分析与应用手册(中册)[M].北京:中国纺织出版社,2001:2126-2129.
    [308]李国强,顾瑞珠.固色原理功效辨析[J].印染,1988,14(3):18,49-56.
    [309]Jun J S, Lei L R, Yuan Y Z. Interaction between anionic dyes and cationic flocculant P(AM-DMC) in synthetic solutions [J]. Journal of Hazardous Materials,2006, B136:809-815.
    [310]贾旭,张跃军,余沛芝.聚二甲基二烯丙基氯化铵的控制合成方法[J].石油化工,2007,37(1):49-54.
    [311]贾旭,张跃军.APS引发制备高分子量PDMDAAC [J].应用化学,2007,24(6):610-614.
    [312]张跃军,余义开,曲文超等.相对分子质量受控聚季铵盐固色剂及其合成方法[P].中国专利,CN 101891854A,2010-11-24.
    [313]汤艳峰.交联染色用交联剂的合成与应用性能研究[D].大连:大连理工大学博士学位论文,2007.
    [314]马威,张淑芬,具本植等.高取代度阳离子淀粉改性棉纤维用于活性染料无盐染色的研究[J].应用化工,2011,48(1):19-23.
    [315]龚金南,彭华,李茂辉.阳离子型聚丙烯酸酯乳液的合成与应用[J].印染助剂,2000,17(5):26-28.
    [316]赵华章,岳钦艳,高宝玉等.阳离子型高分子絮凝剂PDMDAAC与P(DMDAAC-AM)的合成及分析[J].精细化工,2011,18(11):645-648.
    [317]关建宁,张金俊,万嵘等.四苯硼钠反滴法测季铵盐内盐的含量[J].南京工业大学学报,2007,29(2):82-84.
    [318]姚志强,徐亮亮,刘月利.使溴水褪色的研究性学习案例设计[J].鞍山师范学院学报,2002,4(3):66-67.
    [319]Buriks R S, Lovett E G, Louis S, et al. Azetidinium salts and polymers and copolymers thereof [P]. US:4 341887,1982-7-27.
    [320]蔡照胜,王锦堂,杨春生等.3-氯-2-羟丙基三甲基氯化铵的自催化合成及其合成条件优化[J].化学世界,2005,(1):30-33.
    [321]杨海涛,周向东,董娟等AM-DMDAAC共聚固色剂的合成及其应用[J].印染,2010,(5):10-13,23.
    [322]崔淑玲.交联齐TETS的合成及应用[D].上海:东华大学博士学位论文,2005.
    [323]余沛芝AIBA-2HCl引发DMDAAC合成PDMDAAC聚合工艺的初步研究[D].南京:南京理工大学,2007.
    [324]GB 12005.2-89.聚丙烯酰胺中残留丙烯酰胺含量的测定方法.溴化法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700