用户名: 密码: 验证码:
掺杂氧化钒薄膜的相结构和光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钒在室温左右随着温度的变化电阻值反应敏感,能够获得比较大的电阻温度系数值(TCR),其室温电阻值大约在几千到几十万欧姆之间,并且,能够良好的匹配Si读出电路,因此,氧化钒可以满足微测辐射热计用敏感材料的要求。但是,氧化钒含有高达十几种结晶相,各种结晶相的电阻值和电阻温度系数区别较大,并且,制备工艺和后处理工艺对氧化钒薄膜的结构、光电性能的影响较大。本论文是以在微测辐射热计中起关键作用的氧化钒红外敏感材料为重点,通过研究VO_x/p-Si以及掺杂Al(或Mo)的VO_x/p-Si的制备、物相结构及其光电性能,以建立工艺条件与薄膜质量之间的联系,为氧化钒薄膜在微测辐射热计中的应用建立实验和理论基础。
     为了获得具有较大的电阻温度系数值的氧化钒薄膜,采用248nm波长的KrF准分子激光激发单质V靶与氧气反应的脉冲激光沉积技术制备了高质量的取向生长的VO_x/p-Si薄膜;随着氧气压力的提高,脉冲激光沉积(PLD)氧化钒薄膜的物相结构发生以下的变化,非晶态(0.008Pa)→VO_2(0.08Pa)→VO_2+V_3O_7(0.3Pa)→VO_2+V_3O_7+V_6O_13(3Pa)→VO_2+V_3O_7+V6O_13+V_2O_5(10Pa);根据气体分子运动论模型,当靶材-衬底距离为8cm时,PLD能有效沉积氧化钒薄膜的临界氧气压力约为0.08Pa,当靶材-衬底距离为4.5cm时,约为0.15Pa;PLD沉积的VO_2/p-Si薄膜均表现出较大的TCR值,可以满足微测辐射热计用材料TCR值大于2%的要求。综合看来,衬底温度800℃、氧气压力10Pa和靶衬距离4cm生长的VO_2/p-Si薄膜室温电阻约10KΩ,热滞效应最小,TCR值最大(4.59%),性能最优。
     为了降低VO_x/p-Si薄膜的电阻值,利用193nm波长的ArF准分子激光激发复合靶材—V_2O_5靶,采用PLD结合真空退火的方法制备了V2O_3/p-Si薄膜。利用非偶合STD扫描模式分析得知,对于衬底温度770℃并真空退火的薄膜,V2O_3(202)晶面择优平行于薄膜表面,而V2O_3(104)晶面、V2O_3(006)晶面、V2O_3(116)晶面、VO_2(110)晶面和VO_2(220)晶面则择优倾斜于薄膜表面,整个薄膜纵向深度均有V2O_3相存在,表层只存在V2O_3相,而VO_2层则是介于衬底和表层之间;PLD沉积中,衬底温度影响薄膜的结晶,而真空退火温度,则影响薄膜的取向;PLD沉积的V2O_3/p-Si薄膜在电阻温度特性测试中表现出典型的V2O_3相的一级和二级相变。室温生长,770℃真空退火的V2O_3/p-Si薄膜的室温电阻约3KΩ, TCR值最大(4.31%),性能最优。
     为了研究掺杂对相变温度的影响,采用193nm波长的ArF准分子激光,利用单质Al(或Mo)靶与V2O5靶双靶交替沉积的PLD方法制备了掺Mo(Al)的V2O_3/p-Si薄膜; Al原子的掺杂可以保持VO_x晶体的结构,而Mo原子的掺杂却改变了主体材料的结构;在11at.%的Al原子掺杂时,Al全部以替代原子的形式掺杂进入VO_x晶体的,nAl: nV=11:100;在55at.%的Al原子掺杂时,约11at.%的Al原子是以替代原子的形式掺杂进入VO_x晶体中;而约44at.%的Al原子进入VO_x的晶格间隙,nAl:nAl2O_3:nV=11:44:100;在3at.%的Mo原子掺杂时,实际只有1at.%的Mo原子进入到VO_x的晶格间隙实现掺杂,其余2at.%Mo原子是以MoO_3形式与V_2O_5共混,nMo:nMoO_3:nV=1:2:100。55at.%的Al掺杂量对VO_x/p-Si薄膜来说似乎掺杂量过大,掺杂过量的Al就难以保证Al原子完全实现替代V原子,过量的Al原子在晶格间隙或者晶界聚集反而降低了掺杂效果。掺Al-VO_x/p-Si薄膜的电阻值、激活能和TCR值均小于Mo掺杂的薄膜。掺杂量3at.%的Mo-VO_x/p-Si薄膜的电阻值为几十K,室温TCR达-6.42%/K,更为可贵的是沉积温度仅为室温,是制造微测辐射热计理想的材料。两种元素的掺杂对氧化钒薄膜的相变温度没有明显的影响但却能有效改善VO_x/p-Si薄膜的光电压响应特性。
     MEMS制造技术相对于成熟的集成电路制造工艺来说仍然处于发展阶段。虽然某些研究机构已经成功的制造出VO_x微测辐射热计,但是因为它在军事领域和民用领域的广泛应用的重要,至今仍然没有公布完整的资料。同时,制造VO_x微测辐射热计的双层结构难度较大,因此,对于高性能热敏材料的应用,希望寻求可行的低成本和低复杂程度的制造工艺,能够使研究中获得的高性能敏感材料在实际中得以应用,以此来促进微测辐射热计的进一步发展。
     与无机材料相比,高聚物材料例如聚酰亚胺,具有优异的综合性能和工艺特性。聚酰亚胺具有液态聚合前体,可以用甩涂的方法形成薄膜,其本身可以作为光刻胶,采用光刻工艺制作微细结构,并且该材料与沉积在其上的大多数金属、半导体材料等具有较好的结合。尤为可贵的是聚酰亚胺的热导率很低仅为氮化硅热导率的1/250左右,将是一种很有前途的微桥结构材料。聚酰亚胺的优异性能使其能够同时作为柔性电路的基板材料、微桥支撑材料和器件封装材料,实现多种功能,可望实现器件结构材料的一体化。目前,以聚酰亚胺材料制作微测辐射热计的微桥结构还不是现成的技术,制作基于聚酰亚胺的微测辐射热计并使其达到实用还存在不少障碍。
     在前面热敏材料研究的基础上,采用V_2O_5靶结合真空退火的PLD方法在聚酰亚胺上制备VO_x/PI薄膜作为红外敏感薄膜,首次尝试以PI同时作为红外吸收层、悬浮微桥支撑层和钝化保护层设计微测辐射热计单元,并制作了2×4的微测辐射热计阵列;首次采用具有6ns的短脉冲的KrF准分子激光,刻蚀制作了VO_x/PI/Si悬浮微桥结构,解决了制作的工艺问题,克服了双层结构热敏微桥激光刻蚀的难题,用粘贴法成功地解决了悬浮微桥结构的制作工艺;VO_x/PI/Si微测辐射热计单元的室温下(305K)的电阻温度系数为-2.28×10-2/K,电加热响应时间约为120ms,热导为2.13×10-9W/K,热容为2.56×10-10J/K,估算出该测辐射热计对10μm波长的光响应时间约为111ms,与电加热响应时间基本一致;预测的微测辐射热计阵列可能达到的响应率为2.00×109V/W,归一化探测率为6.80×1010cm·Hz1/2/W,两个性能参数均优于同类微测辐射热计器件的预测性能。
Vanadium oxide is one of the important thermo-sensitive film materials foruncooled infrared focal plane arrays. Due to the uncooled operation, small volume,portability and low cost, etc, uncooled focal plane and the corresponding systemshave become a development trend. Vanadium oxide is an ideal material for thethermal imaging since it has a low formation temperature and high temperatureresistance coefficient (TCR). Vanadium oxide compounds can crystallize with avariety of constitutions, with the resistance and TCR obviously varying with theconstituent. The optoelectronic property of vanadium oxide films can be improvedby modifying constituent. Now, the researches of vanadium oxides focus on theobtaining high quality and low phase transition temperature. Therefore, thepreparation of good performance, low cost, high TCR and low resistance vanadiumoxide films is essential. In this thesis, the preparation, structural and optoelectronicproperties of VO_x/p-Si films with and without Al (Mo) doping have been studied topresent experimental and theoretical foundation for further improving theoptoelectronic property of thermo-sensitive film materials.
     Employing pulse laser deposition (PLD) method with the elementaryvanadium target reacting with O_2, we have prepared VO_2/p-Si films with VO_2asprincipal phase structure. Micro-structural study indicates: all the crystal film showfavorable growth orientation; exorbitant substrate temperature (over800oC)impedes well crystallization, and the over high laser power (over400mJ) willdestroy oriented growth; appropriate distance between target and substratefacilitates the uniform crystallization; with the increasing pressure of oxygen gas,the vanadium oxide film change as following: amorphous structure→VO_2→VO_2+V_3O_7→VO_2+V_3O_7+V6O13→VO_2+V_3O_7+V_6O_13+V_2O_5. Basedon the prediction of molecular collision model, the critical oxygen gas pressure ofthe crystalline VO_2/p-Si film prepared by this method approximate to0.083Pa,agreeing well with the experimental result (0.08Pa). Optoelectronic results indicate:all the VO_2/p-Si film prepared by this method represent phase transition character,with high TCR (maximum value reach4.59%); VO_2/p-Si film shows favorabletransient optical response, with μs order of magnitude response time; the carriers inVO_2/p-Si semiconductors are primarily provided by deep level impurities anddefects.
     The V_2O_3phase dominated V_2O_3/p-Si films are prepared by PLD methodwith V_2O_5target and vacuum annealing to decrease the resistances of thermo-sensitive film materials, micro-structural study indicates: textures exist in the V2O_3/p-Si films; VO_2(B) phase without phase transitions exists in the filmsprepared at relatively high substrate temperatures, and does not appear in the filmsprepared at relatively low substrate temperatures. Optoelectronic property resultsindicate: annealing facilitates full and uniform growth, and can deduce resistance,but makes against enhancement of TCR; the resistances of V2O_3/p-Si filmsprepared by this method can be controlled in the range from several KΩ to scores ofKΩ; for the film prepared at substrate temperature850oC without annealing, theresistances are scores of KΩ and the TCR attains to-5%, achieving ideal properties;V2O_3/p-Si films have no transient optical response; the carriers in the V2O_3/p-Sisemiconductors are primarily provided by shallow level impurities and defects.
     Al (Mo) doped V2O_3/Si films are prepared by PLD method with thealternating elementary Al (Mo) and V2O5targets to examine doping effects on thephase transition character of thermo-sensitive film materials. Micro-structural studyresults indicate: the doping of Al or Mo element could only induce trivial latticedistortion, but could not change the crystal structure of V2O_3phase. The studiedoptoelectronic property results are as followed: two kinds of doping elements canconsiderably decrease film resistance; the resistances of Al doped V2O_3/p-Si filmsare several KΩ, and the resistances of Mo doped V2O_3/p-Si films are scores of KΩ;TCR are relatively lower for the films with relatively high Al doping quantity; Al(Mo) doped V2O_3/Si films exhibit well transient optical response with μs order ofmagnitude response time; the carriers in Al (Mo) doped V2O_3/Si semiconductorsare primarily provided by deep level impurities and defects. In resistance-temperature measurement at room temperature, no substantial phase transition hasbeen observed. But by the energy level changes in the charge-deep level transientspectrum (Q-DLTS), the phase transition can be determined: before and after phasetransition, only one level has been found in spectrum, while in the phase transitionprocess, two energy level have been observed derived from two structures. Thedeep level center contributed primarily from doped elements, due to structuraldistortion induced by Al (Mo) doping, which leads to additional stress apart fromtexture induced stress, and thus results in deep levels.
     Polyimide (PI) can provide liquid polymerized precursor, form films by tosssmear method and be used as photoresist to fulfill fine structure byPhotolithographic process. This material can combine well with most of metal,semiconductor materials. Especially, the thermal conductivity of polyimide is verylow, equal to only1/250of silicon nitride, and will be a promising mini-bridgestructural material. But now, mini-bridge structure produced with polyimidematerials has no ready technology, and there still be many difficulties in productionof practical polyimide micro-bolometer. Therefore, the investigation of polyimidemicro-bolometer will effectively promote the further development of flexible infrared micro-structural devices.
     We have firstly prepared VO_x/PI film an infrared sensitive film on PI at lowtemperature by PLD method with V2O5target and annealing in China, attemptingto design a micro-bolometer unit based on the PI as the flexible circuit boardmaterial, suspended mini-bridge support Layer and insulating layer, and produce2×4uncooled infrared detector array. The thermo-sensitive and optical responseproperties of VO_x/PI microbolometer unit have been analyzed and compared withthose of the conventional microbolometers based on silicon nitride structuralmaterials
引文
[1]苏吉儒,魏建华,庄继胜.赴向21世纪的非制冷热成像技术[J].红外与激光工程,1999,28(3):41-45.
    [2]洪流.红外引信目标近区测试技术研究[J].制导与引信,1996,(4):37-42.
    [3]王永寿.非冷却型红外探测器[J].飞航导弹,1998,(12):44-49
    [4]周围,朱联祥.真空退火法制备的VOx薄膜的微观结构研究[J].重庆邮电学院学报.2000,12(4):24-26.
    [5] Ferominek H, Picard F, Vincent D. Vanadium Oxide Films for OpticalSwitching and Detection[J]. Journal of Applied Physics,1993,32(6):2092-2096.
    [6]罗裕基.无机化学丛书(第八卷)[M].北京:科学出版社,1998:224.
    [7] Partlow D P, Gukovich S R, Radford K C, et al. Switchable Vanadium OxideFilms by a Sol-gel Process[J]. Journal of Applied Physics,1991,70:443.
    [8] Kosuge K. The Phase Diagram and Phase Transition of the V2O3-V2O5System[J]. Journal of Physics Chemistry of Solid,1967,28:1613.
    [9] Vikhnin V S, Lysenko S, Rua A, et al. The Model of Metal–insulator PhaseTransition in Vanadium Oxide[J]. Physics Letters A,2005,343:446–453.
    [10] Sobhan M A, Islam M R, Khan K A. Preparation and Properties of V2O5ThinFilms for Energy-effcient Selective-surface Applications[J]. AppliedEnergy,1999,64:345-351.
    [11] Mendialdua J, Casanova R, Barbaux Y. XPS Studies of V2O5, V6O13, VO2and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena,1995,71:249-261.
    [12] Golan G, Axelevitch A, Sigalov B, et al. Metal–insulator Phase Transition inVanadium Oxides Films[J]. Microelectronics Journal,2003,34:255–258.
    [13] Valmalttte J C, Gavarri J R. High Efficiency Thermochromic VO2(R)Resulting from the Irreversible Transformation of VO2(B)[J]. MaterialScience and Engineering B,1998,54:168-173.
    [14] Gtifiths C H, Eastwood H C. Influence of Stoichiometry on the Metal-semiconductor Transition in Vanadium Dioxide[J]. Optical Engineering.1974,45(5):2201-2206.
    [15] Haber J, Witko M, Tokarz R, Applied Catalyst A: General,1997,157:3.
    [16] Guinneton F, Sauques L, Valmalette J C, et al. Role of Surface Defects andMicrostructure in Infrared Optical Properties of Thermochromic VO2Materials[J]. Journal of Physics and Chemistry of Solids,2005,66:63–73.
    [17] Barker A S, Verleur H W, Guggenheim H J. Physics Review Letter,1966,17(26):1286.
    [18]许旻,邱家稳,何延春,等.二氧化钒薄膜的结构、制备与应用[J].真空与低温,2001,7(3):136-138.
    [19] Morin F J. Oxide Which Show a Metal-insulator Transition at the NeelTemperature[J]. Physics Review Letter,1959,13(1):34.
    [20] Goodenough J B. The Two Components of the Crystallographic Transition inVO2[J]. Journal of Solid State Chemistry,1971,3:490-500.
    [21] Kucharczyk D, Niklewski T. Applied Catalyst,1979,12:370.
    [22] Natale J F, Hood P J, Harker A B. Formation and Characterization of Grain-oriented VO2Thin Films[J]. Journal of Applied Physics,1989,66:5844.
    [23] Remke R L, Walser R M, Bene R W. The Effect of Interfaces on ElectronSwitching in VO2Thin Films[J]. Thin Solid Films,1982,97(2):129-131.
    [24]茹国平,曹永峰,李炳宗.微测辐射热计用氧化钒薄膜制备及特性[J].微细加工技术,2002,(4):45-53.
    [25] Chain E E. Optical Properties of Vanadium Dioxide and Vanadium PentoxideThin Films[J]. Applied Optical,1991,30:2782.
    [26] Yethirai M. Journal of Solid State Chemistry,1990,88:53.
    [27] Dernier P D, Marezio M. Physics Review,1970,2:3771.
    [28] Moon R B. Physics Review Letter,1970,25:527.
    [29] Lovesey S W, Knight K S, Sivia D S. Physics Review B,2002,65:224402.
    [30] Paolasini L, Vettier C, Bergevin F. Physics Review Letter,1999,82:4719.
    [31] Joshi A, Ma M, Zhang F C. Physics Review Letter,2001,86:5743.
    [32] Held K, Keller G, Eyert, et al. Physics Review Letter,2001,86:5345.
    [33] Meuller O, Urbach J P, Goering E, et al. Physics Review B,1997,56:15056.
    [34] Ezhov S Y, Anisimov V I, Khomskii D I, et al. Physics Review Letter,1999,83:4136.
    [35] McWhan D B, J P Remeika. Physics Review B,1970,2:3734.
    [36] Chen W Q, Kaneko Y. Electrochromism of Vanadium Oxide Films Doped byRare-earth (Pr, Nd, Sm, Dy) Oxides[J], Journal of ElectroanalyticalChemistry,2003,559:83-86.
    [37] Kokabi H R, Papeaux M, Aymami J A, et al. Material Science andEngineering B,1996,38:80.
    [38] Yethiraj M. Pure and Doped Vanadium Sesquioxide: Abrief ExperimentalReview[J]. Journal of Solid State Chemistry,1990,88:53-69.
    [39] Ueday, Kosugek, Kachi S. Phase Diagrame and Some Physical Properties ofV2O3+x(0≤x≤0.080)[J]. Journal of Solid State Chemistry,1980,31(2):171-188.
    [40] Toshiyuki O, Yasuhiro I, Kenkyu R K. Synthesis of SnO2, VO2and V2O3Fine Particles by Laser Induced Vapor Phase Reaction[J]. Journal ofPhotopolymer Science Technology,1997,10(2):211-215.
    [41]郑臣谋,张剑辉,张介立,等.纳米二氧化钒粉体的合成[J].中山大学学报(自然科学版),1999,38(6):54-56.
    [42] Tkatchenko B D, Delahay G. Hydrogen Temperature Programmed ReductionBased on Water Analysis[J]. Journal of Thermal Analysis,1994,41:1141-1151.
    [43] Keamper A, Hahndorf I, Baerns M. Topics in Catalysis,2000,11–12:77.
    [44] Talledo A, Granqvist C G. Electrochromic Vanadium-pendoxide-based Films:Structure Electrochromical and Optical Properties[J]. Journal of AppliedPhysics,1995,77(9):4655-4666.
    [45]袁宁一,李金华,林成鲁.氧化钒薄膜的结构、性能及制备技术的相关性[J].功能材料,2001,32(6):572-575.
    [46]陈昌国,刘渝萍,李兰.锂离子电池中钒氧化物电极材料的研究现状[J].无机材料学报,2004,19(6):1226-1230.
    [47] Chain E E. The Influence of Deposition Temperature on the Structure andOptical of Vanadium Oxide Films[J]. Journal of Vaccum Science andTechnology,1986,A4(3):432-435.
    [48] Yoon Y S, Kim J S, Choi S H. Structural and Electrochemical Properties ofVanadium Oxide Thin Films Grown by d.c.and r.f. Reactive Sputtering atRoom Temperature[J]. Thin Solid Films,2004,460(1-2):41~47.
    [49] Kuano E, Theil J A, Effects of Microstructure and Nonstoichiometry onElectrical Properties of Vanadium Dioxide Films[J]. Journal of VaccumScience and Technology,1989,A7:1314.
    [50]王玫,李喜梅,崔敬忠.磁控溅射制备的氧化钒薄膜的结构研究[J].兰州大学学报,1999,35(1):62-66.
    [51]袁宁一,李金华,林成鲁.氧化钒薄膜的制备方法及结构性能[J].江苏石油化工学院学报,2000,12(4):1-4.
    [52] Wei M D, Sugihara H, Honma I, et al. A New Metastable Phase ofCrystallized V2O4·0.25H2O Nanowires: Synthesis and ElectrochemicalMeasurements[J]. Advanced. Material,2005,17:2964–2969.
    [53] Dai L, Cao C H, Gao T F, et al. Synthesis and Phase Transition Behavior ofUndoped VO2with a Strong Nano-sizeeffect[J]. Solar Energy Materials andSolar Cells,2011,95:712–715.
    [54]尹大川,许念坎,刘正堂,等. VO2薄膜的主要制备工艺参数研究[J].功能材料,1997,29:52.
    [55] Kim D H, Kwok H S. Pulsed Laser Deposition VO2Thin Films[J]. AppliedPhysics Letter,1994,65:3188-3190.
    [56] Nagashima M, Wada H. Near Infrared Optical Properties of Laser AblatedVOxThin Films by Ellipsometry[J]. Thin Solid Films,1998,312:61.
    [57] Nagashima M, Wada H. The Oxygen Deficiency Effect of VO2Thin FilmsPrepared by Laser Ablation[J]. Journal of Material Research,1997,12(2):416-422.
    [58] Case F C. Modification in the Phase Transition Properties VO2Films[J].Journal of Vaccum Science and Technology,1984,A2:1509.
    [59] Nyberg G A, Buhrman R A. High Optical Contrast in VO2Thin Films Due toImproved Stoichiometry[J]. Thin Solid Films,1987,147:111.
    [60] Case F C. Influence of Ion Beam Parameters on the Electrical and OpticalProperties of Ion-assisted Reactively Evaporated Vanadium Dioxide ThinFilms[J]. Journal of Vaccum Science and Technology,1987,A5:1762.
    [61] Lu S W, Hou L S, Gan F X. Surface Analysis and Phase Transition of Gel-Derived VO2Thin Films[J]. Thin Solid Films,1999,353:40-44.
    [62] Pan M, Zhong H M, Wang S W, et al. Properties of VO2Thin Film Preparedwith Precursor VO(acac)2[J]. Crystal Growth,2004,265:121-126.
    [63] Hanlon T J, Coath J A, Richardson M A. Molybdenum-doped VanadiumDioxide Coatings on Glass Produced by the Aqueous Sol-gel Method[J]. ThinSolid Films,2003,436:269-272.
    [64] Burkhardt W, Christmann T, Meyer B K. Thin Solid Films,2002,402:226~231.
    [65] Li J H, Yuan N Y. Temperature Sensitivity of the VO2Polycrystalline FilmResistance Formed by Modified Ion Beam Enhanced Deposition[J]. AppliedSurface Science,2004,233:252-257.
    [66] Li J H, Yuan N Y. Formation Mechanism of the VO2Polycrystalline FilmPrepared by Modified Ion Beam Enhanced Deposition[J]. SPIE,2004,5774:232-236.
    [67] Jin P, Nakao S, Tanemura S, Tungsten Doping into Vanadium DioxideThermochromic Films by High-energy Ion Implantation and ThermalAnnealing[J]. Thin Solid Films,1998,324:151~158.
    [68] Trarieux H. Effect of Substitution on the Vanadium Dioxide Phase TransitionInfluence Changements Phase[J]. Prop. Phys. Corps. Solids,1970:101-114.
    [69] Balberg I, Abeles B, Arie Y. Phase Transition in Reactively Co-sputteredFilms of VO2-TiO2[J]. Thin Solid Films,1974,24:307.
    [70] Goodenough J. The Two Components of the Crystallographic Transition inVO2[J]. Solid State Chemistry,1971,3:490-500.
    [71] Yuan N Y, Li J H. The Phase Transition Analysis of VO2Film Prepared byIon Beam Enhanced Deposition Method[J]. SPIE,2004,5564:189-195.
    [72] Yao T, Zhang X D, Sun Z H, et al. Understanding the Nature of the KineticProcess in a VO2Metal-Insulator Transition[J]. Physics Review Letter,2010,105:226405.
    [73] Felde B, Niessner W, Schalch D. Plasmon Excitation in Vanadium DioxideFilms[J]. Thin Solid Films,1997,305:61.
    [74] Borek M, Qian F, Nagabushnam V. Pulsed Laser Deposition of Oriented VO2Thin Films on R-cut Sapphire Substrates[J]. Applied Physics Letter,1993,63:3288.
    [75] Case F C. Midifications in the Phase Transition Properties of PredepositedVO2Films[J]. Journal of Vaccum Science and Technology,1984,A5(4):1836-1839.
    [76] Jin P, Nakao S, Tanemura S. Nuclear Instruments and Methods in PhysicsReserch Section B-Beam Interactions with Materials and Atoms,1998,141(1-4):419.
    [77] Chain E E. Journal of Vaccum Science and Technology,1987,A5:1836.
    [78] Wang Y L, Chen X K, Li M C, et al. Phase Composition and Valence ofPulsed Laser Deposited Vanadium Oxide Thin Films at Different OxygenPressures[J]. Surface and Coatings Technology,2007,201(9-11):5344-5347.
    [79]王忠春,陈晓峰,李智勇,等.溅射总压对氧化钒薄膜的结构及电致变色性质的影响[J].硅酸盐学报,1999,27(1):28.
    [80] Kosuge K. Physics Chemistry Solids,1967,28:1613.
    [81] Mac C H, Hensney J B, Potter J F, et al. Journal of the American CeramicSociety,1968,51:176.
    [82]吴广明,吴永刚,倪星元. V2O5薄膜制备、结构及光学性质研究[J].功能材料,1999,30(4):404-413.
    [83] Nagushima M, Wada H. Journal of Vaccum Technology,1998,A16(1):45.
    [84]苏君红,吴诚.红外光电探测技术的现状和今后的发展[C].工程科技论坛第五场.新世纪光电子技术的展望,2000:1-16.
    [85]肖素艳,车录锋,李昕欣,等.基于柔性MEMS皮肤技术温度传感器阵列的研究[J].光学精密工程,2005,13(6):674-680.
    [86]刘卫国,金娜.集成非致冷热成像探测阵列[M].北京:国防工业出版社,2004:5-6.
    [87]张秀菊,陈鸣才,黄玉惠等.聚酰亚胺的性能、应用及发展概况[J].广州化学,1998,(3):58-66.
    [88] Barth P W, Bernard S L, Angell J B,Flexible Circuit and Sensor ArraysFabricated by Monolithic Silicon Technology[J]. IEEE Transaction ElectronDevice,1985,32:1202–1205.
    [89] Beebe D J, Denton D D, A Flexible Polyimide-based Package for SiliconSensors[J]. Sensors Actuators,1994,A44:57–64.
    [90] Lee G., Wu J, Miau J. A New Fabrication Process for a Flexible Skin withTemperature Sensor Array[J], Journal of Chinese Institute of Engineers,2002,25:619–625.
    [91] Lee N K S, Goonetilleke R S, Cheung Y S, et al. A Flexible EncapsulatedMEMS Pressure Sensor System for Biomechanical Applications[J].Microsystem Technology,2001,7:55–62.
    [92]余容.聚酰亚胺微测辐射热计微桥的微制造技术及性能研究[D].硕士学位论文,中国空间技术研究院物理研究所,2007:46.
    [93]曹永峰,蒋玉龙,段鹏.用于微测辐射热计的氧化钒热敏材料的温度特性[J].支撑技术,2002,27(5):58-62.
    [94] Qiu C H, Pankove J I. Applied Physics Letter,1995,67:3792.
    [95] Uozumi T, Okada K, Kotani A. Journal of Electron Spectroscopy and RelatedPhenomena,1997,83:9.
    [96] Gubanov V A, Lazukova N I, Kurmaev E Z, Journal of SolidStateChemistry,1976,19:1.
    [97] Shin S, Suga S, Taniguchi M, et al. Physics Review B,1990,41:4993.
    [98] Binet F, Duboz J Y, Rosencher E. Applied Physics Letter,1996,69(9):1202.
    [99]雷园园,傅德君,李金钗,等.离子-C_(60)相互作用及其对C_(60)/Si异质结光电特性的影响[J].太阳能学报,1999,1(1).
    [100]陈永平,梁平治,张学敏,等.128×1非制冷微测辐射热计红外探测器列阵研制[C],全国光电技术学术交流会暨第十六届全国红外科学技术交流会论文集,2003:4~7.
    [101]汪涛,刘成康,袁祥辉.非制冷微测辐射热计的热平衡分析[J],红外与激光工程,2001,30(3):218~221.
    [102]刘世建,潘刚,赵晓英,等.非致冷IRFPA中硅微桥绝热结构的有限元数值模拟[J].上海师范大学学报,2007,36(4):50~53.
    [103]高国龙.采用CMOS N势阱层的低成本红外微测辐射热计焦平面列阵[J],红外,2002,5:27~31.
    [104] Rogalski A. Infrared Detectors: Status and Trends[J]. Progress in QuantumElectronics,2003,27:59-210.
    [105] Rogalski A. Infrared Detectors: an Overview[J]. Infrared Physics andTechnology,2002,43:187-210.
    [106]牟宏,氧化钒热敏感材料的制备及微桥结构设计研究[D],硕士学位论文,电子科技大学,2003.
    [107] Shadi A, Donald D, Butler P, et al. Micromachined Infrared Bolometers onFlexible Polyimide Substrates[J]. Sensors and Actuators,2005,A118:49-56.
    [108] Sato H, Nishio S. Polymer Laser Photochemistry, Ablation,Reconstruction and Polymerization[J]. Journal of Photochemistry andPhotobiology C:Photochemistry Reviews,2001,2(2):139-152.
    [109] Ihlemann J, Rrbahn K. Excimer Laser Micro Machining:Fabrication andApplications of Dielectric masks[J]. Applied Surface Science,2000:587-592.
    [110] Braun A, Zimmer K, Hosselbarth B. Excimer Laser Micromachining andReplication of3D Optical Surfaces[J]. Applied Surface Science,1998:911-914.
    [111]章琳.准分子激光刻蚀聚合物制作微光学元件[D].硕士学位论文,上海:中国科学院上海光机所,2001.
    [112] Kruger J. Investigation of Excimer Laser Ablation Threshold of PolymersUsing a Microphone[J]. Applied Surface Science,2002,197-198(1-4):800-804.
    [113]孙承伟.激光辐照效应[M].北京:国防工业出版社,2002:71.
    [114]樊松波,李庆辉,林虹.非制冷焦平面热像仪温度控制设计[J].红外与激光工程,2005,4:499-502.
    [115]董良,岳瑞峰,刘理天.微测辐射热计的光学与热学设计[J].红外与毫米波学报,2003,22(2):109-113.
    [116] Wood R A, Kruse P W, Skatrud D D. Unccoled Infrared Imaging Arrays andSystems[M]. Semiconductors and Semimetals,1997:47-81.
    [117]余容,陈学康,杨建平,等.一种聚酰亚胺超低热导红外热敏悬浮微桥[J]. MEMS器件与技术,2007,(10):952-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700