用户名: 密码: 验证码:
光纤传感轨道状态监测的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国家重大生命线工程系统,轨道交通的运行安全对保障国家公共安全、维持社会稳定、促进国民经济发展都至关重要,轨道交通工程结构的运行安全和可持续发展已成为了迫切的国家重大战略需求。面向轨道结构工程健康状况实时监测与预警技术是保证运输安全的有效手段。然而,由于我国幅员辽阔,轨道交通线路跨越区域广、使用环境多变,相比世界其他国家对检测技术的有更多的要求,另外传统电类检测在复杂环境下长期使用易损坏或发生零点漂移等现象,并且电类传感器的信号传输距离近,不易组成大规模的传感网络,将其用于轨道状态的实时监测将存在着难以克服的理论和技术方面瓶颈。光纤光栅传感技术的不断发展为解决该难题提供了有效的途径,但是目前我国尚缺乏面向光纤传感轨道结构状态监测全面地、系统地研究,特别是面向高速无砟轨道结构状态的光纤传感监测研究更加匮乏。
     针对上述问题,本文利用光纤传感技术、监测技术和轨道工程技术的交叉优势,依据轨道动力学分析的结果,研制轨道结构状态监测的传感装置,构建适合轨道结构状态实时监测的光纤光栅传感网络体系,研究了光纤传感闭塞系统、超偏载及车轮损伤识别系统以及无砟轨道多参量监测系统的工程化实现,相关研究成果在铁路线路得到了应用,本文的主要研究如下:
     (1)依据车辆结构特征建立了车辆模型;轨道模型选用了连续弹性离散点支承梁轨道模型。传统有限元分析方法求解过程中若没有足够的约束条件,无法进行分析求解,针对这一问题,研究基于向量式结构和固体力学理论提出的新的结构分析方法-向量式有限元法,该方法能避免刚度矩阵方程的求解,原理简单,易于编程实现,将向量式有限元法引入到了轨道的数值分析之中,结合赫兹非线性弹性接触理论将车辆和轨道数值模拟统一了起来。利用该分析方法,分别从轨道结构在不同载重和速度的车辆的作用下,对钢轨垂向应变的规律进行数值模拟,模拟的结果显示,在轴重为40吨的重载车辆的作用下,钢轨轴向应变的最大变化幅度为382.6με,在轻为2吨的工程车的作用下,钢轨应变的最大幅度为19.1με,在车辆以速度为350km/h驶过时,信号的3dB宽度约为6ms。这些结果将会为传感元件的分辨率、量程,以及传感监测仪表的采样频率的设计提供直接依据。
     (2)在分析光纤Bragg光栅(Fiber Bragg Grating,简称FBG)传感原理的基础上,分析了CFBG的传感原理,并设计了一种基于光纤啁啾光栅(Chirped Fiber Bragg Grating,简称CFBG)的传感解调方法,该方法采用的是强度型传感检测方式,这样可以不采用昂贵的F-P腔,能够有效的降低设计难度和制作成本。光电探测器可以实现高速的转换,从而使光强型解调系统能够具备比波长型更高的解调速度。基于CFBG传感解调方法可以作为FBG传感检测方法的一种补充和完善。
     (3)分别针对轮轨垂向力,钢轨温度力以及轨道结构间位移,分析了各自监测的必要性,依据不同的需求,设计了对应的传感结构,着重设计了轨道结构状态监测中需要用到的几种FBG传感探头,主要包括光纤光栅应变片、温度片以及位移装置。并详细地说明了各自监测方法。详细地介绍了光纤光栅传感轨道状态监测系统的设计,以FBG传感器为基础建立的光纤光栅轨道状态监测传感网络采用了波分复用(Wavelength Division Multiplexing,简称WDM)加空分复用(Space Division Multiplexing,简称SDM)的混合复用方法,构建了多通道、大容量的光纤光栅传感网络。依据光纤光栅轨道状态监测系统的总体布局,阐明了监测系统软件的功能实现和工作流程。
     (4)以光纤光栅垂向力监测装置为基础,构建了光纤光栅闭塞系统,针对闭塞系统中最为核心的实时计轴问题,通过实测数据的反复分析和现场验证,找出了一种准确实时的计轴算法,该算法结合在计轴点布置多个光纤光栅垂向力监测装置,能解决停车、倒车等困扰计轴的难题。在京广线某站建立了实测点,目前该实测点已经能实现200000轴仅误计1轴的计轴性能指标。
     (5)通过分析超偏载监测系统的设计需求,并分别对其硬件和软件构架进行了详细的说明。确立了超偏载状态的判定方法,并依据实测数据样本进行分析,以光纤光栅传感轮轨垂向力监测装置为基础,建立了一种提取动态轮重的方法。该方法能在不改变轨道结构情况下,直接安装,实测数据表明:在未对有砟轨道路基进行平整,未改变轨道结构的前提下,当列车时速在不高于20km/h时,能保证测量误差小于4.0%。对于车轮损伤的判断,则利用经验模态分解(Empirical Mode Decomposition,简称EMD)方法对实测数据进行本征模函数(Intrinsic Mode Function,简称IMF)分解,从分解后的IMF中易于将损伤信息提取出来。
     (6)针对光纤传感无砟轨道结构状态在线监测的需求,利用在前面章节中设计的钢轨温度力监测装置、轨温监测装置、轨道结构间位移监测装置,依据武广高铁某大桥道岔区板式无砟轨道结构的特点,设计了传感器的布局,搭建了实时在线监测系统,取得了一些具有参考价值的数据。将光纤光栅传感技术引入到无砟轨道结构状态在线监测中具有重大的意义,在国内尚属首次应用,利用监测的结果,可以直观的了解到轨道结构状态的变化,这能为无砟轨道的设计和施工提供参考。
Rail transport is an important lifeline of a country. Its safety operation is therefore crucial for public security, social stability, and it is even involved to accelerate national economy progress of this country. Safety operation and sustainable development of rail transport engineering structure have become an imminence requirement of national strategy.
     Effective methods of health monitoring and security warning of rail transport engineering structure should be developed. However, China is vast in territory and its geological environment is complicated, rail transport system stretches across vast area covering cold, temperate and tropical zones. So Chinese rail transport system needs a better monitoring system with multi-role performance than a small European country does.
     Electrical sensors are widely used now, but they have a lot of defects, such as zero drift, and under complex environment, they are prone to be out of order, and they are hard to develop a large scale sensing network, for its short transmission distance. Under these circumstances, there are theoretical and technical bottlenecks to apply electrical sensing technology in the area of rail transport monitoring.
     Fiber optical grating sensing technology provides an effective approach to solve these problems. Unfortunately, in this country, there is a lack of comprehensive and systematic study in dynamic safety monitoring of rail structure with optical fiber sensing, to say nothing of the study of monitoring high speed ballastless railway structure.
     In view of the above problems, and based on the advantage of interdisciplinary, including optical fiber sensing technology, detection technology and rail transport engineering technology, in this thesis, the wheel/rail coupling condition has been analyzed, and fabrication technology of fiber grating sensing devices have been introduced. This thesis also introduces some optical fiber sensing network systems which realize monitoring rail structure state and dynamic state in real-time. They are respectively optical fiber sensing block system, overload and unbalanced load monitoring system, wheel damage identification system, and high speed ballastless rail multi-parameter monitoring system. And these research achievements have been applied on the railway. The major research contents are expressed as followings:
     (1) Building of vehicle model and rail model
     The vehicle model is built according to the characteristics of vehicle, rail model is a model of continuous elastic discrete point support. Explicit integral method is adopted for vehicle numerical value simulation, and vector finite-element method is also adopted for rail numerical value simulation, both rail and vehicle numerical value simulation can be integrated by Hertz nonlinear elastic contact theory. The change of rail strain is obtained under different speeds and load, and the results showed that the maximal amplitude of axial strain of the rail is382.6με under axle load of40tons, and19.1με under a axle load of2tons. The3dB width of the strain signal was about6ms when a train passed at a speed of350km/h. The results can provide direct reference for designing the range and solution of sensors, and for designing the sampling frequency of instruments.
     (2) A novel sensing demodulating approach based on CFBG
     The sensing principle of CFBG is expounded. It bases on the sensing principle of FBG, and its sensing demodulating approach is introduced. This demodulating approach adopts a power detection way, and reduces the cost without expensive F-P filter. The demodulating approach is characterized by high-speed because the speed of photo-voltaic conversion is very fast. This approach is a complementary way comparing with the mainstream FBG demodulating method.
     (3) Development of rail state optical fiber monitoring systems
     The necessity of three monitoring parameters are analyzed, including wheel-rail coupling vertical load, thermal stress and temperature of rail, displacement between rail and its sleepers. Several sensing devices are designed to meet the different requirements, including FBG strain gages, FBG temperature gages and FBG displacement sensors. The sensing network combines WDM method and SDM method to setup a multi-channel and high-capacity FBG network. Software function realization and its process are discussed on the basis of the function and sensor arrangement of each monitoring system.
     (4) Establishment of railway blocking system
     Blocking system is established which based on wheel-rail coupling vertical load detector. Aiming at key problems of real-time axle counting, which is caused by train stopping and reversing, a counting algorithm is found through repeated analysis and field tests. This algorithm could even solve more complicated counting problem by combing three axles counting devices. An experiment site is established on the Zhifang train station of Beijing-Guangzhou railway line, and the error rate of counting result is less than1/200000.
     (5) Train overload and unbalanced load monitoring system
     The framework of hardware and software are discussed to meet requirements of overload and unbalanced load monitoring. Determination method of overload and unbalanced load is introduced. According to the experimental data analysis, a method for extracting wheel load information is found based on wheel-rail coupling vertical load device. The device can be fixed directly on the rail without breaking rail structure, the experimental results show that the error margin of weighing is less than4.0%under20km/h train speed, without reinforcing ballast rail base. As for wheel damage judgment, measurement record is decomposed by EMD and IMFs are obtained to decide damage indices of wheels.
     (6) High speed ballastless rail monitoring system
     According to the characteristics of high-speed railway switch with ballastless slab on Leida bridge, the arrangement of fiber sensing monitoring system is designed based on thermal stress detector, temperature detector and displacement detector. The system is installed and some valuable data were obtained. This is a matter of great significance to introduce FBG sensing technology first time into ballastless rail monitoring. The change of the ballastless rail state can be got to provide reference for designers and managers.
引文
[1]王欣,朱 刚,谈振辉.高速铁路智能交通综合信息系统中关键问题的探讨[J].铁道学报,2003.25(6):104-107
    [2]贺 东,朱健梅.一体化客运轨道交通运输体系构建模式[J].西南交通大学学报,2012.47(2):279-284
    [3]林斌,范典.光纤光栅传感铁路安全监测技术[J].交通科技,2008(5):93-94.
    [4]张或锋.光纤光栅技术在高速铁路防灾系统中的应用研究[J].铁路通信信号,2009.45(6):48-50.
    [5]朱军,范典.光纤光栅技术在智能交通领域中的应用[J].交通企业管理,2007(12):46-47.
    [6]AlanD.Kersey, MiehaeA.Davis, HeatherJ.Patrick, etal. Fiber Grating Sensors[J]. Journal of Lightwave Technology,1997.15(8):1442-1463.
    [7]SungchulKim, Seungwoo Kim, Jaejoong Kwon, etal. Fiber Bragg Grating Strain Sensor Demodulator Using a Chirped Fiber Grating[J]. IEEE Photonies Technology Letters. 2001.13(8):839-841.
    [8]Agostino Iadieiceo, Andrea Cusano, Stefania CamPoPiano, etal. Thinned Fiber Bragg Gratings as Refractive Index Sensors[J]. IEEE Sensors Journal,2005.5(6):1288-1295.
    [9]W. Y. Lia, C. C. Chenga, Y. L. Lob. Investigation of Strain Transmission of Surfaee-bonded FBGs used as Strain Sensors[J]. Sensors and Actuators A,2009.149:201-207.
    [10]韦兆碧,刘晔,王采堂,邹建龙,王峰,时德钢.应用于铁路道轨密贴检测的光纤位移传感器的研究[J].仪表技术与传感器,2002(4):4-5.
    [11]William R. Allan, Zachary W. Graham, Jose R. Zayas, etal. Multiplexed Fiber Bragg Grating Interrogation System Using a Microeleetrol mechanical Fabry-Perot Tunable Filter[J]. IEEE Sensors Jounal,2009.9(8):937-943.
    [12]Abdelfateh Kerrouche, J. Leighton, W. J. O. Boyle, etal. Strain Measurement on a Rail Bridge Loaded to Failure Using a Fiber Bragg Grating-Based Distributed Sensor System[J]. IEEE SENSORS JOURNAL,2008.8(12):2059-2065.
    [13]刘金谴,柴敬,圭盘等.岩层变形检测的光纤光栅多点传感理论与工程应用[J].光学学报,2008.28(11):2143-2147.
    [14]王燕花.新型光纤传感系统的研究与实现[D].北京:北京交通大学,2009.
    [15]苗银萍.多功能、多参量、新型闪耀光纤光栅特性及应用研究[D].天津:南开大学,2009.
    [16]吴朝霞.基于光纤光栅的桥梁多参数传感技术及系统的研究[D].河北:燕山大学,2006
    [17]Gong Y, Miehael O L C, Hao J, etal. Extension of Sensing Distance in a ROTDR with An OPtimized Fiber[J]. Opties Communications.2007,280(1):91-94.
    [18]Wang F, Bao X, Li Y, etal. Reverse Peak of Brillouin Spectrum in BOTDA Sensor[C]. Beijing:China, Proc.SPIE,2008, pp.71580-71586J.
    [19]Si Zhi Yan, Lee Sheng Chyan. Performanee Enhancement of BOTDR Fiber Optic Sensor for Oil and Gas Pipeline Monitoring[J]. Optical Fiber Technology,2010,16(2):100-109.
    [20]Yong Ding, Bin Shi, Dan Zhang. Data Processing in BOTDR Distributed Strain Measurement Based on Pattern Recognition[J]. Optik-International Jounal for Light and Electron Optics,2010,121(24):2234-2239.
    [21]A.R.BahramPour, A. Moosavi, M. J. Bahrampour, L. Safaei. Spatial Resolution Enhancement in Fiber Raman Distributed Temperature Sensor by Employing ForWaRD Deconvolution Algorithm[J]. Optical Fiber Technology,2011,17(2):128-134
    [22]Ren-sheng SHEN, Rui TENG, Xiang-Ping LI, Jin ZHANG, Dao- cheng XIA, Zhao-qi FAN, Yong-sen YU, Yu-shu ZHANG, Guo-tong DU. Eleetroless Nickel Plating and Electroplating on FBG Temperature Sensor [J]. Chemical Researeh in Chinese Universities, 2008,24(5):635-639.
    [23]Wentao Zhang, Fang Li, Yuliang Liu. FBG Pressure Sensor Based on the Double Shell Cylinder with Temperature Compensation[J]. Measurement,2009,42(3):408-411.
    [24]Tarun Kumar Gangopadhyay, Mousumi Majumder, Ashim Kumar Chakraborty, Asok Kumar Dikshit, and Dipak Kumar Bhattaeharya.Fiber Bragg Grating Strain Sensor and Study of Its Packaging Material for Use in Critical Analysis on Steel Strueture[J]. Sensors and Aetuators A,2009,150:78-86.
    [25]Jun Hong Ng, Xiaoqun Zhou, Xiu feng Yang and Jian zhong Hao. A simple temperature-insensitive fiber Bragg grating displacement sensor[J]. Opties Comm-unications,2007, (273):398-401.
    [26]K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication[J]. APP. Phys. Lett.,1978, 32(10):647-649.
    [27]B. S. Kawasaki, K.O. Hill, D. C. Johnson, and Y. Fujii. Narrow-band Bragg Reflectors in Optic Fibers[J]. Opt. Lett,1978,3:66-68.
    [28]G. Meltz, W. W. Morey, W. H. Glenn. Fomration of Bragg Gratings in Optical Fibers by Transverse Holographic Method[J]. Opt. Lett,1989,14:823-825.
    [29]R. M. Atkins, V. Mizrahi, T. Erdogan.248 Induced Vacuum UV Spectral Changes In OPtical Fiber Perform Cores:Support for a Color Centre Model of Photosensitivity[J]. Electronies Letters,1993,29(4):385-387.
    [30]K.0. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert. Bragg Gratings Fabricated in Monomode Photosensitivity Optical Fiber by UV ExPosure Through a Phase Mask[J]. Applied Physies Letters,1993,62(10):1035-1037.
    [31]M.Bemier, D. Faucher, R. Valee etal. Bragg Gratings Photo-Induced in ZBLAN Fibers by Femtosecond Pulses at 800nm[J]. Opt. Lett.,2007,32(5):454-456.
    [32]W. W. Morey, G. Meltz, W. H. Glenn. Bragg Grating Temperature and Strain Sensor:Sixth Optical Fiber Sensor Conference[C]. Paris, Franee:Springer,1989,526-531.
    [33]Chulhun Seo, Taesun Kim.Temperature Sensing with Different Coated Metals on Fiber Bragg Grating Sensors[J]. Microwave And Optical Technology Letters,2001, 21(3):162-165.
    [34]J. Canning. Fibre gratings and devices for sensors and lasers[J]. Laser & Photonics Reviews,2008,2(4):275-289
    [35]姜德生,郭明金,袁宏才,干维国.光纤Bragg光栅低温特性研究[J].光电子,激光,2004,15(6):660-662.
    [36]詹亚歌,向世清,何红,等.光纤光栅高温传感器的研究[J].中国激光,2005,36(9):1235-1238
    [37]李阔,周振安,刘爱春等.一种高温下高灵敏光纤光栅温度传感器的制作方法[J].光学学报,2009,29(1):249-251.
    [38]PeterK. C. Chan, W. Jin, K. T. Lau, and etal.Multi-Point Strain Measurement of Composite-bonded Conerete Materials with a RF-band FMCW Multiplexed FBG Sensor Array[J],2000,87,19-25.
    [39]李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析[J].力学学报,2005,37(4):435-441
    [40]P. Moyo, J. M. W. Brownjohnb, R. Sureshc, S.C. Tjinc.Development of fiber Bragg grating sensors for monitoring civil infrastructure[J]. Engineering Structures, 2005.27(12):1828-1834
    [41]兰玉文,刘波,罗建花.光纤光栅三维应力传感器的设计与实现[J].光子学报,2009,35(3):656-659
    [42]Abdelfateh Kerrouehe, WilliamJ.O. Boyle. Tong Sun.Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anehored Carbon Fiber Polymer Reinforcement Prestressing Rod for Struetural Monitoring[J]. IEEES ensors Journal,2009, 9(11):1456-1461.
    [43]张伟刚,刘艳格,王跃等.利用单光纤光栅实现力学量垂直感测的研究[J].中国激光,2003,30(1):71-74.
    [44]M. Noshad, H. Hedayati, A. Rostami. A Proposal for High-Precision Fiber Optic Displacement Sensor[J]. Proeeedings of Asia-Pacific Microwave Conference 2006,2006.
    [45]H. Golnabi, P. Azimi. Design and Operation of a Double-Fiber DisPlacement Sensor[J]. Optics Communications,2008,281:614-620.
    [46]Yong Zhao, Hua-wei Zhao, Xin-yuan Zhang, A Novel Double Arched Beam Based Fiber Bragg Grating Sensor for DisPlacement Measuremen[J]. IEEE Photonics Technology Letters,2008,20(15):1296-1298.
    [47]Yang Zhang, Bai-Ou Guan. High-Sensitivity Distributed Bragg Reflector Fiber Laser DisplacementSensor[J]. IEEE Photonies Technology Letters,2009,2](5):280-282.
    [48]Chuan Li, Yong-Gui Zhao, Hao Liu, Zhou Wan, Chen Zhang, Ning Rong. Monitoring second lining of Turnnel with Mounted Fiber Bragg Grating Strain Sensors[J]. Automation in Construction,2008,17(5):641-644.
    [49]A. Kerrouehe, W. J. O. Boyle, T. Sun, K. T. V. Grattan. Designand In-the-Field Performance Evaluation of Compact FBG Sensor System for Structural Health[J]. Monitoring Applications, Sensors and Actuators A:physieal,2009,151(2):107-112.
    [50]S Kaya, E Mancuhan, K Kucukada. Modelling and optimization of the firingzone of atunnelkiln to predict the optimal feed locations and mass fluxes of the fuel and secondary air. Applied Energy,2009,86(3):325-332.
    [51]掳红霞.基于光纤光栅的电力电缆温度在线监测系统研究[D].武汉:武汉理工大学,2010.
    [52]Gaozhi Xiao,Mrad, N., Fang Wu, etal. Miniaturized Optical Fiber Sensor Interrogation System Employing Echelle Diffractive Gratings Demultiplexer for Potential Aerospace Applications. Sensors Journal, IEEE,2008,8(7):1202-1207.
    [53]SY Chong, JR Lee, CY Yun, H Sohn. Design of copper/carbon-coated fiber Bragggrating acoustic sensor net for integrated health monitoring of nuclear power plant[J]. Nuclear Engineering and Design,2011,241(5):1889-1898.
    [54]Benigni Ezio, Braghin Franceseo, Cervello Steven. Wheel-rail con tact force evaluation starting from axle deformation measures[J]. Ingegneria Ferroviaria,2002, 57(12):1059-1075
    [55]A Matsumoto, Y Sato, H Ohno, M Tomeoka, etal. A new measuring method of wheel-rail contact forces and related considerations[J]. Wear,2008,265(9-10):1518-1525
    [56]H Ishida, M Matsuo, K Tezuka, K Ueki, etal. Method of measuring wheel and rail contact forces and derailment quotients continuously(development of a measuring device). TRANS JAPAN SOC. MECH. ENG., PT. C,1997,9(10):3417-3423
    [57]S Kirchenkamp, D Soffker. Reconstruction of the Dynamic Rail-Wheel Contact Forces. Proceedings of the ASME Design Engineering Technical Conference[C]. Chicago,IL, United states,2003:485-493
    [58]F Xia, C Cole, P Wolfs. Grey box-based inverse wagon model to predict wheel-rail contact forces from measured wagon body responses. Vehicle System Dynamics,2008, 46(1):469-479.
    [59]Kieninger Michael, Rupp Andreas Michael. et al. A new wheel force transducer for the investigation of loads on rail bound vehicles in the urban traffic[J]. Materials Testing,2008, 50(1-2):42-50.
    [60]陈建政.轮轨作用力和接触点位置在线测量理论研究[D].成都:西南交通大学,2008.
    [61]曾宇清,甘敦文,周大智,等.测力轮对连续测量的理论与实践[J].铁道学报,1998,20(6):28-34.
    [62]Ren Yu, Chen Jianzheng. Instrumented wheelset wheel/rail force measurement by Blind Signal Separation[A]. Proceedings of the 2nd International Conference on Transportation Engineering[J]. Chengdu, China,2009:2502-2507.
    [63]ES Jeon, YS Ham, HC Chung. Finite Element Analysis and Static Load Test of a Wheelset of Gwangju EMU for Measuring Wheel/Rail Force[J]. Key Engineering Materials, 2004,(270-273):927-932.
    [64]刘瑞扬.北美铁路车辆安全轨边检测系统的现状及思考[J].中国铁路,2004(7):57-60.
    [65]#12
    [66]Minoru Ogasawar.铁道车辆道旁监测系统的发展现状[J].国外机车车辆工艺,2000,14(5):1-3
    [67]Pan Zhou-Ping, Zhang Li-Min. Design of continuous wheel/rail force system[J]. Journal of Southwest Jiaotong University,2004,39(1):69.
    [68]Zhao Guotang,Tian Liu Tie, et al. Study on a progression technique for measuring lateral wheel/rail interaction force[J]. Journal of the China Railway Society,2000,22(3):69-73
    [69]Fujioka Takehiko, Kanehara Hiromichi. Study on measuring rail/wheel contact points of running railway vehicles (improvement of the measuring method for wheel load and lateral force by strain gauges on disk surface)[J]. Proceedings of the IEEE/ASME Joint Railroad Conference.1999,16:151-156
    [70]H Y Tam, T Lee, S L Ho, et al.Utilization of Fiber Optic Bragg Grating Sensing Systems for Health Monitoring in Railway Applications[M]. Hong Kong:Photonics Research Centre, The Hong Kong Polytechnic University,2007.
    [71]Reinhardt Willsch.Optical Fiber Sensor Systems based on Nanostructures and Examples of their Application [M].Ottawa:OIDA Photonic Sensor Workshop,2007.
    [72]Maurin L, Boussoir J, Rougeault S, et al. FBG-based smart composite bogies for railway applications [J]. Optical Fiber Sensors Conference Technical Digest,2002,1 (15):91-94.
    [73]T H T Chan, L Yu, H Y Tam, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation [J]. Engineering Structures,2006, (28):648-659.
    [74]张文涛,孙宝臣,杜彦良.基于光纤光栅的青藏铁路冻土路基地温监测试验研究[J].石家庄铁道学院学报,2005,18(4):49-51.
    [75]Jun S Lee, Il-Yoon Choi, Hee-Up Lee, et al.隧道检测系统及其在韩国高速铁路隧道的应用[J].中国铁道科学,2004,25(3):21-26.
    [76]翟婉明.车辆一轨道耦合动力学[M].北京:中国铁道出版社.第二版.2001
    [77]Ahlbeck D R, et al. The development of analytical models for railroad track dynamics[A]. In:Railroad Track Mechanical & Technology[C]. Pergamon Press 1978.
    [78]Li Dingqing, Elkins John A, Otter Duane E, et al. Vehicle/track dynamic models for wheel/rail forces and track response[J]. Heavy Vehicle Systems 1999,6(1):345-359.
    [79]Dietz S. Hippmann G. Schupp G.Interaction of Vehicles and Flexible Tracks by Co-simulation of MulLibody Vehicle System and Finite Element Track Models[C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks. Lyngby, Denmark, 2001.
    [80]Braccesi C, Cianetti F, Scaletta R. Development of a new procedure for the wheel-rail contact force evaluation in simulations of railway dynamics[J]. International Journal of Heavy Vehicle Systems,2005,12(2):69-86.
    [81]Shabana Ahmed A, Zaazaa Khaled E, Escalona Jos L. Development of elastic force model for wheel/rail contact problems[J]. Journal of Sound and Vibration,2004, 269(1-2):295-325.
    [82]Ting E C, Shih C, Wang Y K. Fundamentals of a Vector Form Intrinsic Finite Element:Part I. Basic procedure and a plane frame element[J]. Journal of Mechanics,2004, 20(2):113-122.
    [83]Ting E C, Shih C, Wang Y K. Fundamentals of a Vector Form Intrinsic Finite Element:Part II. Plane solid elements[J]. Journal of Mechanics,2004,20(2):123-132.
    [84]Shih C, Wang Y K, Ting E C. Fundamentals of a Vector Form Intrinsic Finite Element:Part III. Convected material frame and examples[J]. Journal of Mechanics,2004, 20(2):133-143.
    [85]丁承先.向量式结构与固体力学[R].杭州,2009.
    [86]丁承先,王仲宇,吴东岳,等.运动解析与向量式有限元V2.0[M].台北,2007.
    [87]丁承先.拟真结构分析的力学基础[A].第四届海峡两岸结构与岩土工程学术研讨会论文集[[C].杭州:浙江大学出版社,2007.
    [88]Lien K H, Chiou Y J, Wang R Z. Vector Form Intrinsic Finite Element analysis of nonlinear behavior of steel structures exposed to fire[J]. Engineering Structures,2010,32(1):80-92.
    [89]婉明.非线性结构动力分析的Newmark预测一校正积分模式.计算结构力学及其应用,1990,7(2):51-58.
    [90]W. M. Zhai. Two simple fast integration methods for large-scale dynamic problem in engineering. International Journal for Numerical Methods in Engineering, 1996,39(24):4199-4214.
    [91]W M.Zhai, Z.Cai. Dynamic Interaction between a Lumped Mass Vehiele and a Discretely Supported Continuous Rail Track. Computer & Struetures,1997,63(S):987-997.
    [92]翟婉明.车辆一轨道耦合动力学(第三版).北京:中国铁道出版社,2007.
    [93]KERSEY ALAN D. A review of Recent Developments Optical Fiber Technology,1996, 2(3):291-317.
    [94]LEE BYOUNGHO. Review of the Present Status of Optical Fiber Sensors [J]. Optical Fiber Technology,2003,9(2):57-79.in Fiber Optic Sensor Technology [J].
    [95]李志全,许明妍,汤敬,等.光纤光栅传感系统信号解调技术的研究[J].应用光学,2005,26(4):36-41.
    [96]Kersey AD, Davis MA, Pattiek H, etal. Fiber grating sensors[J]. Lightwave Technology.1997,15(8):1442-1463.
    [97]王静,冯德军,隋青美,姜明顺.光纤Bragg光栅传声器设计[J].仪表技术与传感器,2009,(10):10-12.
    [98]马玉玲.双光栅匹配解调系统研究[D].沈阳:沈阳工业大学,2009.
    [99]Kersey A.D., Berkoff T.A., Morey W.W.. Multiplexed Fiber Bragg Grating Strain-Sensor System with a Fiber Fabry-Perort Wavelength Filter[J]. Opt. Lett.,1993,18(16):1370-1372.
    [100]Winick K A. Effective-index method and coupled mode theory for almost-periodic waveguide gratings:acomparison 1992(06).
    [101]苑立波,Fathad Ansari光纤光栅原理与应用(一)-光纤光栅原理.光通信技术,1998,1(22):70-78.
    [102]A.D.Kersey, M.A.Davis, H.J.Partrick etal.. Fiber grating sensors. J.Lightwave Technology, 1997,15(8):1442-1463.
    [103]Turan erdogan. Fiber Grating SpectraJournal of Light wave Tec:hnology,1997,15: 1277-1293.
    [104]E.Peral, J. Capmany, J.Marti. Iterative Solution to The GelFand-Levitan-Marchenko Coupled Equations and Application to Synthesis of Fiber Gratings[J]. IEEEJ.Quantum Electron.1996,32(12):2078-2084.
    [105]M.A.Davis, D.G.Bellemore, M.A.Putnam et al. Interrogation of fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett,1996.32(10):1393-1394
    [106]http://baike.baidu.com/view/1539473.htm
    [107]阎学文,王世军.用计轴设备消灭“站内轨道电路分路不良”现象.京铁科技通讯:太原刊,2003(1).
    [108]褚桂芬.轨道电路红光带现象分析与处理方法.煤炭技术,2004.5,23(5)
    [109]肖作善.工程数据处理及其微机电算[M].北京:水利电力出版社,1990:187-190.
    [110]徐灏.概率疲劳.沈阳:东北大学出版社,1994:117-128
    [111]蒋汇,吴礼发,陈卫卫UML Programming Guide设计核心技术.北京希望电子出版社.2001.
    [112]Jim Beveridge, Robert Wiener. Win32多线程程序设计.候俊杰译.华中科技大学出版社,2002.
    [113]Jeff Prosise. MFC Windows程序设计.清华大学出版社,2001.
    [114]周明天,汪文勇TCP/IP网络原理与技术.清华大学出版社.1993.
    [115]宁静.基于EMD和Cohen核的时—频分析研究及其在轨道不平顺监测中的应用[D].西南交通大学,2011.
    [116]孙增寿,韩建刚,任伟新.基于小波分析的结构损伤检测研究进展[[J].地震工程与振动,2005,25(2):93-99
    [117]任伟新,韩建刚,孙增寿著.小波分析在土木工程中的应用[M].北京:中国铁道出版社,2006.
    [118]J. N. Yang, Y Lei, S. Lin, N. Huang. Hilbert-Huang Based Approach for Structural Damage Detection [J]. Journal of engineering mechanics,2004,130(1):85-95.
    [119]樊海涛,何益斌,周绪红.基于Hilbert-Huartg变换的结构损伤诊断方法研究[J].建筑结构学报,2006,27(6):114-122.
    [120]石春香,罗奇峰,施卫星.基于Hilbert-Huang变换方法的结构损伤诊断[J]同济大学学报(自然科学版),2005,33(1):16-20.
    [121]Norden Huang, Kang Huang.基—于希尔伯特-黄变换的铁路桥梁结构健康监测[J].中国铁道科学,2006,27(1):1-7.
    [122]Norden E Huang. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A,1998,454: 903-995.
    [123]张世杰,孙立,杨艳丽,李秋义,崔国庆.武广铁路客运专线雷大桥特大桥道岔区板式无砟轨道设计研究.铁道建筑,2010,1:13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700