用户名: 密码: 验证码:
蛋白激酶催化域分子内共进化网络分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质磷酸化修饰是细胞内最广泛、最重要的信息调控方式。这个过程能够影响细胞的生长、分化、代谢、分裂、迁移,乃至生物体的肌肉收缩、免疫、学习和记忆。蛋白激酶是最大的、也是最重要的蛋白质家族之一。在真核细胞内,大约有2%的基因编码激酶蛋白,有约30%的蛋白至少有一个位点被磷酸化。蛋白质激酶能够转移ATP的γ磷酸根到底物蛋白的丝氨酸、苏氨酸和酪氨酸等。
     在真核生物,几乎所有的激酶都具有这样的特征:(1)具有结构保守的催化域双叶结构;(2) ATP和底物多肽结合在两叶之间的腔沟中;(3)具有活性的激酶其催化域呈现为“闭合的”构象。已有的研究表明激酶的底物结合与磷酸根转移之间存在耦合关系,而蛋白质底物结合又分为两个结合位点,一个位于活性位点区,即通常的共有序列(consensus sequence)多肽所在的位置;另一个在活性位点之外的区域,通常位于催化域的羧基末端。那么,蛋白质底物结合区与活性位点之间是如何耦合的昵?这个问题至今没有解决。根据功能上或结构上互相耦合的氨基酸位点,会引起它们共进化的这个朴素思想,我们采用了统计耦合分析、互信息分析和残基相关分析等方法,对丝氨酸/苏氨酸激酶催化域家族的序列进行了分析,随后我们又对酪氨酸激酶催化域家族进行了类似的分析,并对两个家族做了结构比对比较,最后,我们使用分子动力学模拟方法,对环腺苷酸依赖蛋白激酶催化亚基(PKAc)与其多肽底物之间相互作用进行了分子动力学模拟和氨基酸网络分析。通过上述研究,我们得到了以下结论:
     (1)我们在丝氨酸/苏氨酸激酶催化域家族发现了两个不同的共进化氨基酸网络:θ网络和γ网络。在三维结构上,θ网络连接激酶催化域ATP结合区与底物结合区,根据已有的实验证据和这些位点的分布,我们认为θ网络可能通过构象改变的方式,介导底物结合与活性位点区之间的耦合。另外,θ网络可能也参与决定了激酶的底物特异性。γ网络主要分布在底物结合区的一侧,连接激活环与催化域羧基端,根据文献资料,我们认为γ网络是在激酶催化作用发生之前,起支撑底物结合区与激活环的作用,在催化作用完成之后,γ网络可能介导底物的释放。对PKA催化亚基与其多肽底物相互作用的分子动力学模拟研究及氨基酸网络分析给我们的推测提供了一定的理论支持。这两个共进化网络对于整个激酶家族具有一定的普适性。
     (2)对丝氨酸/苏氨酸激酶和酪氨酸激酶进行催化域结构比对和序列分析,我们定量地、系统地说明了这两个家族在催化域序列上的异同,我们发现这两个家族在催化域序列的差异主要在催化环、P+1环以及位点158、238和273上,这些区域主要与底物结合和催化有密切的关系。这些结果有助于我们对这两个家族底物特异性差异的深入理解。
     (3)在方法应用上,我们在Dijkstra最短路径算法的基础上,设计完成了氨基酸网络分析程序。在统计耦合分析方法应用上,我们也有一些创新的结论和应用。
     这两个共进化网络的发现有助于理解蛋白激酶的催化机制和这个蛋白家族的进化与起源。由于激酶的功能异常会引起许多疾病,我们的研究也有助于基于激酶靶标的药物设计等。
Protein phosphorylation is the most widespread and important type of post-translational modification used in cellular regulation. It effects every basic cellular process, including metabolism, growth, differentiation, division, motility, and muscle contraction, immunity, learning and memory. It has been estimated that 30% of all cellular proteins are phosphorylated on at least one residue in a typical eukaryotic cell. Therefore, protein kinases (PKs) are one of the largest protein families, comprising~2% of all eukaryotic genes. Protein kinases catalyse the transfer of theγ-phosphate from ATP to specific amino acids in proteins; in eukaryotes, these are usually Ser, Thr and Tyr residues.
     In eukaryotes, almost all PKs have a structurally well conserved two-lobe structure of the catalytic domains. The peptide substrate is held in the groove between the two lobes. When PKs are in the active forms, the catalytic domains of these PKs have a similar 'closed' conformation. In fact, protein substrate binding can be divided into two components: binding interactions at the active site and binding interactions at a site distal to the active site, usually at the C-terminal of catalytic subunit. Previous studies suggested that there are communication pathways between the active and distal binding sites in PKs. This coupling pathway remains to be determined.
     How can we identify this coupling pathway in PKs? We used sequence-based statistical methods for estimating covariant residues in the multiple sequence alignments (MSA) of catalytic subunit families of Serine/Threonine and Tyrosine PKs, respectively. These methods include the Statistical Coupling, Residue Correlated, and Mutual Information analyses. The basis of these statistical methods is that the coupling of two sites in a protein, whether for structural or functional reasons, should cause those two positions to co-evolve. And then we performed the structural alignment for these two familes. At last, we made molecular dynamic simulations and residue network analysis for catalytic domain of cAMP-dependent protein kinase (PKAc) with and without its peptide substrate. Based on these studies, we got the following conclusions on catalytic subunit of PK:
     1) We identified two distinct co-evolving networks (i.e. the 9-shaped and y-shaped networks) in the catalytic subunits family of Serine/Threonine PKs (Ser/Thr PKc family) by using three statistical analysis methods. Theθ-shaped network links the protein substrate binding and active sites, which might participate in the coupling between substrate binding and catalysis.θ-shaped network also participates in determinants of the substrate specificity of PKs. Theγ-shaped network is mainly located the one side of substrate binding region, linking the activation loop and protein substrate binding region. It might play important role in supporting substrate binding region and the activation loop before catalysis, and mediating product releasing after catalysis. Our studies of molecular dynamics simulations and residue network analysis for interactions between PKAc and its peptide substrate provide some support for our speculation on the function of these two co-evolving networks
     2) We showed both differences and similaries between the sequences of Ser/Thr PKc and TyrKc families by using structural alignment and sequence analysis. These results are helpful to extensively understand the difference of substrate specificity for these two families.
     3) We designed, implemented and tested the new programs for residue network analysis based on the Dijkstra's algorithm of the shortest pathway. In addition, we made some new conclusions on the application of Statistical Coupling Analysis method.
引文
1.Scheeff ED,Bourne PE(2005) Structural evolution of the protein kinase—like superfamily.PLoS Comput Biol 1:e49.
    2.Guda C,Lu S,Scheeff ED,Bourne PE,Shindyalov IN(2004) CE-MC:a multiple protein structure alignment server.Nucleic Acids Res 32:W100-W103.
    3.Shi J,Blundell TL,Mizuguchi K(2001) FUGUE:Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties.J Mol Biol 310:243-257.
    4.Stebbings LA,Mizuguchi K(2004) HOMSTRAD:Recent developments of the homologous protein structure alignment database.Nucleic Acids Res 32:D203-D207.
    5.Lockless SW,Ranganathan R(1999) Evolutionarily conserved pathways of energetic connectivity in protein families.Science 286:295-299.
    6.Dekker JP,Fodor A,Aldrich RW,Yellen G(2004) A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments.Bioinformatics 20:1565-1572.
    7.S(u|¨)el GM,Lockless SW,Wall MA,Ranganathan R(2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins.Nat Struct Biol 10:159-169.
    8.Shulman AI,Larson C,Mangelsdorf DJ,Ranganathan R(2004) Structural determinants of allosteric ligand activation in RXR heterodimers.Cell 116:417-429.
    9.Chen Y,Reilly K,Chang Y(2006) Evolutionarily conserved allosteric network in the Cys loop family of ligand-gated ion channels reevealed by statistical covariance analyses.J Biol Chem 281:18184-18192.
    10.Ash R(1965) Information theory.New York:Interscience Publishers.John Wiley and Sons.
    11.Gloor GB,Martin LC,Wahl LM,Dunn SD(2005) Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions.Biochemistry 44:7156-7165.
    12.Martin LC,Gloor GB,Dunn SD,Wahl LM(2005) Using information theory to search for co-evolving residues in proteins.Bioinformatics 21:4116-4124.
    13.Gobel U,Sander C,Schneider R,Valencia A(1994) Correlated mutations and residue contacts in proteins.Proteins 18:309-317.
    14.Singer MS,Vriend G,Bywater RP(2002) Prediction of protein residue contacts with a PDB-derived likelihood matrix.Protein Eng 15:721-725.
    15.Halperin I,Wolfson H,Nussinov R(2006) Correlated mutations:advances and limitations.A study on fusion proteins and on the Cohesin-Dockerin Families.Proteins 63:832-845.
    16.Oliveira L,Paiva ACM,Vriend G(2002) Correlated mutation analysis on very large sequence families.ChemBioChem 3:1010-1017.
    17.Saraf MC,Moore GL,Maranas CD(2003) Using multiple sequence correlation analysis to characterize functionally important protein regions.Protein Eng 16:397-406.
    18.Henikoff S,Henikoff JG(1992) Amino acid substitution matrices from protein blocks.Proc Natl Acad Sci USA 89:10915-10919.
    19.Altschul SF,Gish W,Miller W,Myers EW,Lipman DJ(1990) Basic local alignment search tool.J Mol Biol 215:403-410.
    20.McLachlan AD(1971) Tests for comparing related amino-acid sequences.Cytochrome c and cytochrome c551.J Mol Biol 61:409-424.
    21.Getz G,Levine E,Domany E(2000) Coupled two-way clustering analysis of gene microarray data.Proc Natl Acad Sci U S A 97:12079-12084.
    22.McCammon JA,Gelin BR,Karplus M(1977) Dynamics of Folded Proteins.Nature 267:585-590.
    23.Hockney RW,Eastwood JW(1981) Computer Simulation Using Particles.
    24.Darden T,York D,Pedersen L(1993) Particle Mesh Ewald:an Nlog(N) Method for Ewald Sums in Large Systems.J Chem Phys 98:10089-10092.
    25.Brunger AT,Kuriyan J,Karplus M(1987) Crystallographic R-Factor Refinement by Molecular Dynamics.Science 235:458-460.
    26.Cornell WD,Cieplak P,Bayly CI,Gould IR,Merz KM,et al.(1995) A Second Generation Force Field for the Simulation of Proteins,Nucleic Acids and Organic Molecules.J Am Chem Soc 117:5179-5197.
    27.Kollman PA,Dixon R,Comell W,Fox T,Chipot C,et al.(1997) The Development /Application of a 'Minimalist' Organic/Biochemical Molecular Mechanic Force Field Using a Combination of ab initio Calculations and Experimental Data.In Computer Simulation of Biomolecular Systems 3:83-96.
    28.Cheatham Ⅲ TE,Cieplak P,Kollman PA(1999) A Modified Version of the Cornell et al.Force Field with Improved Sugar Pucker Phases and Helical Repeat.J Biomol Struct Dyn 16:845-862.
    29.Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,et al.(1983) CHARMM:A Program for Macromolecular Energy,Minimization,and Dynamics Calculations.J Comp Chem 4:187-217.
    30.Mackerell AD,Brooks JB,Brooks Ⅲ CL,Nilsson L,Roux B,et al.(1998) CHARMM:The Energy Function and Its Parameterization with an Overview of the Program.The Encyclopedia of Computational Chemistry 1:271-277.
    31.Ewig CS,Thacher TS,Hagler AT(1999) Derivation of Class Ⅱ Force Fields.Ⅶ.Nonbonded Force Field Parameters for Organic Compounds.J Phys Chem B 103:6998-7014.
    32.van Gunsteren WF,Billeter SR,Eising AA,Hunenberger PH,Kruger P,et al.(1996)Biomolecular Simulation:The GROMOS96 Manual and User Guide.1-1042.
    33.Halgren TA,Merck(1996) Molecular Force Field.I.Basis,Form,Scope,Parameterization,and Performance of Mmff94.J Comp Chem 17:490-519.
    34.Halgren TA,Merck(1996) Molecular Force Field.Ⅱ.MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions.J Comp Chem 17:520-552.
    35.Halgren TA,Merck(1996) Molecular Force Field Ⅲ.Molecular Geometries and Vibrational Frequencies for MMFF94.J Comp Chem 17:553-586.
    36.Roterman IK,Gibson KD,Scheraga HA(1989) A Comparison of the CHARMM,AMBER and ECEPP Potentials for Peptides.Ⅰ.Conformational Predictions for the Tendemly Repeated Peptide(Asn-Ala-Asn-Pro)_9.J Biomol Struct Dyn 7:391-419.
    37.Roterman IK,Lambert MH,Gibson KD,Scheraga HA(1989) A Comparison of the CHARMM,AMBER and ECEPP Potentials for Peptides.Ⅱ.Phi-psi Maps for N-acetyl Alanine N'-methyl Amide:Comparisons,Constrasts and Simple Experimental Tests.J Biomol Struct Dyn 7:421-453.
    38.Jorgensen WL,Tirado-Rives J(1988) The OPLS Potential Functions for Proteins.Energy Minimization for Crystals of Cyclic Peptides and Carmbin.J Am Chem Soc 110:1657-1666.
    39.Jorgensen WL,Chandrasekhar J,Madura JD,Impey RW,Klein ML(1983) Comparison of simple potential functions for simulating liquid water.J Chem Phys 79:926-935.
    40.Pearlman DA,Case DA,Caldwell JW,Ross WS,Cheatham Ⅲ TE,et al.(1995) AMBER,a Package of Computer Programs for Applying Molecular Mechanics,Normal Mode Analysis,Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules.Comp Phys Commun 91:1-41.
    41.Leach AR(1996) Molecular Modelling:Principles and Applications.Addison Wesley Longman Ltd:321-323.
    42.Ryckaert JP,Cicotti G,Berensden HJC(1977) Numerical Integration of the Cartiesian Equations of Motion of a System with Constraints:Molecular Dynamics of n-Alkanes.J Chem Phys 23:327-341.
    43.Tobias DJ,Brooks Ⅲ CL(1988) Molecular Dynamics with Internal Coordinate Constraints.J Chem Phys 89:5115-5126.
    44.Izrailev S,Stepaniants S,Isralewitz B,Kosztin D,Lu H,et al.(1998) Steered Molecualr Dynamics.Lecture Notes in Computational Science and Engineering 4:39-65.
    45.Grubmuller H,Heymann B,Tavan P(1996) Ligand Binding:Molecular Mechanics Calculation oft he Streptavidin-Biotin Rupture Force.Science 271:997-999.
    46.Heymann B,Grubmuller H(2000) Dynamic Force Spectroscopy of Molecular Adhesion Bonds.Phys Rev Lett 84:6126-6129.
    47.Engels M,Kruger P,Jacoby E,Wollmer A(1993) Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T-R Transition in Insulin.Mol Simul 10:291-308.
    48.Schlitter J,Engels M,Kruger P(1994) Targeted Molecular Dynamics:A New Approach for Searching Pathways of Conformational Transitions.J Mol Graph 12:84-89.
    49.Amadei A,Linssen A,Berendsen HJC(1993) Essential Dynamics of Proteins.Proteins Struct Func Genet 17:412-425.
    50.Grubmuller H(1995) Predicting Slow Structural Transitions in Macromolecular Systems:Conformational Flooding.Phys Rev Lett E 52:2893-2906.
    51.Ma JP,Sigler PB,Xu ZH,Karplus M(2000) A Dynamic Model for the Allosteric Mechanism of GroEL.J Mol Biol 302:303-313.
    52.MacKerell AD,Jr.,Bashford D,Bellott M,Dunbrack RL,et al.(1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins.J Phys Chem B 102:3586-3616.
    53.Essmann U,Perera L,Berkowitz ML,Darden T,Lee H,et al.(1995) A smooth particle mesh Ewald method.J Chem Phys 103:8577-8593.
    54.Berendsen HJC,Postma JPM,Gunsteren WFv,DiNola A,Haak JR(1984) Molecular dynamics with coupling to an external bath.J Ghem Phys 81:3684-3690.
    55.Hess B,Bekker H,Berendsen HJC,Fraaije JGEM(1997) LINCS:A linear constraint solver for molecular simulations.J Comp Chem 18:1463-1472.
    56.Kale L,Skeel R,Bhandarkar M,Brunner R,Gursoy A,et al.(1999) NAMD2:Greater scalability for parallel molecular dynamics.J Comput Phys 151:283-312.
    57.Luo J,Bruice TC(2002) Ten-nanosecond molecular dynamics simulation of the motions of the horse liver alcohol dehydrogenase PhCH_2O complex.Proc Natl Acad Sci U S A 99:16597-16600.
    58.Estabrook RA,Luo J,Purdy MM,Sharma V,Weakliem P,et al.(2005) Statistical coevolution analysis and molecular dynamics:Identification of amino acid pairs essential for catalysis.Proc Natl Acad Sci U S A 102:994-999.
    59.Dijkstra EW(1959) A note on two problems in connexion with graphs.Numer Math 1:269-271.
    60.Hu Z,Bowen D,Southerland WM,Sol Ad,Pan Y,et al.(2007) Ligand Binding and Circular Permutation Modify Residue Interaction Network in DHFR.PLOS Comput Biol 3:e117.
    61.Johnson DA,Akamine P,Radzio-Andzelm E,Madhusudan,Taylor SS(2001) Dynamics of cAMP-dependent protein kinase.Chem Rev 101:2243-2270.
    62.Fodor AA,Aldrich RW(2004) Influence of conservation on calculations of amino acid covarianee in multiple sequence alignments.Proteins 56:211-221.
    63.Horovitz A(1996) Double-mutant cycles:a powerful tool for analyzing protein structure and function.1:R121-R126.
    64.Pinna LA,Ruzzene M(1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191-225.
    65.Hawkins J,Zheng S,Frantz B,LoGrasso P(2000) p38 map kinase substrate specificity differs greatly for protein and peptide substrates.Arch Biochem Biophys 382:310-313.
    66.Xie X,Gu Y,Fox T,Coll JT,Fleming MA,et al.(1998) Crystal structure of JNK3:A kinase implicated in neuronal apoptosis.Structure 6:983-991.
    67.Gum RJ,Young PR(1999) Identification of two distinct regions of p38 MAPK required for substrate binding and phosphorylation.Biochem Biophys Res Co 266:284-289.
    68.Deminoff S J,Howard SC,Hester A,Warner S,Herman PK(2006) Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae.Genetics 173:1909-1917.
    69.Kobe B,Kampmann T,Forwood JK,Listwan P,Brinkworth RI(2005) Substrate specificity of protein kinases and computational prediction of substrates.Biochim Biophys Acta 1754:200-209.
    70.Goldsmith EJ,Akella R,Min X,Zhou T,Humphreys JM(2007) Substrate and docking interactions in Serine/Threonine protein kinases.Chem Rev 107:5065-5081.
    71.Lieser SA,Aubol BE,Wong L,Jennings PA,Adams JA(2005) Coupling phosphoryl transfer and substrate interactions in protein kinases.Biochim Biophys Acta 1754:191-199.
    72.Zheng J,Knighton DR,Xuong N-H,Taylor SS,Sowadski JM,et al.(1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations.Protein Sci 2:1559-1573.
    73.Olah GA,Mitchell RD,Sosnick TR,Walsh DA,Trewhella J(1993) Solution structure of the cAMP-dependent protein kinase catalytic subunit and its contraction upon binding the protein kinase inhibitor peptide.Biochemistry 32:3649-3657.
    74.Cheng X,Shaltiel S,Taylor SS(1998) Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting.Biochemistry 37:14005-14013.
    75.Nolen B,Ngo J,Chakrabarti S,Vu D,Adams JA,et al.(2003) Nucleotide-induced conformational changes in the Saccharomyces cerevisiae SR protein kinase,Skylp,revealed by X-my crystallography.Biochemistry 42:9575-9585.
    76.Narayana N,Cox S,Xuong N-h,Eyck LFT,Taylor SS(1997) A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility.Structure 5:921-935.
    77.Smith CM,Radzio-Andzelm E,Madhusudan,Akamine P,Taylor SS(1999) The catalytic subunit of cAMP-dependent protein kinase:Prototype for an extended network of communication.Prog Biophys Mol Bio 71:313-341.
    78.Llouz R,Kowalsman N,Eisenstein M,Eldar-Finkelman H(2006) Identification of novel glycogen synthase kinase-3β substrate-interacting residues suggests a common mechanism for substrate recognition.J Bio Chem 281:30621-30630.
    79.Nolen B,Taylor S,Ghosh G(2004) Regulation of protein kinases:Controlling activity through activation segment conformation.Mol Cell 15:661-675.
    80.Yang J,Eyck LFT,Xuong N-H,Taylor SS(2004) Crystal structure of a cAMP-dependent protein kinase mutant at 1.26:New insights into the catalytic mechanism.J Mol Biol 336:473-487.
    81.Akamine P,Madhusudan,Wu J,Xuong N-H,Eyck LFT,et al.(2003) Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure.J Mol Biol 327:159-171.
    82.Shaffer J,Adams JA(1999) Detection of conformational changes along the kinetic pathway of protein kinase A using a catalytic trapping technique.Biochemistry 38:12072-12079.
    83.Madhusudan,Trafny EA,Xuong N-H,Adams JA,Eyck LFT,et al.(1994) cAMP-dependent protein kinase:Crystallographic insights into substrate recognition and phosphotransfer.Protein Sci 3:176-187.
    84.Li F,Gangal M,Juliano C,Gorfain E,Taylor SS,et al.(2002) Evidence for an internal entropy contribution to phosphoryl transfer:A study of domain closure,backbone flexibility,and the catalytic cycle of cAMP-dependent protein kinase.J Mol Biol 315:459-469.
    85.Miranda-Saavedra D,Barton GJ(2007) Classification and functional annotation of eukaryotic protein kinases.Proteins 68:893-914.
    86.Pellicena P,Kuriyan J(2006) Protein—protein interactions in the allosteric regulation of protein kinases.Curr Opin Struc Biol 16:702-709.
    87.Shi Z,Resing KA,Ahn NG(2006) Networks for the allosteric control of protein kinases.Curr Opin Struc Biol 16:656-692.
    88.Benkovic SJ,Hammes-Schiffer S(2003) A perspective on enzyme catalysis.Science 301:1196-1202.
    89.Fodor AA,Aldrich RW(2004) On Evolutionary Conservation of Thermodynamic Coupling in Proteins.J Bio Chem 279:19046-19050.
    90.Taylor SS,Radzio-Andzelm E,Hunter T(1995) How do protein kinase discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase.FASEB J 9:1255-1266.
    91.Hubbard SR,Till JH(2000) Protein Tyrosine Kinase structure and function.Annu Rev Biochem 69:373-398.
    1.Manning G,Whyte DB,Martinez R,Hunter T,Sudarsanam S(2002) The Protein Kinase Complement of the Human Genome.Science 298:1912-1916.
    2.Manning G,Plowman GD,Hunter T,Sudarsanam S(2002) Evolution of Protein Kinase Signaling from Yeast to Man.Trends Biochem Sci 27:514-520.
    3.Eckhart W,Hutchinson MA,Hunter T(1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates.Cell 18:925-933.
    4.Hanks SK,Hunter T(1995) the Eukaryotic Protein Kinase Superfamily:Kinase(Catalytic)Domain Structure and Classification.FASEB J 9:576-596.
    5.Cheek S,Zhang H,Grishin NV(2002) Sequence and Structure Classification of Kinases.J Mol Biol 320:855-881.
    6.Scheeff ED,Bourne PE(2005) Structural Evolution of the Protein Kinase-like Superfamily.PLoS Comput Biol 1:e49.
    7.Miranda-Saavedra D,Barton GJ(2007) Classification and Functional Annotation of Eukaryotic Protein Kinases.Proteins 68:893-914.
    8.Hunter T,Plowman GD(1997) The Protein Kinases of Budding Yeast:Six Score and More.Trends Biochem Sci 22:18-22.
    9.Plowman GD,Sudarsanam S,Bingham J,Whyte D,Hunter T(1999) The Protein Kinases of Caenorhabditis elegans:a Model for Signal Transduction in Multicellular Organisms.Proc Natl Acad Sci U S A 96:523-528.
    10.Caenepeel S,Charydczak G,Sudarsanam S,Hunter T,Manning G(2004) The Mouse Kinome:Discovery and Comparative Genomics of All Mouse Protein Kinases.Proc Natl Acad Sci U S A 101:11707-11712.
    11.Zheng J,Knighton DR,Eyck LFT,Karlsson R,Xuong N-h(1993) Crystal Structure of the Catalytic Subunit of cAMP-Dependent Protein Kinase Complexed with MgATP and Peptide Inhibitor.Biochemistry 32:2154-2161.
    12.Bossemeyer D(1994) The Glycine-rich Sequence of Protein Kinases:a Mulfifunctional Element.Trends Biochem Sci 19:201-205.
    13.Aimes RT,Hemmer W,Taylor SS(2000) Serine-53 at the Tip of the Glycine-Rich Loop of cAMP-Dependent Protein Kinase:Role in Catalysis,P-Site Specificity,and Interaction with Inhibitors.Biochemistry 39:8325-8332.
    14.Radzio-Andzelm E,Lew J,Taylor S(1995) Bound to Activate:Conformational Consequences of Cyclin Binding to CDK2.Structure 3:1135-1141.
    15.Nolen B,Taylor S,Ghosh G(2004) Regulation of Protein Kinases:Controlling Activity through Activation Segment Conformation.Mol Cell 15:661-675.
    16.Hawkins J,Zheng S,Frantz B,LoGrasso P(2000) p38 Map Kinase Substrate Specificity Differs Greatly for Protein and Peptide Substrates.Arch Biochem Biophys 382:310-313.
    17.Taylor SS,Ghosh G(2006) Protein Kinases:Catalysis and Regulation.Curr Opin Strut Biol 16:665-667.
    18.LoGrasso PV,Frantz B,Rolando AM,O'Keefe SJ,Hermes JD,et al.(1997) Kinetic Mechanism for p38 MAP Kinase.Biochemistry 36:10422-10427.
    19.Chen G,Porter MD,Bristol JR,Fitzgibbon MJ,Pazhanisamy S(2000) Kinetic Mechanism of the p38-α MAP Kinase:Phosphoryl Transfer to Synthetic Peptides.Biochemistry 39: 2079-2087.
    20.Adams JA(2001) Kinetic and Catalytic Mechanisms of Protein Kinases.Chem Rev 101:2271-2290.
    21.Pinna LA,Ruzzene M(1996) How do Protein Kinases Recognize Their Substrate? Biochim Biophys Acta 1314:191-225.
    22.Taylor SS,Radzio-andzelm E,Hunter T(1995) How do Protein Kinases Discriminate between Serine/threonine and Tyrosine? Structural Insights from the Insulin Receptor Protein-tyrosine Kinase.FASEB J 9:1255-1266.
    23.Hanks SK,Quinn AM,Hunter T(1988) the Protein Kinase Family:Conserved Features and Deduced Phylogeny of the Catalytic Domains.Science 241:42-52.
    24.Goldsmith EJ,Akella R,Min X,Zhou T,Humphreys JM(2007) Substrate and Docking Interactions in Serine/Threonine Protein Kinases.Chem Rev 107:5065-5081.
    25.Knighton DR,Zheng J,Eyck LFT,Ashford VA,Xuong N-H,et al.(1991) Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase.Science 253:407-414.
    26.Kemp BE,Graves DJ,Benjamini E,Krebs EG(1977) Role of Multiple Basic Residues in Determining the Substrate Specificity of Cyclic AMP-Dependent Protein Kinase.J Biol Chem 252:4888-4894.
    27.Ubersax JA,Woodbury EL,Quang PN,Paraz M,Blethrow JD,et al.(2003) Targets of the Cyclin-Dependent Kinase Cdk1.Nature 425:859-864.
    28.Brown NR,Noble MEM,Endicott JA,Johnson LN(1999) The Structural Basis for Specificity of Substrate and Recruitment Peptides for Cyclin-Dependent Kinases.Nature Cell Biol 1:438-443.
    29.Holmes JK,Solomon MJ(2001) The Role of Thr160 Phosphorylation of Cdk2 in Substrate Recognition.Eur J Biochem 268:4647-4652.
    30.Biondi RM,Nebreda AR(2003) Signalling Specificity of Ser/Thr Kinases Through Docking-Site-Mediated Interactions.Biochem J 372:1-13.
    31.Lowe ED,Noble MEM,Skamnaki VT,Oikonomakos NG,Owen DJ,et al.(1997) The Crystal Structure of a Phosphorylase Kinase Peptide Substrate Complex:Kinase Substrate Recognition.EMBO J 16:6646-6658.
    32.Sharrocks AD,Yang S-H,Galanis A(2000) Docking Domains and Substrate-Specificity Determination for MAP Kinases.Trends Biochem Sci 25:448-453.
    33.Kallunki T,Su B,Tsigelny I,Sluss HK,Derijard B,et al.(1994) JNK2 Contains a Specificity-determining Region Responsible for Efficient c-Jun Binding and Phosphorylation.Genes Dev 8:2996-3007.
    34.Bardwell L,Cook JG,Chang EC,Cairns BR,Thorner J(1996) Signaling in the Yeast Pheromone Response Pathway:Specific and High-Affinity Interaction of the Mitogen-Aetivated Protein(MAP) Kinases Kssl and Fus3 with the Upstream MAP Kinase Kinase Ste7.Mol Cell Biol 16:3637-3650.
    35.Bardwell L,Thorner J(1996) A Conserved Motif at the Amino Termini of MEKs Might Mediate High-Affinity Interaction with the Cognate MAPKs.Trends Biochem Sci 21:373-374.
    36.Williams DD,Matin O,Pinna LA,Proud CG(1999) Phosphorylated Seryl and Threonyl,but not Tyrosyl,Residues are Efficient Specificity Determinants for GSK-3β and Shaggy.FEBS Lett 448:86-90.
    37.Lo RS,Chen YG,Shi Y,Pavletich NP,Massague J(1998) The L3 Loop:a Structural Motif Determining Specific Interactions Between SMAD Proteins and TGF-β Receptors.EMBO J17:996-1005.
    38.Chen Y-G,Hata A,Lo RS,Wotton D,Shi Y,et al.(1998) Determinants of Specificity in TGF-βSignal Transduction.Genes Dev 12:2144-2152.
    39.Schulman BA,Lindstrom DL,Harlow E(1998) Substrate Recruitment to Cyclin-Dependent Kinase 2 by a Multipurpose Docking Site on Cyclin A.Proc Natl Acad Sci U S A 95:10453-10458.
    40.Adams PD,Sellers WR,Sharma SK,Wu AD,Nalin CM,et al.(1996) Identification of a Cyclin-cdk2 Recognition Motif Present in Substrates and p21-Like Cyclin-Dependent Kinase Inhibitors.Mol Cell Biol 16:6623-6633.
    41.Biondi RM,Cheung PCF,Casamayor A,Deak M,Currie RA,et al.(2000) Identification of a Pocket in the PDK1 Kinase Domain that Interacts with PIF and the C-terminal Residues of PKA.EMBO J 19:979-988.
    42.Tanoue T,Adachi M,Moriguchi T,Nishida E(2000) A Conserved Docking Motif in MAP Kinases Common to Substrates,Activators and Regulators.Nature Cell Biol 2:110-116.
    43.Lee T,Hoofnagle AN,Kabuyama Y,Stroud J,Min X,et al.(2004) Docking Motif Interactions in MAP Kinases Revealed by Hydrogen Exchange Mass Spectrometry.Mol Cell 14:43-55.
    44.Chang C-I,Xu B-e,Akella R,Cobb MH,Goldsmith EJ(2002) Crystal Structures of MAP Kinase p38 Complexed to the Docking Sites on Its Nuclear Substrate MEF2A and Activator MKK3b.Mol Cell 9:1241-1249.
    45.Heo Y-S,Kim S-K,Seo CI,Kim YK,Sung B-J,et al.(2004) Structural Basis for the Selective Inhibition of JNK1 by the Scaffolding Protein JIP1 and SP600125.23:2185-2195.
    46.Jeffrey PD,Russo AA,Polyak K,Gibbs E,Hurwitz J,et al.(1995) Mechanism of CDK Activation Revealed by the Structure ofa Cyclin A-CDK2 Complex.Nature 376:313-320.
    47.Arvai AS,Bourne Y,Hickey MJ,Tainer JA(1995) Crystal Structure of the Human Cell Cycle Protein CksHsl:Single Domain Fold with Similarity to Kinase N-lobe Domain.J Mol Biol 249:835-842.
    48.Bourne Y,Watson MH,Hickey MJ,Holmes W,Rocque W,et al.(1996) Crystal Structure and Mutational Analysis of the Human CDK2 Kinase Complex with Cell Cycle-Regulatory Protein CksHsl.Cell 84:863-874.
    49.Dajani R,Fraser E,Roe SM,Young N,Good V,et al.(2001) Crystal Structure of Glycogen Synthase Kinase 3β:Structural Basis for Phosphate-Primed Substrate Specificity and Autoinhibition.Cell 105:721-732.
    50.Biondi RM,Komander D,Thomas CC,Lizcano JM,Deak M,et al.(2002) High Resolution Crystal Structure of the Human PDK1 Catalytic Domain Defines the Regulatory Phosphopeptide Docking Site.EMBO J 21:4219-4228.
    51.Elia AEH,Rellos P,Haire LF,Chao JW,Ivins FJ,et al.(2003) The Molecular Basis for Phosphodependent Substrate Targeting and Regulation of PIKs by the Polo-Box Domain.Cell 115:83-95.
    52.Vaudry D,Stork PJS,Lazarovici P,Eiden LE(2002) Signaling Pathways for PC12 Cell Differentiation:Making the Right Connections.Science 296:1648-1649.
    53.Robinson MJ,Stippec SA,Goldsmith E,White MA,Cobb MH(1998) A Constitutively Active and Nuclear Form of the MAP Kinase ERK2 is Sufficient for Neurite Outgrowth and Cell Transformation.Curr Biol 8:1141-1150.
    54.Jackman M,Firth M,Pines J(1995) Human Cyclins B1 and B2 are Localized to Strikingly Different Structures:B1 to Microtubules,B2 Primarily to the Golgi Apparatus.EMBO J 14:1646-1654.
    55.Hagting A,Jackman M,Simpson K,Pines J(1999) Translocation of Cyclin B1 to the Nucleus at Prophase Requires a Phosphorylation-Dependent Nuclear Import Signal.Curr Biol 9:680-689.
    56.Jackman M,Lindon C,Nigg EA,Pines J(2003) Active Cyclin B1-Cdk1 First Appears on Centrosomes in Prophase.Nature Cell Biol 5:143-148.
    57.Draviam VM,Orrechia S,Lowe M,Pardi R,Pines J(2001) The Localization of Human Cyclins B1 and B2 Determines CDK1 Substrate Specificity and Neither Enzyme Requires MEK to Disassemble the Golgi Apparatus.J Cell Biol 152:945-958.
    58.Mochly-Rosen D,Khaner H,Lopez J(1991) Identification of Intracellular Receptor Proteins for Activated Protein Kinase C.Proc Natl Acad Sci U S A 88:3997-4000.
    59.Schwartz MA,Madhani HD(2004) Principles of MAP Kinase Signaling Specificity in Saccharomyces cerevisiae.Annu Rev Genet 38:725-748.
    60.Wong W,Scott JD(2004) AKAP Signalling Complexes:Focal Points in Space and Time.Nature Rev Mol Cell Biol 5:959-970.
    61.Loog M,Morgan DO(2005) Cyclin Specificity in the Phosphorylation of Cyclin-Dependent Kinase Substrates.Nature 434:104-108.
    62.Ferrell JEJ,Bhatt RR(1997) Mechanistic Studies of the Dual Phosphorylation of Mitogen-Activated Protein Kinase.J Biol Chem 272:19008-19016.
    63.Sabbagh WJ,Flatauer LJ,Bardwell AJ,Bardwell L(2001) Specificity of MAP Kinase Signaling in Yeast Differentiation Involves Transient Versus Sustained MAPK Activation.Mol Cell 8:683-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700