用户名: 密码: 验证码:
新型大跨度双向空腹楼板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结已有大跨度楼板结构形式的基础上,提出了一种新型的大跨度楼板体系——钢筋混凝土双向空腹板,该类楼板体系是现有圆管式空心楼板的延伸,不仅能减轻楼盖自重、增大板跨,而且还具有宏观上双向性的优点。本文通过理论分析和有限元方法相结合,研究了钢筋混凝土双向空腹板在竖向荷载作用下的受力机理和变形特征,并提出了一些设计建议和实用公式。
     本文从虚功原理出发,结合有限元方法,给出了双向空腹板的弹性刚度实用计算公式,并与近似刚度公式进行对比分析,并得出结论:在双向空腹板孔间肋较大情况下,利用近似公式计算双向空腹板的弹性刚度偏小,可按本文提出的弹性刚度公式进行计算。
     本文根据弹性薄板理论,导出了双向空腹板的平衡微分方程,并通过理论计算和通用有限元程序ANSYS结果对比,验证了其正确性;通过对各类边界条件下双向空腹板挠度和弯矩系数的计算比较,本文提出:双向空腹板跨中挠度及跨中、支座弯矩可使用本文空腹板刚度公式查找现有的实心板挠度弯矩系数表进行计算,完全能满足工程精度要求。
     本文利用有限元程序ANSYS,建立了钢筋混凝土双向空腹板的非线性计算模型,并和等跨等厚度实心板进行分析对比,从而得出了一些重要结论,指出:在空腹板自重比实心板减少40%左右后,空腹板的刚度虽然由于截面的开孔而削弱,但考虑自重减少后,空腹板仍表现出整体性好、刚度大的特征,从而实现较大跨度楼板的工程应用。
     最后本文利用有限元分析了钢筋混凝土空腹板在开裂后的短期刚度,并给出计算其短期刚度的建议公式;另外针对双向空腹板的特点,本文提出了对这种变截面板进行承载力计算的“等效截面刚度法”模型,并给出了相关的配筋建议及构造措施。
On the basis of summarizing the existing large-span slab structure forms, the author developed the existing circular voided slab into a new large-span slab system, RC bi-direction cellular slab, which, specialized itself as bi-direction from a macro point of view, could not only reduce the tare weight of slab, but also expand slab span. With combined effort in theoretical analysis and FEM, the author studied engineering mechanism and distortion character, under vertical load, of RC bi-direction cellular slab, and put forward some ideas on construction design and practical formulations.
    Starting from virtual work principle, with the combination of FEM, the author led into elastic stiffness practical formulation of bi-direction cellular slab. After comparing the bi-direction elastic stiffness formulation with the approximately stiffness formulation, the author drew such a conclusion that if the hole-rib is comparatively big, the elastic stiffness of bi-direction cellular slab calculated by approximately formulation would be comparatively small, and therefore the elastic stiffness could calculated by the formulation illustrated in this paper.
    In light of the elastic thin plate theory, the author induced equilibrium differential equation of bi-direction cellular slab, which was proved correct through analysis and comparison to result of ANSYS to with theoretical calculation. Through the deflection and bending moment coefficient calculation of bi-direction cellular slab under various boundary conditions, the author brought forward the theory that the deflection of mid-span and bending moment coefficient calculation of mid-span and support of bi-direction cellular slab could be in accordance with solid plates', which could satisfy the precision of engineering.
    The author, applying the program of ANSYS, built a nonlinear model of RC bi-direction cellular slab, and, from the comparison of equivalent-span and
    
    
    
    equivalent-thickness solid plate, drew several important conclusions. Meanwhile he also pointed out that the stiffness of cellular slab would become weaker because of the holes of cross-section which make the tare weight 40% down comparing to solid plate, but if the weakness of tare weight was considered, the cellular slab still remained the excellent features of integration and stiffness, by which the cellular slab can be put into use of large-span.
    In the end, the author used FEM to analyze the short-period stiffness after RC cellular slab cracking, and presented recommended formulation in respect of short-period stiffness. Moreover, with regard to the features of bi-direction cellular slab, the author brought forward the equivalent cross-section stiffness model to calculate the ultimate load-carrying capacity of variable cross-section slab as well as the related reinforcement suggestions and conformation methods.
引文
[1] 徐有邻、李晓明,关于我国住宅结构形式的讨论,建筑结构,2001,31(4):48—50;
    [2] 指南编委会,小康住宅建筑结构体系成套技术指南,北京:中国建筑工业出版社,2001;
    [3] 姚谦峰、张萌,新型建筑结构住宅体系发展与应用,工业建筑,2002,32(8):53—56:
    [4] 陈全、石永久、王元清、陈宏,钢—混凝土叠合板组合楼盖在多层轻钢房屋中的应用,工业建筑,2001,31(6):69—71;
    [5] R.Park,W.L.Gambe.钢筋混凝土板,上海:同济大学出版社,1992;
    [6] 朱聘儒,双向板无梁楼盖,北京:中国建筑工业出版社,1996;
    [7] Edgar H. Hendler. Cellular Flat Plate Construction. ACI Journal, 1968, 60(6): 81-86;
    [8] Crisfield, M.A., Twemlow, R.P. The Equivalent Plate Approach for Cellular Structures.Civil Engineering Public Works Review. 1971, 66;
    [9] G.Elliott, L.A.Clark. Circular Voided Slab Stiffnesses. J. of The Structs. Div., ASCE, 1982,108(ST11): 2379-2393;
    [10] 彭利英、黄越南、李树林等,GBF现浇钢筋混凝土空心无梁楼盖技术的应用和实践,湖南工程学院学报,2002,12(2):82-84;
    [11] 陆大新,现浇混凝土空心无梁楼盖新技术及应用,安徽建筑,2002(1):36-37;
    [12] 高仲学、程文瀼,黄晓辉等,无柱帽混凝土空心无梁楼盖的设计与应用;工业建筑,2003,33(2):34-37;
    [13] 黄晓辉、程文瀼、高仲学等,无柱帽空心无梁楼盖的设计与研究;工业建筑,2002,18(3):19-21;
    [14] 陈静茹,现浇钢筋混凝土无梁楼盖体系分析研究,武汉理工大学硕士学位论文,2002,5;
    [15] 黄晓辉,竖向均布荷载下圆管式空心无梁楼盖的试验研究,东南大学硕士学位论文,2003,3;
    [16] 高巍、王志远、金键、杨东升,现浇混凝土双向空心板刚度分析,南京:东南大
    
    学土木工程新进展学术交流会论文集,2003,10;
    [17] S. Timoshenko, S. Woinowsky-Kreger, Theory Of Plates And Shells; McGraw-Hill Book Company, Inc, 1959;
    [18] R.Szilard,板的理论分析,北京:中国铁道出版社,1984;
    [19] 徐芝纶,弹性力学(下册),北京:高等教育出版社,1982;
    [20] 建筑结构静力计算手册(第二版),北京:中国建筑工业出版社,1998;
    [21] 沈聚敏、王传法、江见鲸,钢筋混凝土有限元与板壳极限分析,北京:清华大学出版社,1993;
    [22] ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI318-83)". American Concrete Institute, Detroit, 1983, 111pp;
    [23] 陈精一、蔡国忠,电脑辅助工程分析ANSYS使用指南,北京:中国铁道出版社,2001;
    [24] 王国强,实用工程数值模拟技术极其再ANSYS上的实践,西安:西北工业大学出版社,2001;
    [25] 洪庆章、刘清吉、郭嘉源,ANSYS教学范例,北京:中国铁道出版社,2002;
    [26] 龙驭球,有限元法概论,北京:人民教育出版社;1979;
    [27] 朱伯龙、董振祥,钢筋混凝土非线性分析,上海:同济大学出版社,1985;
    [28] 谢贻全、何福保,弹性和塑性力学中的有限单元法,北京:机械工业出版社,1997;
    [29] 江见鲸,钢筋混凝土结构非线性有限元分析,西安:陕西科学出版社,1994;
    [30] 米庆左,无柱帽无梁楼盖在住宅工程中的应用,冶金矿山设计与建设,1999,31(4):57—59;
    [31] 孙建辉、屈富科,现浇混凝土空心楼板的设计与施工,施工技术,2003,32(4):41—42:
    [32] R. lan Gilbert, Deflection calculation for reinforced concrete structures. ACI Structural Journal, 1999, 96(6):1027-1032;
    [33] 赵西安,现代高层建筑结构设计,北京:科学出版社,2000;
    [34] Israel Rosenthal. Experimental Investigation of Flat Plate Floors. Journal of the American Concrete Institute, 1959, 8:153-166;
    [35] 李静军、王旭东、胡岩,大跨度钢筋混凝土叠合板研究,建筑技术,2002,30(6):28—29:
    
    
    [36] Xu Peifu, How Ruikun, Wu Lianzhong, Seismic resistant design of shear wall structure with large space ground floor proc of 3-rd Inter.Conf on Tall Buildings, Hong Kong and Guangzhou, 1984;
    [37] S. B. Desai, Limits of Load Carrying Capacity of Flat Slabs, The Structure Engineer, Vol. 78 No. 22, Nov2000;
    [38] 混凝土结构规范GB 50010—2002,北京:中国建筑工业出版社,2002;
    [39] 建筑结构荷载规范GB 50009—2001,北京:中国建筑工业出版社,2001;
    [40] M.S.Troitsky, D.Sc, Stiffened Plates, Bending, Stability and Vibrations, Elsevier Scientific Publishing Company. 1976;
    [41] Alaa G.Shedf and Walter H.Dilger, Test of Full-Scale Continuous Reinforced Concrete Flat Slabs, ACI Structural Journal, Vol.97 No.3 May/June2000;
    [42] 黄勇、马克俭,基于板—块体模型的空腹夹层板有限元分析,贵州工业大学学报,2002,12;
    [43] 刘碧洋,现浇空心混凝土无梁楼板结构体系简介,中外建筑,2002;
    [44] Richard J. Gaylord, Samuel N.Kamin, Paul R.Wellin, An Introduction to Programming with Mathematica, The Electronic Library of Science, Santa Clara, Califomia, 1996;
    [45] 成祥生,应用板壳理论,济南:山东科技技术出版社,1989;
    [46] 吴连元,板壳理论,上海:上海交通大学出版社,1989;
    [47] B. Vijaya Rangan, A.E.Mcmullen. A Rational Approach to Control of Slab Deflections. ACI Journal, 1978,6: 256-262;
    [48] B. Vijaya Rangan. Estimation of Slab Deflection in Flat Plane Buildings. ACI Journal,1986,83(2):269-273;
    [49] 杨耀乾,平板理论,北京:中国铁道出版社,1980;
    [50] C.P Heins,实用薄板理论,北京:人民交通出版社,1982;
    [51] ANSYS公司北京办事处,美国:ANSYS建模与网格划分指南,19991
    [52] ANSYS公司北京办事处,美国:ANSYS非线性分析指南,1999;
    [53] ANSYS公司北京办事处,美国:ANSYS基本过程分析指南,1999;
    [54] ANSYS公司北京办事处,美国:ANSYS高级分析指南,1999;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700