用户名: 密码: 验证码:
PAN原丝在预氧化和碳化过程中微观结构的演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈(PAN)基碳纤维优异的力学性能是由其结构决定的,而碳纤维最终的结构形态是在制备过程中逐渐形成的,与其制造工艺、原丝和预氧丝的结构密切相关。因此,弄清碳纤维的结构特征、掌握原丝和预氧丝的结构对碳纤维结构的影响规律,以及碳纤维结构与性能之间的关系,对提高PAN基碳纤维的性能具有重要意义。本文采用傅里叶变换红外光谱(FTIR)、元素分析仪、X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)以及高分辨透射电镜(HRTEM)等测试技术,分别系统研究了湿纺原丝和干喷湿纺原丝在预氧化和碳化过程中纤维晶体结构、化学结构、微观结构和力学性能的演变规律,分析了碳纤维在石墨化过程中的结构转变,并对碳纤维结构与性能的相关性问题作了探讨。
     湿纺PAN原丝的结晶度在预氧化过程中逐渐降低,在碳化过程中随着碳化温度的升高逐渐增加。由于预氧化反应首先在非晶区进行,然后扩展到晶区,这导致晶粒尺寸(L_c)在235℃温度以前先增大,在高于235℃温度逐渐减小。在碳化过程中(002)晶面的晶面间距d_(002)随温度的升高在700℃前先增大,在700℃后减少,而晶粒尺寸L_c随碳化温度的升高有先减小后增大的变化趋势。
     湿纺原丝中C、H、N、O四种元素含量在预氧化前期变化幅度较小,在预氧化中后期,氧化反应比较剧烈,C、N、H含量逐渐减少,O含量剧烈增加。在碳化过程中预氧化纤维中O和H元素在700℃以前减少幅度较大,在700℃以后缓慢减少;而N元素在700℃以前减少幅度相对较少,在700℃以后显著减少,最终形成了含碳量为94.81%的碳纤维。体密度在预氧化过程中逐渐增加,而线密度在预氧化过程中变化比较复杂,有先减小再增大后减小的趋势,这是由于线密度的变化受多重因素的影响。纤维体密度在275~500℃和700~1000℃增加幅度较大,对应着同一阶段线密度缓慢降低;在500~600℃和1000~1200℃阶段纤维体密度增加幅度较少,对应着同一阶段线密度剧烈降低。
     采用FESEM技术对湿纺原丝和干喷湿纺原丝及其碳纤维的表面形貌和断面形貌进行研究,结果表明,湿纺原丝表面存在贯穿纤维并平行于纤维轴方向的沟槽,经过预氧化和碳化处理后沟槽有合并的趋势。干喷湿纺原丝及碳纤维表面光滑无沟槽。湿纺原丝在碳纤维制备过程中纤维的拉伸断裂形貌经历了由韧性断裂到脆性断裂的转变,原丝中的原纤随预氧化和碳化反应的进行细度降低,原纤之间结合更加紧密。采用TEM对湿纺原丝、预氧化纤维和碳纤维的微观组织进行分析,发现原丝的结构不均匀,存在皮芯结构,芯部组织随着预氧化反应的进行变得粗大。经过低温碳化和高温碳化后,纤维皮层和芯部组织的致密性和结构稳定性得到改善。
     选区电子衍射分析碳化过程中二维乱层石墨结构的形成和演变表明:在碳化过程中,预氧化纤维中非晶衍射环的弥散性逐渐降低,并出现(002)晶面的取向衍射弧和(100)晶面、(110)晶面的多晶衍射环,随着碳化温度的升高,(002)晶面的取向衍射弧强度增强并且弧长变短,(100)和(110)晶面的多晶衍射环强度增强并且衍射环周围的弥散性光晕逐渐减少,以上结果表明在碳化过程中石墨层沿纤维轴排列逐渐致密和整齐,取向性明显提高,石墨微晶的晶区逐渐完善,结晶度增加。
     HRTEM研究湿纺PAN原丝在碳纤维制备过程中微观结构的变化表明:PAN原丝的HRTEM结构由无序区和相对有序区组成,有序区和无序区之间不存在严格的分界面而是连续过渡的。275℃处理的预氧化纤维的HRTEM结构以非晶组织为主。在碳化过程中,随着热解过程的进行纤维的结构继续发生变化。碳网层面的数目和大小增加,碳网平面间的堆积密度及其沿纤维轴的取向逐渐增加,具体表现为:单个石墨层沿纤维轴方向上的平均长度由1-2 nm增加到4 nm,石墨微晶尺寸L_c和L_α增加,石墨层间非晶组织减少,纤维的结晶度逐渐提高,相邻石墨层连贯性逐渐增加,石墨层排列更加致密有序使d_(002)由0.36 nm减小到0.35 nm,逐渐形成了二维乱层石墨结构的碳纤维,这一高度取向的二维过渡态物相使碳纤维具有良好的拉伸性能。
     通过对比研究实验室自制碳纤维和日本东丽T700碳纤维的XRD、元素组成、断面形貌和HRTEM微观结构,发现T700碳纤维具有较好性能的原因在于:T700碳纤维具有较好的晶体结构完整性,T700碳纤维在石墨化程度、微晶内石墨层的堆砌层数、石墨层的有序排列、择优取向性等方面均优于自制碳纤维;T700碳纤维的含碳量高于自制碳纤维,要制得高强度碳纤维,高温碳化的温度需根据不同的工艺条件来加以选择;T700碳纤维中含有较少的内部孔洞、孔隙、石墨层排列紊乱等结构缺陷,致密性和结构均匀性好于实验室自制碳纤维,致密化和均质化是提高碳纤维拉伸强度的主要技术途径。
     对日本东丽T300碳纤维进行2350℃石墨化处理后,其微观结构由二维乱层石墨结构向三维有序的石墨结构转变,纤维中残留的N、H、O等非碳原子进一步被脱除,碳的质量分数由95.04%增加到99.27%,纤维中只含有少量N、H、O元素。碳六元环的平面环数增加,石墨微晶不仅长大(表现为L_c和L_α增大),结晶度提高到51%,而且石墨微晶沿纤维轴的择优取向提高,使层间距d_(002)逐渐减小为0.3359 nm,石墨化程度提高,结构逐步向理想石墨靠近。结构的变化直接导致碳纤维在石墨化过程中模量增加,拉伸强度和断裂伸长率减小,碳纤维完全转化为脆性材料。石墨纤维中存在比较多的结构连接弱点,这也使T300碳纤维在石墨化处理后拉伸强度有了大幅度的下降。
     干喷湿纺原丝的体密度在碳纤维制备过程中逐渐增大,而线密度的变化受几种因素的综合影响,变化规律比较复杂,呈现增大、减小、增大、减小、增大最后减小的变化趋势。在预氧化前期(温度低于220℃),纤维取向度降低,衍射峰强度降低,晶粒尺寸减小;在220~230℃范围内,环化反应在非晶区(无序区)进行,准晶结构生长,微晶尺寸增大,结晶度增加;当预氧化温度继续升高,环化反应扩展到晶区(有序区),有序区向无序区转变,晶粒尺寸逐渐减小,结晶度降低。在碳化过程中,伴随着非碳原子的驱除,碳原子通过环化、缩聚等反应形成碳网层面,碳原子之间的结合力提高,L_c增大,结晶度提高。
     HRTEM研究干喷湿纺原丝在预氧化和碳化过程中微观结构变化表明,干喷湿纺原丝HRTEM结构为准晶结构,其中分布着无序区和有序区,有序区和无序区之间也是连续过渡的.在预氧化过程中,随着PAN线形分子链向平面梯形结构转变,有序区逐渐向无序区转变。在碳化过程中,碳网平面形成,并随着碳化温度的升高,碳网层面沿纤维轴方向择优取向。
     与湿纺制得的原丝和碳纤维相比,干喷湿纺由于能制得较高密度、高结晶度、结构均匀、表面光滑无沟槽的原丝和碳纤维,从而使干喷湿纺制得的碳纤维拉伸强度得到大幅度提高。与湿纺的方法相比,干喷湿纺是一种制备高性能碳纤维的优异的纺丝方法。
The excellent properties of PAN-based carbon fibers are determined by their structure. The structure and morphology of carbon fibers gradually form during the preparation process, and are correlated with the technique, the structure of PAN precursor fibers and preoxidized fibers. Therefore, in order to obtain high quality carbon fibers, it is important to fully understand the structure of carbon fibers, master the influence of the structure of PAN precursor fibers and preoxidized fibers on carbon fibers, and deeply study the correlation between structure and properties. In this paper several technologies, such as Fourier transform infrared spectroscopy (FTIR), elemental analyzer, wide angle X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) were used to systemically investigate the evolution of crystal structure, chemical structure, microstructure and properties of wet-spinning and dry-jet wet-spinning PAN precursor fibers during proxidation and carbonization process, analysis the structural change of carbon fibers during graphitization, and discuss the correlation between the structure and properties.
     The crystallinity of wet-spinning PAN precursor fibers gradually reduces during preoxidation process, while it gradually increases during carbonization process. Because preoxidation reactions firstly take place in amorphous regions and then transits to crystal regions, crystallite size (L_c) firstly increases below 235℃, and gradually decreases above 235℃. During carbonization, d_(002) firstly increases below 700℃, and gradually decreases above 700℃. L_c firstly decreases, then increases again with the carbonization temperature rising.
     At the initial stage of preoxidation, there is little variation in C, H, N, O content. At the later stage, due to the acute oxidation reaction, the content of O increases obviously along with the gradual decrease of C, H and N. During carbonization, O and H contents of preoxidized fibers obviously decreases below 700℃, and gradually decreases above 700℃. While N content gradually decreases below 700℃, and obviously decreases above 700℃, as a result, carbon fibers with 94.81% of C content is formed. The bulk density gradually increases during preoxidation, while the variation of linear density is complex. Influenced by many factors, linear density firstly decreases, then increases, and at last decreases again. The bulk density obviously increases between 275 and 700℃, and between 700 and 1000℃, corresponding to the gradual decrease of linear density. The bulk density gradual increases between 500 and 600℃, and between 1000 and 1200℃, corresponding to the gradual decrease of linear density.
     FESEM study on surface morphology and fracture morphology of wet-spinning and dry-jet wet-spinning fibers shows that the grooves exist on the surface of wet-spinning precursor fibers. During preoxidation and carbonization process, the grooves combine with each other. Dry-jet wet-spinning precursor fibers have a smooth surface. The tensile fracture morphologies of wet-spinning PAN precursor fibers transform from tough fracture to brittle fracture throughout the whole preparation process. The diameter of fibrils of PAN precursor fibers gradually decrease, along with the closer bonding between fibrils. Deeply investigation was carried out on the structure of PAN precursor fibers, preoxidation fibers and carbon fibers by TEM. The results show that the structure of PAN precursor fibers is inhomogeneous and has skin-core structure. With the process of preoxidation reaction, the core texture grows thick. After low temperature and high temperature carbonization, the compactness and stability in skin and core region are improved.
     Selected-area electron diffraction study on the formation and evolution of two-dimensional turbostratic graphite shows that during carbonization, the dispersion of amorphous diffractive ring gradually decreases, and orientation diffraction arc of (002) crystal planes and polycrystalline diffraction ring of (100) and (110) crystal planes appear. With the rising of carbonization temperature, the intensity of orientation diffraction arc of (002) crystal planes strengthens along with the arc length shortening, and more over the intensities of polycrystalline diffraction ring of (100) and (110) crystal planes strengthen, and halo disturbance of diffraction ring gradually decreases. Above results indicate that during carbonization, graphite lamella closes up further, the orientation of graphite lamella along the axis gradually increases, and the crystallinity of graphite crystallite increases.
     HRTEM study on the microstructural evolution of PAN precursor fibers during the formation of carbon fibers shows that the HRTEM microstructure of PAN precursor fibers is quasicrystal structure, which is composed of amorphous region and relative ordered region. There have no apparent interfaces between amorphous region and relative ordered region. Amorphous structure is observed in preoxidized fibers. When preoxidized fibers are carbonized, with the process of pyrogenation, changes of the structure take place. The amount and size of aromatic plane continues to increase, carbon planes widen and improve further, and the orientation of graphite lamella along the axis gradually increases. Above phenomena represent in detail that the length of single graphite lamella gradually increases, the size of graphite crystallite (L_c and L_a) increases, amorphous texture between graphite lamella decreases, as a result the crystallinity of graphite crystallite increases. The continuity of adjacent graphite lamella gradually increases, graphite lamella close up further and the interplanar spacing decreases, and two-dimensional turbostratic graphite structure is formed gradually, which guarantees high tensile strength for carbon fibers.
     XRD, elemental composition, fracture morphology, HRTEM microstructure were investigated by comparing self-produced carbon fibers with Toray T700 carbon fibers. The results indicate that Toray T700 carbon fibers have better completeness of crystal structure, better graphitization degree, more graphitization stack layers and higher orientation. The C content of Toray T700 carbon fibers is higher than that of self-produced carbon fibers, so in order to obtain high performance carbon fibers, the temperature of high temperature carbonization needs to be selected according to various technologies. T700 carbon fibers have lesser structural defects, such as holes, small openings and disorder of graphitization layers. As a result, structural compactness and homogenization are the main technology to improve tensile strength of carbon fibers.
     After being graphitized at 2350℃, the microstructure of Toray T300 carbon fibers transforms from two-dimensional turbostratic graphite structure to three-dimensional order graphite structure. The N, H and O content of fibers are further released, and the wt. % of C content increases from 95.04% to 99.27%. The number of the C six-membered ring increases, and graphite crystallites grow up, representing the increase of L_c, L_a, and crystallinity. The orientation degree of graphite crystallites along fiber axis improves, which makes the interplanar spacing shorten to 0.3359 nm, and the graphitization degree increase. Above-mentioned changes of structure result in the increase of the young's modulus, the decrease of tensile strength and elongation at break. After graphitization, carbon fibers convert into brittle materials completely. More structural weaknesses exist in graphite fibers, which make the tensile strength of T300 carbon fibers decrease after graphitization.
     The bulk density of dry-jet wet-spinning PAN precursor fibers gradually increases in the formation of carbon fibers, while the variation of linear density is complex. Influenced by many factors, linear density firstly increases, decreases, then increases, decreases, and at last increases, decreases again. Because of the decrease of orientation degree of fibers at the initial stage of preoxidation (below 220℃), the diffraction peak intensity weakens, and moreover, the crystallite size decreases. Because preoxidation reactions firstly take place in amorphous regions at the temperature range of 220-230℃, quasicrystal structure grows up, crystallite size increases, and the crystallinity increases. With the rising of preoxidation temperature, cyclization reaction spreads to crystal regions, as a result, ordered regions transit to amorphous regions, crystallite size and the crystallinity both decrease. During carbonization process, along with the release of non-carbon elements, C atoms form C basal planes through cyclization and condensation polymerization reaction, the combined force between C atoms strengthens. Consequently L_c and crystallinity increase.
     HRTEM study on the microstructural evolution of dry-jet wet spinning PAN precursor fibers during preoxidation and carbonization indicates that The HRTEM microstructure of dry-jet wet-spinning is quasicrystal structure, which is composed of amorphous region and relative ordered region. There have no apparent interfaces between amorphous region and relative ordered region. During preoxidation process, along with the transformation from PAN linear molecular chains to planar ladder structure, ordered regions gradually transit to amorphous regions. During carbonization process, carbon basal planes form, and with the carbonization temperature increasing, carbon basal planes orient along the fiber axis.
     Compared with wet-spinning PAN precursor fibers and the resultant carbon fibers, dry-jet wet spinning PAN precursor fibers and carbon fibers with high density, high crystallinity, uniform structure and smooth surface guarantee high tensile strength for carbon fibers. Compared with wet-spinning, dry-jet wet spinning is a relatively better spinning technology for producing carbon fibers with high performance.
引文
[1]赵稼祥.2002年世界碳纤维前景.高科技纤维与应用,2002,27(6):6-9.
    [2]黎小平,张小平,王红伟.碳纤维的发展及其应用现状.高科技纤维与应用, 2005,30(5):24-30.
    [3]王海英.碳纤维的发展前景与市场分析.高科技纤维与应用,2007,32(4):23-26.
    [4]贺福,王润娥,赵建国.聚丙烯腈基碳纤维.化工新型材料,1999,27(4):6-11.
    [5]赵稼祥.碳纤维的现状与新发展.材料工程,1997,(12):3-6.
    [6]Dennet J B,Bansal R C 著.李仍元,过梅丽(译).碳纤维.北京:科学出版社,1989.
    [7]张旺玺.碳纤维前躯体聚丙烯腈原丝.合成纤维,1999,28(1):31-34.
    [8]贺福.碳纤维及其应用.北京:化学工业出版社,2004.
    [9]张旺玺.聚丙烯腈基碳纤维的新进展.高科技纤维与应用,2001,26(5):12-15.
    [10]罗益锋.炭纤维的新形势与新技术.新型炭材料,1995,(4):13-25.
    [11]钱伯章,朱建芳.碳纤维发展现状及市场分析.合成纤维,2007,36(7):10-17.
    [12]陈杰,吴永兴,张振声等.国内碳纤维发展态势分析.高科技纤维与应用,2007,32(2):22-25.
    [13]罗益锋.不断扩大的碳纤维需求及其对策.高科技纤维与应用,2005,30(3):1-4.
    [14]吕永根,吕春祥,刘杰,潘鼎.聚丙烯腈碳纤维结构形成与演变机制.第十四届全国复合材料学术会议论文集(上).北京:中国宇航出版社 2006:84-90.
    [15]Fitzer E,Frohs W,Heine M.Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibres.Carbon,1986,24(4):387-394.
    [16]Mukesh K.Jain,Abhiraman A S.Conversion of acrylonitrile-based precursor fibres to carbon fibres,part Ⅰ:A review of the physical and morphological aspects.Journal of Materials Science,1987,22:278-300.
    [17]Mukesh K.Jain,Balasubramanian M,Desai P,Abhiraman A S.Conversion of acrylonitrile-based precursor fibres to carbon fibres,part Ⅱ:Precursor morphology and thermooxidative stabilization.Journal of Materials Science,1987,22:301-312.
    [18]Balasubramanian M,Mukesh K.Jain,Bhattacharya S K,Abhiraman A S.Conversion of acrylonitrile-based precursor fibres to carbon fibres,part Ⅲ:Thermooxidative stabilization and continuous,low temperature carbonization. Journal of Materials Science, 1987, 22: 3864-3872
    [19] Zhang W X, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 2003, 41: 2805-2812.
    [20] Sun Y S, Wang Q R, Li X J, et al. Investigation on dry spinning process of ultrahigh molecular weight polyethylene/decalin solution. Journal of Applied Polymer Science, 2005, 98(1): 474-483.
    
    [21]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4): 35—38.
    [22] Bhanu V A, Rangarajan P, Wiles K. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 2002, 43(18): 4841-4850.
    
    [23] Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007, 92(8): 1421-1432.
    [24] Tse-Hao Ko, Ching-Chyuan Yang, Wen-Tong Chang. The effect of stabilization on the properties of PAN-based carbon films. Carbon, 1993, 31(4): 583-590.
    [25] Warner S B, Peebles LH Jr, Uhlmann D R. Oxidative stabilization of acrylic fibres: Part 1 Oxygen uptake and general model. Journal of Material Science, 1979, 14: 556-564.
    [26] Chen S S, Herms J, Peebles L H. Oxidative stabilization of acrylic fibres: Part 5 The decolouration reaction. Journal of Materials Science, 1981,16 (6): 1490-1510.
    [27] Wu G P, Lu C X, Ling L C, Hao A M, He F. Influence of tension on the oxidative stabilization process of polyacrylonitrile fibers. Journal of Applied Polymer Science, 2005, 96: 1029-1034.
    [28] Deurbergue A, Oberlin A. Stabilization and carbonization of pan-based carbon fibers as related to mechanical properties. Carbon, 1991, 29: 621-628.
    [29] Tse-Hao Ko. Influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. Journal of Applied Polymer Science, 1991, 43(3): 589-600.
    [30] Tse-Hao Ko, Tzy-Chin Day, Jeng-An Perng, Ming-Fong Lin. Characterization of PAN-based carbon fibers developed by two-stage continuous carbonization.Carbon,1993,31(5):765-771.
    [31]Kowbel W,Hippo E,Murdie N.Influence of graphitization environment of PAN based carbon fibers on microstructure.Carbon,1989,27(2):219-226.
    [32]Johnson J W,Marjoram J R,Rose P G.Stress graphitization of polyacrylonitrile based carbon fibre.Nature,1969,221(5178):357-358.
    [33]Olive G H,Olive S.The crystallinity in chitin structure.Advances in Polymer Science,1983,51(1):1-5.
    [34]王茂章,贺福.碳纤维的制造性质及其应用.北京:科学出版社,1984.
    [35]Gupta A K,Maiti A K.Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers.Journal of Applied Polymer Science,1982,27(7):2409-2416.
    [36]Tse-Hao Ko,Hsing-Yie Ting,Chung-Hua Lin,Jia-Chyuan Chen.The microstructure of stabilized fibers.Journal of Applied Polymer Science,1988,35(4):863-874.
    [37]韩曙鹏,徐棵华,曹维宇,姚红.X射线衍射法研究聚丙烯腈原丝的晶态结构.北京化工大学学报,2005,32(2):63-67.
    [38]Colvin B G,Storr P.The crystal structure of polyacrylonitrile.European Polymer Journal,1974,10:337-340.
    [39]Warner S B,Uhlmann D R,Peebles L H.Oxidative stabilization of acrylic fibers:Parts3,morphology of polyacrylonitrile.Journal of Material Science,1979,14(7):1893-1900.
    [40]王延相,王成国,朱波,季保华,王强.聚丙烯腈基纤维的结构设计及其演变性研究.高科技纤维与应用,2005,30(10):10-13.
    [41]徐梁华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用,2001,26(2):21-24.
    [42]Watt W,Johnson W.Mechanism of oxidation of polyacrylonitrile fibers.Nature,1975,257:210-212.
    [43]Fitzer E,Müller D J.The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor.Carbon,1975,13(1):63-69.
    [44]Standage A E,Matkowsky R D.Thermal oxidation of polyacrylonitrile.European Polymer Journal,1971,7(7):775-783.
    [45]Bahl O P,Manocha L M.Characterization of oxidized PAN fibers.Carbon,1974,12(4):417-423.
    [46]Gupta A,Harrison I R.New aspects in the oxidative stabilization of PAN-based carbon fibers.Carbon,1996,34(11):1427-1445.
    [47]Gupta A K,Paliwal D K,Bajaj P.Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile.Journal of Applied Polymer Science,1995,58:1161-1174.
    [48]于美杰,王成国,朱波,徐勇.聚丙烯腈基碳纤维原丝热稳定化研究进展.材料工程,2006,(11):62-66.
    [49]赵根祥,边栋材.硝酸法PAN原丝及其预氧丝微细结构的X射线研究.高分子材料科学与工程,1993,9(3):75-77.
    [50]Mathur R B,Bahl O P,Nagpal K C.Structure of thermally stabilized PAN fibers.Carbon,1991,29(7):1059-1061.
    [51]Ko T H,Lin C H,Ting H Y.Structural changes and molecular motion of polyacrylonitrile fibers during pyrolysis.Journal of Applied Polymer Science,1989,37:553-566.
    [52]张利珍,吕春祥,吕永根,吴刚平,贺福.聚丙烯腈纤维在预氧化过程中的结构和热性能转变.新型炭材料,2005,20(2):144-150.
    [53]He D X,Wang C G,Bai Y J,Zhu B.Comparison of structure and properties among various PAN fibers for carbon fibers.Journal of Materials Science and Technology,2005,21(3):376-380.
    [54]刘杰,林宏元,李仍元,王平华.预氧化过程中PAN共聚纤维密度与结构关系的研究.合成纤维工业,1993,16(3):37-42.
    [55]Wang P H,Liu J,Yue Z R.Thermal oxidative stabilization of polyacrylonitrile precursor fiber-progression of morphological structure and mechanical properties.Carbon,1992,30(1):113-120.
    [56]Wang P H,Yue Z R,Li R Y,Liu J.Aspects on interaction between multistage stabilization of polyacrylonitrile precursors and mechanical properties of carbon fibers.Journal of Applied Polymer Science,1995,56:289-300.
    [57]张旺玺,刘杰,吴刚.聚丙烯腈原丝的预氧化.合成技术及应用,2003,18(4):23-30.
    [58]何东新,王成国,王延相.聚丙烯腈原丝预氧化过程中的结构与性能变化.合成纤维工业,2004,27(3):33-36.
    [59]刘杰,李佳,王雷.预氧化温度对聚丙烯腈纤维皮芯结构形成的影响.北京化工大学学报,2006,33(1):41-45.
    [60]Liu J,Zhang W X.Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors.Journal of Applied Polymer Science,2005,97:2047-2053.
    [61]Yu M J,Wang C G,Bai Y J,Xu Y,Zhu B.Effect of Oxygen Uptake and Aromatization on the Skin-Core Morphology During the Oxidative Stabilization of Polyacrylonitrile Fibers.Journal of Applied Polymer Science,2008,107:1939-1945.
    [62]Zhang W X,Liu J,Liang J Y.New evaluation on the preoxidation extent of different PAN precursors.Journal of Materials Science and Technology,2004,20(4):369-372.
    [63]吕春祥,吴刚平,吕永根,李开喜,李永红,梁晓怿,贺福,凌立成.聚丙烯腈原丝预氧化工艺的研究.新型炭材料,2003,18(3):186-190.
    [64]Layden G.K.Retrograde core formation during oxidation of polyacrylonitrile filaments.Carbon,1972,10(1):59-63.
    [65]Kikuma J,Konishi T,Sekine T.Polymer analysis by Auger electron spectroscopy using sectioning and cryogenic cooling.Journal of Electron Spectroscopy,1994,69:141-147.
    [66]Kikuma J,Warwick T,Shin H J,Zhang J,Tonner B P.Chemical state analysis of heat- treated polyacrylonitrile fiber using soft X-ray spectromicroscopy.Journal of Electron Spectroscopy,1998,94:271-278.
    [67]Gupta A,Harrison I R.New aspects in the oxidative stabilization of PAN-based carbon fibers:Ⅱ.carbon,1997,35(6):809-818.
    [68]李小佳,罗倩华,朱一钧等.聚丙烯腈基碳纤维预氧化过程组成结构的演变. 中国科学(B辑),2001,31(1):72-77.
    [69]徐海萍,孙彦平,陈新谋.PAN基预氧化纤维表面超微结构的STM研究.新型炭材料.2005,20(4):312-316.
    [70]Johnson W,Watt W.Structure of high modulus carbon fibers.Nature,1967,215:384-386.
    [71]Kaburagi M,Bin Y Z,Zhu D,Xu C Y,Matsuo M.Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages.Carbon,2003,41(5):915-926.
    [72]Gardner S D,Singamsettv C S K,Booth G L,He G R,Pittman C U Jr.Surface characterization of carbon fibers using angle-resolved XPS and ISS.Carbon,1995,33(5):587-595.
    [73]贺福.用拉曼光谱研究碳纤维的结构.高科技纤维与应用,2005,30(6):20-25.
    [74]Vezie,D L,Adams W W.High resolution scanning electron microscopy of PAN-based and pitch-based carbon fibre.Journal of Materials Science Letters,1990,9(8):883-887.
    [75]Oberlin A,Endo M,Koyama T.High resolution electron microscope observations of graphitized carbon fibers.Carbon,1976,14(2):133-135.
    [76]Bennett S C,Johnson D J,Johnson W.Strength-structure relationships in PAN-based carbon fibres.Journal of Materials Science,1983,18(11):3337-3347.
    [77]Deurbergue A,Oberlin A.TEM study of some recent high modulus PAN-based carbon fibers.Carbon 1992,30(7):981-987.
    [78]Johnson D J.Structure-property relationships in carbon fibres.Journal of Physics D (Applied Physics),1987,20(3):286-291.
    [79]Barnet F R,Norr M K.A three-dimensional structural model for a high modulus pan-based carbon fibre.Composites,1976,7(2):93-99
    [80]Brown N M D,You H X.A scanning tunnelling microscopy study of PAN-based carbon fibre in air.Surface Science,1990,237:273-279.
    [81]Hoffman W P.Scanning probe microscopy of carbon fiber surfaces.Carbon,1992,30(3):315-331.
    [82]Donnet J B,Qin R Y.Study of carbon fibre surfaces by scanning tunnelling microscopy, part I: Carbon fibres from different precursors and after various heat treatment temperatures. Carbon, 1992, 30(5): 787-796.
    [83] Johnson D J, Tyson C N. The fine structure of graphitized fibers. British Journal of Applied Physics (Journal of Physics D), 1969, 2(6): 787-795.
    [84] Bennett S C, Johnson D J, Murray R. Structural characterization of a high-modulus carbon fibre by high-resolution electron microscopy and electron diffraction. Carbon, 1976,14(2): 117-122.
    [85] Donnet J B, Voet A, Ehrburger P, Marsh PA. Graphitic carbon with peripheral turbostratic structures. Carbon, 1973,11(4): 431-442.
    [86] Goodhew P J, Clarke A J, Bailey J E. A review of the fabrication and properties of carbon fibres. Materials Science and Engineering, 1975,17(1): 3-30.
    [87] Hugo J A, Phillips V A, Roberts B W. Intimate structure of high modulus carbon fibres. Nature, 1970, 226(5241): 144.
    [88] Fourdeux A, Perret R, Ruland W. The effect of preferred orientation on (hk) interferences as shown by electron diffraction of carbon fibres. Journal of Applied Crystallography, 1968,1: 252-255.
    [89] Nicholas D M, Marjoram J R, Whittaker O C. Crystallite size effects on the radial distribution analysis of carbon fibres. Journal of Applied Crystallography, 1972, 5: 262-267.
    [90] Johnson D J. Direct lattice resolution of layer planes in Polyacrylonitrile Based Carbon Fibres. Nature, 1970, 226: 750-751.
    [91] Perret R, Ruland W. The microstructure of PAN-base carbon fibres. Journal of Applied Crystallography, 1970, 3(6): 525-532
    [92] Johnson D J, Crawford D. Defocusing phase contrast effects in electron microscopy. Journal of Microscopy, 1973, 98(3): 313-324.
    [93] Diefendorf R J, Tokarsky E W. High-Performance Carbon Fibers. Polymer Engineering and Science, 1975, 15: 150-159.
    [94] Bennett S C, Johnson D J. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres. Carbon, 1979, 17(1): 25-39.
    [95] Knibbs R H. The use of polarized light microscopy in examining the structure of carbon fibres.Journal of Microscopy,1971,94(11):273-281.
    [96]Wicks B J,Coyle R A.Microstructural inhomogeneity in carbon fibres.Journal of Materials Science,1976,11(2):376-383.
    [97]Barnet F R,Norr M K.Carbon fiber etching in an oxygen plasma.Carbon,1973,11(4):281-288.
    [98]Wicks B J.Direct observations of the internal structure of carbon fibres.Journal of Materials Science,1971,6(2):173-175.
    [99]Guigon M,Oberlin A,Desarmot G.Microtexture and structure of some high tensile strength,PAN-based carbon Fibers.Fiber Science and Technology,1984,20(1):55-72.
    [100]Guigon M,Oberlin A,Desarmot G..Microtexture and structure of some high-modulus,PAN-base carbon fibers.Fibre Science and Technology,1984,20(3):177-198.
    [101]曾汉民等.碳纤维及其复合材料显微图像.广州:中山大学出版社,1990.
    [102]进藤大辅,平贺贤二合著,刘安生译.材料评价的高分辨电子显微方法.北京:冶金工业出版社,2002.
    [1]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [2]Gupta A K,Maiti A K.Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers.Journal of Applied Polymer Science,1982,27:2409-2416.
    [3]Bahl O P,Manocha L M.Characterization of oxidised PAN fibres.Carbon,1974,12(4):417-423.
    [4]Gupta A.New aspects in the oxidative stabilization of polyacrylonitrile-based carbon fibers.PhD.thesis,The Pennsylvania State University,1996.
    [5]Mathur R B,Bahl O P,Nagpal K C.Structure of thermally stabilized PAN fibers.Carbon,1991,29(7):1059-1061.
    [6]Ko T H,Lin C H,Ting H Y.Structural changes and molecular motion of polyacrylonitrile fibers during pyrolysis.Journal of Applied Polymer Science,1989,37:553-566.
    [7]Wang P H,Liu J,Yue Z R.Thermal oxidative stabilization of polyacrylonitrile precursor fiber-progression of morphological structure and mechanical properties.Carbon,1992,30(1):113-120.
    [8]Mukesh K Jain,Abhiraman A S.Conversion of acrylonitrile-based precursor fibres to carbon fibres,part Ⅰ:A review of the physical and morphological aspects.Journal of Materials Science,1987,22:278-300.
    [9]张利珍,吕春祥,吕永根,吴刚平,贺福.聚丙烯腈纤维在预氧化过程中的结构和热性能转变.新型碳材料,2005,20(2):144-150.
    [10]刘杰,林宏云,李仍元,王平华.预氧化过程中PAN共聚纤维密度与结构关系的研究.合成纤维工业,1993,16(3):37-42.
    [11]Zhao L R,Jang B Z.The oxidation behaviour of low-temperature heat-treated carbon fibres.Journal of Materials Science,1997,32(11):2811-2819.
    [12]Zhang W X,Liu J,Liang J Y.New evaluation on the preoxidation extent of different PAN precursors.Journal of Materials Science and Technology,2004,20(4):369-372.
    [13]杨茂伟,王成国,王延相,何东新,朱波.聚丙烯腈原丝的预氧化过程研究.合成纤维工业,2005,28(6):5-8.
    [14]Tse-Hao Ko,Hsing-Yie Ting,Chung-Hua Lin,Jia-Chyuan Chen.The microstructure of stabilized fibers.Journal of Applied Polymer Science,1988,35(4):863-874.
    [15]Gupta P K,Trehan J C.Thermogravimetric behaviour of polyacrylonitrile & study of the reaction mechanism for making carbon fibres from it.Indian Journal of Technology,1976,14(3):133-137.
    [1]王茂章,贺福.碳纤维的制造性质及其应用.北京:科学出版社,1984.
    [2]Rahaman M S A,Ismail A F,Mustafa A.A review of heat treatment on polyacrylonitrile fiber.Polymer Degradation and Stability,2007,92(8):1421-1432.
    [3]Badami D V,Joiner J C,Jones G A.Microstructure of High Strength,High Modulus Carbon Fibres.Nature,1967,215:386-387.
    [4]Johnson D J,Crawford D,Jones B F.Observations of a three-phase structure in high-modulus PAN-based carbon fibres.Journal of Materials Science,1973,8(2):286-290.
    [5]Warner S B,Uhlmann D R,Peebles L H Jr.Heterogeneities in carbon fibres.Carbon,1975,13(5):433-436.
    [6]Johnson D J.Recent advances in studies of carbon fibre structure.Philosophical Transactions of the Royal Society of London A(Mathematical and Physical Sciences),1979,294(1411):443-449.
    [7]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [8]赵根祥,金允正,王健.硝酸法PAN基预氧丝在碳化期间分子结构的变化.高分子材料科学与工程,1995,11(1):46-49.
    [9]Ko T H,Day T C,Perng J A,Lin M F.Characterization of PAN-based carbon fibers developed by two-stage continuous carbonization.Carbon,1993,31(5):765-771.
    [10]Deurbergue A,Oberlin A.Stabilization and carbonization of pan-based carbon fibers as related to mechanical properties.Carbon,1991,29:621-628.
    [11]李丽娅,黄启忠,张红波.聚丙烯腈基碳纤维的组织结构及力学性能.中南大学学报(自然科学版),2005,36(2):193-197.
    [12]Edie D D.The effect of processing on the structure and properties of carbon fibers.Carbon,1998,36(4):345-362.
    [13]Johnson W,Watt W.Structure of high modulus carbon fibres.Nature,1967,215:384-386.
    [14]Guigon M,Oberlin A,Dedstmot G.Microtexture and structure of some high-modulus,Pan-base carbon fibres.Fibre Science and Technology,1984,20(3):177-198.
    [15]Gupta P K,Trehan J C.Thermogravimetric behaviour of polyacrylonitrile & study of the reaction mechanism for making carbon fibres from it.Indian Journal of Technology,1976,14(3):133-137.
    [16]王延相,王成国,朱波,季保华,何东新,王强.网状和皮芯结构对生产高性能碳纤维组织演变的影响.材料科学与工程学报,2005,23(3):325-330.
    [17]何东新.聚丙烯腈纤维的预氧化工艺与物化行为研究.博士学位论文,山东大学,2005.
    [1]贺福.碳纤维及其应用.北京:化学工业出版社,2004.
    [2]王海英.碳纤维的发展前景与市场分析.高科技纤维与应用,2007,32(4):23-26.
    [3]王明先,王荣国,刘文博.国产高性能碳纤维组织结构表征与性能分析.玻璃钢/复合材料,2007,(1):28-32。
    [4]Serin V,Fourmeaux R,Kihn Y,Sevely J.Nitrogen distribution in high tensile strength carbon fibers.Carbon,1990,28(4),573-578.
    [5]Ko Tse-Hao.Influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization.Journal of Applied Polymer Science,1991,43(3):589-600.
    [6]Mittal J,Konno H,Inagaki M,Bahl O P.Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers.Carbon,1998,36(9):1327-1330.
    [7]Moreton R,Watt W,Johnson W.Carbon fibres of High Strength and High Breaking Strain.Nature,1967,213:690-691.
    [8]Moreton R,Watt W.Tensile strengths of carbon fibres.Nature,1974,247(5440):360-361.
    [9]Tyson C N.Fracture mechanisms in carbon fibres derived from PAN in the temperature range 1000-2800℃.Journal of Physics D(Applied Physics),1975,8(7):749-758.
    [10]高宇,黄科科,华中,高忠民,李向山.碳纤维中的单层石墨物相及其对力学性能的影响.高等学校化学学报,2007,28(10):2014-2017.
    [11]Johnson D J.Structure-property relationships in carbon fibres.Journal of Physics D (Applied Physics),1987,20(3):286-291.
    [12]Bennett S C,Johnson D J,Johnson W.Strength-structure relationships in PAN-based carbon fibres.Journal of Materials Science,1983,18(11):3337-3347.
    [13]Dennet J B,Bansal R C 著.李仍元,过梅丽(译).碳纤维.北京:科学出版社,1989.
    [14]Warner S B,Uhlmann D R,Peebles L H.Heterogeneities in carbon fibers.Carbon,1975,13(5):433-436.
    [15]Wick B J,Coyle R A.Microstructural inhomogeneity in carbon fibres.Journal of Materials Science,1976,11(2):376-383.
    [1]贺福.碳纤维及其应用.北京:化学工业出版社,2004.
    [2]王茂章,贺福.碳纤维的制造性质及其应用.北京:科学出版社,1984.
    [3]Bennett S C,Johnson D J,Murray R.Structural characterisation of a high-modulus carbon fibre by high-resolution electron microscopy and electron diffraction.Carbon,1976,14(2):117-122
    [4]Deurbergue A,Oberlin A.TEM study of some recent high modulus PAN-based carbon fibers.Carbon 1992,30(7):981-987.
    [5]Guigon M,Oberlin A.Heat-treatment of high tensile strength PAN-based carbon fibres:microtexture,structure and mechanical properties.Composites Science and Technology,1986,27(1):1-23.
    [6]Paris O,Loidl D,Peterlik H.Texture of PAN- and Pitch-based Carbon Fibers.Carbon,2002,40(3):551-555.
    [7]Sauder Cedric,Lamon Jacques,Pailler Rene.The tensile behavior of carbon fibers at high temperatures up to 2400℃.Carbon,2004,42(4):715-725.
    [8]Huang Y,Young R J.Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres.Carbon,1995,33(2):97-107.
    [9]Li D E Wang H J,Wang X K.Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization.Journal of Materials Science,2007,42(12):4642-4649.
    [10]常维璞,沈曾民,王理等.高模量炭纤维的研制.新型碳材料,1998,13(1): 28-32.
    [11]Johnson J W,Marjoram J R,Rose P G.Stress graphitization of polyacrylonitrile based carbon fibre.Nature,1969,221(5178):357-358.
    [12]徐仲榆,刘洪波,苏玉长等.在石墨化过程中采用热牵伸法制备高性能PAN基炭纤维.炭素,1997,(3):4-9.
    [13]贺福,王淑芳,杨永岗.用韦氏理论评价碳纤维抗拉强度的分散性.高科技纤维与应用,2001,26(3):29-31.
    [14]Johnson D J.Structure-property relationships in carbon fibres.Journal of Physics D (Applied Physics),1987,20(3):286-291.
    [15]Tyson C N.Fracture mechanisms in carbon fibres derived from PAN in the temperature range 1000-2800 ℃.Journal of Physics D(Applied Physics),1975,8(7):749-758.
    [1]贺福.高性能碳纤维原丝与干喷湿纺.高科技纤维与应用,2004,29(4):6-12.
    [2]Bajaj P,Sreekumar T V,Sen K.Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers.Journal of Applied Polymer Science,2002,86(3):773-787.
    [3]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38.
    [4]Qian B J,Pan D,Wu Z Q.The mechanism and characterstics of dry-jet wet-spinning of acrylic fibers.Advances in Polymer Technology,1986,6(4):509-529.
    [5]徐樑华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用,2001,26(2):21-24.
    [6]陈方泉,陈惠芳,潘鼎.干湿法高性能聚丙烯腈基碳纤维原丝的制备.化工新型材料,2003,31(11):11-15.
    [7]王启芬,王成国,王延相,杨茂伟,于美杰.PAN纤维的结构对纤维强度的影响.功能材料,2006,37(11):1787-1789.
    [8]徐棵华,吴红枚.PAN/DMSO干湿法纺丝凝固工艺的研究.高分子材料科学与工程,2000,16(6):163-166.
    [9]秦志全,周霞.二甲基亚砜法聚丙烯腈原丝干湿纺与湿纺成形工艺的比较.高科技纤维与应用,2006,31(3):15-18.
    [10]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变.博士学位论文,山东大学,2007.
    [11]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [12]Hu X P.Molecular structure of polyacrylonitrile fibers.Journal of Applied Polymer Science,1996,62(11):1925-1932.
    [13]沈春银,毛萍君,张林,杨明远.高分子量聚丙烯腈纤维的干湿法成形工艺及纤维性能研究.合成纤维,2000,29(4):13-16.
    [14]Warner S B,Uhlmann D R,Peebles L H.Oxidative stabilization of acrylic fibers:Parts 3,morphology of polyacrylonitrile.Journal of Material Science,1979,14(7):1893-1900.
    [15]Tse-Hao Ko,Hsing-Yie Ting,Chung-Hua Lin,Jia-Chyuan Chen.The microstructure of stabilized fibers.Journal of Applied Polymer Science,1988,35(4):863-874.
    [16]侯爱玲,陈惠芳.PAN原丝性能对比及对碳纤维性能的影响研究.化工新型材料,2005,33(7):4-6.
    1. Donnet JB, Qin RY (1993) Carbon 31: 7.
    
    2. Chand S (2000) J Mater Sci 35:1303.
    
    3. Moreton R, Watt W (1974) Nature 247: 360.
    
    4. Bennett SC, Johnson DJ (1983) J Mater Sci 18: 3337.
    
    5. Zhang WX, Liu J, Wu G (2003) Carbon 41: 2805.
    
    6. Johnson DJ (1987) J Phys D (Appl Phys) 1987 20: 286.
    
    7. Mukesh KJ, Abhiraman AS (1987) J Mater Sci 22: 278.
    
    8. Bai YJ, Wang CG, Lun N, Wang YX, Yu MJ, Zhu B (2006) Carbon 44: 1773
    
    9. Yu MJ, Wang CG, Bai YJ, Wang YX, Xu Y (2006) Polym Bull 57: 753
    
    10. Hinrichsen G (1972) J Polym Sci 38: 303.
    
    11. Johson W, Watt W (1967) Nature 215: 384
    
    12. Guigon M, Oberline A, Desarmot G (1984) Fibre Science and Technology 20: 177
    
    13. Monthioux M, Bahl OP, Mathur RB (2000) Carbon 38: 475.
    
    14. Cooper GA, Mayer RM (1971) J Mater Sci 6: 60.
    
    15. Stewart M, Feughelman M (1973) J Mater Sci 8:1119.
    
    16. Coyle RA, Gillin LM, Wicks BJ (1970) Nature 226: 257.
    
    17. Tyson CN (1975) J Phys D (Appl Phys) 8: 749.
    
    18. Reynolds WN, Sharp JV (1974) Carbon 12:103.
    
    19. Edie DD (1998) Carbon 36: 345.
    
    20. Maire J, Mering J. (1957) In Industrial Carbon and Graphite, Conference of the Society of Chemical Industry, London 204.
    1. Donnet J B, Qin R Y (1993) Carbon 31: 7
    2. Chand S (2000) J Mater Sci 35:1303
    3. Yu MJ, Wang CG, Bai YJ, Wang YX, Wang QF, Liu HZ (2006) Polym Bull 57: 525
    4. Yu MJ, Wang CG, Bai YJ, Wang YX, Xu Y (2006) Polym Bull 57: 753
    5. Moreton R, Watt W (1974) Nature247:360
    6. Bennett S C, Johnson D J (1983) J Mater Sci 18:3337
    7. Johnson D J (1987) J Phys D (Appl Phys) 20:286
    8. Huang Y, Young RJ (1995) Carbon 33: 97
    9. Bai YJ, Wang CG, Lun N, Wang YX, Yu MJ, Zhu B (2006) Carbon 44: 1773
    10. Hinrichsen G (1972) J Polym Sci 38: 303
    11. Gupta AK, Maiti AK (1982) J Appl Polym Sci 27: 2409
    12 Mukesh K J, Abhiraman A S (1987) J Mater Sci 22:278
    13. Watt W, Johnson W (1975) Nature 257: 210
    14. Bahl OP, Manocha LM (1974) Carbon 12: 417
    15. Gupta A, Harrison IR (1996) Carbon 34: 1427
    16. Johson W, Watt W (1967) Nature 215: 384
    17. Guigon M, Oberline A, Desarmot G (1984) Fibre Science and Technology 20: 177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700