用户名: 密码: 验证码:
糖耐康干预糖尿病肾病肾小管上皮细胞转分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病肾病(diabetic nephropathy, DN)是糖尿病最常见的慢性微血管并发症之一,是糖尿病患者的主要死亡原因之一。近年来,DN已成为一个严重威胁人们生命健康的疾病,寻找预防和治疗DN的有效药物和治疗方法已成为世界范围的研究热点。肾小管上皮细胞转分化(tubular epithelial to mesenchymal transdifferentiation, TEMT)是肾间质纤维化发生和发展的重要机制之一。TEMT过程中TGF-β1/Smad信号转导途径起了重要作用。中医药在DN治疗方面积累了丰富的经验,特别是在治疗早期DN方面取得了较好的临床疗效,但是对中医药治疗DN的作用机制研究较少,有待于进一步深入研究。本论文首先对近年来中西医对DN的认识和防治进展进行了综述,拟在前期研究工作基础上,进一步从整体、组织、蛋白和基因分子水平探讨了中药复方糖耐康通过调节TGF-β1/Smad信号通路来抑制TEMT,以此来治疗DN的作用机制。
     1文献综述
     参照古今中医有关文献,对DN的中医病名、病因病机、辨证论治、临床及实验研究进行了概述,同时对DN肾小管上皮转分化研究所取得的进展进行了综述。
     2实验研究
     目的:紧紧围绕肾小管上皮细胞转分化机制中有待探索的热点问题TGF-β1/Samds信号转导途径与DN肾间质纤维化的关系,探讨临床有效中药“糖耐康”防治糖尿病肾
     间质纤维化的作用及机制,为其治疗DN提供实验依据。
     方法:50只2次随机血糖均大于13.9mmol/L的雄性KKAy小鼠,按随机血糖值随机分为5组:模型组、糖耐康高剂量组、糖耐康中剂量组、糖耐康低剂量组及缬沙坦组,每组10只;健康雄性C57BL/6J小鼠10只为正常组。糖耐康高、中、低剂量组分别以4.56g/kg.d,2.28g/kg.d,1.14g/kg.d浓度按0.01ml/g体重灌服糖耐康水溶液,缬沙坦组按0.46mg/kg.d灌服缬沙坦水溶液,正常组和模型组灌服等体积0.9%氯化钠溶液。每日1次,连续给药8周。记录小鼠一般情况、体重、血糖,实验周期结束时,测定小鼠血清血糖(glucose, Glu)、胰岛素(Insulin, INS)、甘油三酯(glyceride, TG)、总胆固醇(total cholesterol, TC)、尿素氮(blood urea nitrogen, BUN)和肌酐(serum creatinine, Scr)水平,做肾组织HE染色、Massom染色和PAS染色并进行图像分析;免疫组化法检测肾组织α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、E-钙粘蛋白(E-Cadherin)表达;Real-time PCR检测肾TGF-β1mRNA、TGF-βR1mRNA、TGF-βR2mRNA、Collagen I mRNA、Collagen III mRNA和FNmRNA表达;wetern blot检测肾TGF-β1、Smad2, P-smad2, Smad3, P-smad3, Smad7蛋白表达。实验数据用SPSS16.0进行统计学处理。
     结果:实验一:与同周龄正常组小鼠比较,模型组小鼠体质量显著增加(P<0.01),各给药组小鼠体质量较同期模型组有显著下降(P<0.05,P<0.01);模型组与正常组比较,快速空腹血糖(fasting blood sugar,FBG)、TG、TC、INS显著升高(P<0.01),糖脂代谢紊乱;24h尿蛋白定量、肾质量升高(P<0.05),但是肾功能无差异(P>0.05)。20周龄模型组小鼠肾小球较正常组增大,细胞外膜基质增加,肾小管管腔扩大,蛋白管型明显,半定量分析肾组织病理损伤评分增加。实验二:病理学检测结果显示,与正常组比较,模型组小鼠肾间质纤维化评分和纤维化面积显著增大(P<0.01);与模型组比较,各治疗组小鼠肾间质纤维化评分和纤维化面积显著减小(P<0.05);免疫组化结果显示,模型组小鼠肾组织中a-SMA蛋白表达呈现较强阳性。与模型组比较,缬沙坦组、糖耐康低、中、高剂量组a-SMA蛋白表达显著减少(P<0.01);模型组小鼠肾组织中E-cadherin蛋白表达弱阳性。与模型组比较,缬沙坦组、糖耐康低、中、高剂量组E-cadherin蛋白表达明显增加(P<0.01);wstern blot结果显示,与正常组小鼠比较,KKAy小鼠肾脏组织TGF-β1蛋白表达明显升高(P<0.01)。与模型组比较,缬沙坦组、糖耐康低、中和高剂量组TGF-β1蛋白表达含量都明显降低(P<0.01),其中糖耐康高剂量组与缬沙坦组相比较,TGF-β1显著降低(P<0.01)。实验三:Real-time PCR结果显示,与正常组比较,KKay小鼠TGF-β1 mRNA. Collagen I mRNA、Collagen III mRNA和FNmRNA相对表达量显著升高(P<0.05), TGFβ-R1 mRNA和TGFβ-R2 mRNA无显著变化(P>0.05);与模型组比较,缬沙坦组和糖耐康高剂量组TGF-β1 mRNA、Collagen III mRNA和FN mRNA的降低具有统计学意义(P<0.05);western blot结果显示,与正常组小鼠比较,KKAy小鼠肾smad2蛋白、p-smad-2蛋白、smad-3蛋白、p-smad-3蛋白表达均显著升高(P<0.01),smad-7蛋白表达显著降低(P<0.01),与模型组比较,缬沙坦组、糖耐康各治疗组上述蛋白表达有不同的改变(P<0.05)。
     结论:1、中药糖耐康对自发性KKAy小鼠有显著的降糖和降脂作用,能减少尿蛋白量,降低DN肾脏病理损伤评分,抑制糖原等细胞外基质的沉积,改善早期肾脏病变,与缬沙坦疗效相当,且在降低体质量、肾重、FBG、血清INS和TC等方面优于缬沙坦,对DN有一定的保护作用;2、TEMT过程存在于KKAy小鼠肾组织,参与了DN肾纤维化,而缬沙坦和糖耐康具有一定的抑制TEMT的作用;3、糖耐康可干预TGF-β1/smads信号转导途径的多个位点,主要机制可能是增加smad7表达从而抑制TEMT过程,这可能是其治疗DN的重要靶点。
Diabetic nephropathy is one of the serious complications of diabetes which is the chief of cause death. Nowadays, diabetic nephropathy torment people and also threaten people's health and life, so it is urgent for researchers to find effective treatment methods or medicine for patients with diabetic nephropathy worldwild. Renal tubular epithelial-mesenchymal transition brings an important impact in tubulointerstitial fibrosis, and TGF-β1/Smad signaling pathway palys the main role in this procession. Traditional Chinese medicine has accumulated rich experiences in treats diabetic nephropathy, especially for early stage, it has better curative effect. But there is less researches of the mechanism of action of herbs. This paper gives an overview of understanding and treatment for diabetic nephropathy based on Chinese medicine and Western medicine at the beginning of paper, then to analyze the mechanism of Tang Nai Kang treats diabetic nephropathy through TGF-β1/Smad signaling pathway.
     1 Reference review
     The reference review discussed the recent research progresses in prevention and treatment of diabetic nephropathy both from the aspects of Chinese medicine and modern medicine. Reference to the literature of traditional Chinese medicine, Chinese medicine on the diabetic nephropathy name, pathogenesis, diagnosis and treatment, clinical and experimental research are reviewd, while made in a summary of modern medicine on the diabetic nephropathy progresses, emphatically summarized pathogenesis, diagnosis, and treatment.
     2 Experimental study
     Objective:Using spontaneously KKAy mice as the diabetic nephropathy model, in order to discuss the effect mechanism of Tang Nai Kang on diabetic nephropathy, which provides the foundation for for treating diabetic nephropathy.
     Methods:Using spontaneously KKAy mice as diabetic nephropathy model, divided the mice into normal group, model group, control group, small dose of Tang Nai Kang, Tang Nai Kang middle dose group, Tang Nai Kang high dose groups. We tested mice blood glucose, the level of insulin, TC, TG, BUN, and Scr, kidney tissues HE staining and electron microscope observation. Immunohistochemical detection ofα-SMA、E-cadherin protein expression; Using real-time fluorescent quantitatie polymerase chain reaction (PCR) method to test kidney TGF-β1 mRNA, TGF-βR1 mRNA、TGF-βR2 mRNA、Collagen I mRNA、CollagenⅢmRNA and Fn mRNA gene, western blot tested TGF-β1, Smad2, P-smad2, Smad3, P-smad3, Smad7 protin expression. All data were analyzed by SPSS 16.0 statistical package.
     Results:Experiment 1:Compared with the normal group, the weight of model group's mice has been significantly increased with the same ages (P<0.01). Groups with Tang Nai Kang weight gets down. Tang Nai Kang could decrease the level of fasting blood sugar and serum TC, TG, INS,24-hours proteinuria, compared to that of the model group remarkably, but there is no difference in renal function test between the groups. HE staining showed that enlargement of glomerulus and tubular, increased extra-cellular matrix, renal tubule was filled with the protein and cells in control group at 20 weeks, the treatment group pathological changes of mice kidney morfology were improved compared with model group. Experiment 2:Compared with the normal group, the model group showed a significant renal fibrosis (P <0.01), each Tang, Nai Kang group have a better condition than model group. Wstern blot showed that there is a high level of TGF-β1 in model group.In addition,compared with control group Tang Nai Kang high does group has a better treatment effect. Experiment 3:Real-time PCR showed that model group's TGF-β1 mRNA, Collagen I mRNA, CollagenⅢmRNA, FN mRNA were high than normal group. For TGFβ-R1 mRNA and TGFβ-R2 mRNA express, there is no difference between any groups.Western blot showed that smad2, p-smad-2, smad-3, p-smad-3 have a high level in model group (P< 0.01).
     Conclusion:1, Tang Nai Kang can decrease diabetic nephropathy mice weigh, blood glucose, and urine protein,, which means that it can prevente the occurrence of early diabetic nephropathy and development, and protect the renal function; 2, Tangnai-Kang can reduce renal fibosis and better than valsartan.3 Tangnai-Kang can improve the renal function,its proper mechanism that may inhibit and block TGF-β1/smads signaling pathway
引文
[1]吕仁和,赵进喜,王越,等.糖尿病肾病临床研究述评[J].北京中医药大学学报,1994,19(2):2-6
    [2]赵进喜,邓德强,李靖.糖尿病肾病相关中医病名考辨[J].南京中医药大学学报,2005,21(5):288-289
    [3]南征.消渴肾病(糖尿病肾病)研究[M].长春:吉林科学出版社,2001,3
    [4]张水生,赵贤俊.糖尿病肾病的中医病名及病因病机探析[J].辽宁中医杂志,2006,33(12):92-93.
    [5]田风胜,苏秀梅,王元松.糖尿病肾病中医病名规范化研究[J].中华中医药杂志,2009,24(11):1424-1426.
    [6]朱成英,李鸣,莫燕新.糖尿病肾病病因病机探讨[J].河南中医,2010,3(11):1049-1050.
    [7]李小会,董正华,丁辉.糖尿病肾病病因病机的探讨[J].陕西中医,2005,26(6):552-553
    [8]赵会贤,苏荣华,高新业.糖尿病肾病的病因病机及证治浅识[J].中医药学刊,2004,22(9):1761-1763.
    [9]张岩,糖尿病肾病的中医病因病机浅析[J].光明中医,2010,25(3):406-407
    [10]金政男,糖尿病肾病中医病因病机初探[J].实用中医内科杂志,2011,25(9):6-7.
    [11]万毅刚,孙伟,王婧等.早期慢性肾脏病尿蛋白与中医证候相关性分析[J].362-365
    [12]刘玉宁,陈以平.糖尿病肾病肾小球硬化症的中医病机探讨[J].新中医,2003,35(7):8-9.
    [13]李小会,董正华,丁辉.糖尿病肾病病因病机的探讨[J].陕西中医,2005,26(6):552-553
    [14]耿嘉,栗德林.糖尿病病因病机的辨识[J].首都医药,2005,12(8):46
    [15]许华.毒损肾络与糖尿病慢性微血管并发症相关性探讨[J].现代中西医结合杂志,2010,19(11):1364-1365.
    [16]刘舟,刘华东,张卫华.从毒论治糖尿病肾病的理论探讨[J].陕西中医学院学报,2011,34(5):9-10
    [17]南征,毒损肾络所致消渴肾病机理浅说[J].吉林中医药,2007,27(1):8-10.
    [18]宋增强,冯松杰.糖尿病肾病中“内生之毒”的探讨[J].吉林中医药,2006,26(10):1
    [19]赵会贤,苏荣华,高新业.糖尿病肾病的病因病机及证治浅识[J].中医药学刊,2004,22(9):1761-1763.
    [20]伍新林.中西医结合治疗糖尿病肾病的临床研究[J].中国中西医结合肾病杂志,2008,9(1):51-53.
    [21]张庚良.糖尿病肾病的辨证治疗[J].河北中医,2005,27(8):594-595.
    [22]齐晓燕,邢晓晨,周成立.糖尿病肾病的中医药治疗[J].中国社区医师,2007,9(23):134
    [23]刘玲,王亿平,吴敏.益气活血中药治疗糖尿病肾病疗效观察[J].现代中西医结合杂志,2009,18(4):373-374.
    [24]吴芳汀.益气补肾祛瘀法治疗糖尿病肾病48例疗效观察[J].新中医,2011,43(7):32-33.
    [25]张俊伟.参芎治疗早期糖尿病肾病的疗效观察[J].山西医药杂志,2008,37(1):37
    [26]王凤丽,陈志强,张江华等.益气养阴消癥通络方治疗早期糖尿病肾病临床观察[J].中国中西医结合杂志,2012,32(1):35-38.
    [27]Gao Q, Qin WS, Jia ZH. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy [J]. Plant Med,2010,76 (1):27-33.
    [28]谭正怀,沈映君,赵军宁等.大黄酸对人肾小球系膜细胞功能的影响[J].药学学报,2004,39(11):881-886.
    [29]郭俊,陈莉明,常宝成等.大黄为主中药灌肠治疗2型糖尿病肾病的研究[J].临床荟萃,2011,26(18):1595-1597.
    [30]焦剑.黄芪对糖尿病肾病保护机制的研究进展[J].吉林中医药,2004,2(24):54-55.
    [31]刘仪红,田浩明.黄芪治疗糖尿病肾病的系统评价[J].中国循证医学杂志,2007,7(10:):715-727.
    [32]陈发胜.百令胶囊治疗Ⅱ型糖尿病肾病的临床观察[J].新中医,1997,29(3):31
    [33]孙建红,何戎华,任传路,等.冬虫草制剂和开博通对糖尿病大鼠肾脏功能和形态的对比 研究[J]徐州医学院学报,2000,20(6):450-453.
    [34]芮耀诚.现代药物学.北京:人民军医出版社,1999.536.
    [35]韩方璇,肖云彬,林慧.银杏叶提取物对糖尿病模型大鼠肾脏ET-1、TGF-β1的影响[J].中国药房,2008,19(27):2101-2103,
    [36]柴国禄,唐海燕,杨玉红等.杏丁注射液对糖尿病肾病患者血浆尾加压素Ⅱ与肾上腺髓质素水平的影响[J].中国中西医结合肾病杂志,2008,9(3)::234-236.
    [37]周建华,张兴亚.绞股蓝开发研究新进展及应用[J].食品科技,2010,35(2):74-76.
    [38]张永,张建鄂,吴平勇,等.绞股蓝总苷治疗早期糖尿病肾病的临床研究[J].医药导报,2007,26(11):1291-1294.
    [39]朱庆磊,何爱霞,吕欣然.葛根素对氧自由基的清楚和抗氧化损伤作用[J].解放军药学报,2001,17(1):1
    [40]马运明,李大鸣,张静,等.葛根素对糖尿病小鼠降血糖功能的研究[J].中国慢性病预防与控制,2010,18(4):373-374
    [41]朱秀珍,王霄伦.葛根素注射液治疗80例早期糖尿病肾病的疗效观察[J].临床和实验医学杂志,2008,7(9):143
    [42]李长天,陈雁飞,韩涛,等.葛根素对糖尿病大鼠肾脏保护作用的实验研究[J].甘肃中医,2008,21(6):59-61
    [43]吴蔚桦,汪汉,张茂平等,雷公藤多甙治疗糖尿病肾病的系统评价[J].中国循证医学杂志,2010,10(6):693-699
    [44]张庙生.川芎嗪对糖尿病肾病患者尿内皮素、尿白蛋白和尿β2微球蛋白的临床分析[J].光明中医,2010,25(9):1461-1462.
    [45]杨彦,谢春光,杜英杰.川芎嗪对糖尿病肾病大鼠肾间质结缔组织因子及骨桥蛋白表达的影响[J].中药新药与临床药理,2008,19(2):106-109
    [46]佟杰,周潮.调肾保精散热罨包治疗糖尿病肾病[J].吉林中医药,2005,25(2):13-14.
    [47]张智龙,吉学群,张萍,等.调理脾胃针法对糖尿病肾病早期干预及对肾脏保护机制随机对照研究[J].中国针灸,2007,27(12):875-880.
    [1]Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis[J]. Am J Pathol,2001,159:1465-1475.
    [2]Strutz F, Okada H, Ceeilia WL, et al. Identification and characterization of a fibroblast marker:FSPI. J Cell Biol,1995,130(2):393-405.
    [3]Ng YY, Huang TP, Yang WC, et al. Tubular epithelial myofibroblat transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kindey Int,1998,54 (3):864-876. Eddy AA. Molecular basis renal fibrosis [J]. Pediatr Nephrol,2000,15: 290-301.
    [4]Yang JW, Liu YH. Am J Pathol,2001,159:1426-1475.
    [5]Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance,,molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004;15:1-12.
    [6]Lan HY, W Mu, N Tomita. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model.J Am Soc Nephrol 2003:14:1535-1548.
    [7]Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int,1999,56(4):1455-1467.
    [8]Bottinger, EP M. Bitzer. TGF-beta signaling in renal disease. J Am Soc Nephrol, 2005:13:2600-2610.
    [9]Liliana Attisano. Signal transduction by the TGF-beta super family [J]. Science,2002, 296(5573):1646-1647.
    [10]Nakao A.TGF-β receptor-mediated signaling through Smad2,Smad3 and Smad4. EMBOJ,1997,16:5353-5362
    [11]Sato M., Y Murag, S Saika, et al. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112:148-1494.
    [12]Phanish MK, NA.Wahab, P Colville-Nash, et al (2006) The differential role of Smad2 and Smad3 in the regulation of Pro- fibrotic TGF-betal responses in human proximal-tubule epithelial cells.BiochemJ393:601-607.
    [13]Li Y, J Yang, C Dai,et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003;112:503-516.
    [14]Abreu JG, Ketpura NI,Reversade B,et al.Connective tissue growth factor(CTGF)modulates cell signaling by BMP and TGF-beta[J].Nat Cell Biol,2002,4:599-604.
    [15]Nadia AW, Roger MM. Connective tissue growth factor and renal diseases:some answers, more questions [J].Curr Opin Nephrol Hypertens,2004,13:53-58
    [16]Gilbert R.E, Akdeniz, S weitz, et al.'Urinary connective tissue growth factor excretion in patients with type1 diabetes and nephropathy. Diabetes Care2003:26:2632-636.
    [17]Igarashi A, H Okoehi, DM. Bradham, et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993;4:637-645.
    [18]Grotendorst GR. H Okochi, N Hayashi. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996;7:469-480.
    [19]Lee YJ, Shin SJ, Tsai JH. Increased urinary endothelin-like immunoreactivity excretion in NIDDM patients with albuminuria. Diabetes Care.1994:17(4):263-263
    [20]Chakrabarti S, Khan ZA, Cukiemik M, ct al. Aiteration of endothelins:a cornmon pathogenetic mechanism in chronic diabetic complications. Int J ExP Diabetes Res.2002;3(4):217-231
    [21]Yonhua Liu. Epithelial to Mesenchymal Transition in Renal Fibrogenesis:Pathologic significance, Molecular Mechanism, and Therapeutic Intervention .J Am Soc Nephrol 2004,15:1-12.
    [22]Wang S, de Caesteeker M, KoPP J, et al. Renal bone morphogenetic Protein protects against diabetic nephropathy. J Am Soc Nephrol,2006;17(9):2504-2512.
    [23]Zeisberg M, Hanai J, Sugimoto H, et al. BMP7 counteracts TGF-beta induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med,2003, 9(7):964-968. Zeisberg M, Muller GA, Kalluri R, et al. Are there endogenous molecules that protect kidneys from injury? The ease for bone morphogenic Protein-7. Nephrol Dial Trans plant,2004,19(4):759-761.
    [24]Li JH. HJ Zhu, XR Huang, et al.Smad7 inhibits fibrotic effect of TGF-beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 2002;13:1464-1472.
    [25]Liu Y, Rajur K, Tolbert E, et al. Endogenous hepatocyte growth factor ameliorates; chronic renal injury by activating matrix degradation pathways. Kidney Int,2000, 58(5):2028-2043.
    [26]Yang J, Liu Y, et al. Blockage of tubular epithelial to myofibroblasts transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol,2002, 13(1):96-107.
    [27]Yang J, Dai C, Liu Y, et al. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenehymal transition. J Am Soc Nephxol, 2005;16(1):68-78.
    [28]Kagawa T, Takemura G, Kosai K, et al. Hepatocyte growth factor gene therapy slow down the progression of diabetic nephropathy in db/db mice. Nephron Physiol, 2006,102(3-4):92-102.
    [29]俞伟男.2型糖尿病早期肾病肾小球及肾小管功能改变[J].中国医师杂志,2002,4(12):1337-1339.
    [30]Oldfield MD, Bach LA, Fothes JM, et al. Advanced glycation end products cause epithelial-myofibroblast trans differentiation via the receptor for advanced glycation end products(RAGE).J Clin Invest 2001,108:1853-1863
    [31]司晓芸,贾汝汉,黄从新,等.宽叶撷草在抑制高胆固醇血症大鼠肾小管上皮细胞转分化中的作用[J].广东医学,2002,23(4):356-358.
    [32]Ina K, Kitamura H, Tatsukawa S, et al. Transformation of interstitial fibroblast and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microse,2002, 35(2):87-95.
    [33]Coimbra TM, Janssen U, Grone HJ, et al.Early event leading to renal injury in obese Zucker rats with type II diabetes. Kindney Int,2000,57(1):167-182.
    [34]Dai C, Yang J, Bastaeky S, et al. Intravenous administration of hepatoeyte growth factor gene ameliorates diabetic nephropathy in mice. J Am Soc Nephrol,2004 15(10):2637es2647.
    [35]Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, et al. Myofibroblasts and the Progression of diabetic nephropathy. Nephrol Dial Transplant,1997,12(1):43-50.
    [36]Pedagogos E, Hewitson T, Fraser I, et al. Myofibroblasts and arteriolar sclerosis in human diabetic nephropathy. Am J Kidney Dis,1997,29(6):912-18.
    [1]Lamarche B,Tchernof A,Mauriege P, et al. Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease[J] JAMA,1998,279(24):1955-1961.
    [2]Sergio A Mezzano, M Alejandra Droguett, M Eugenia Burgos, et al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy [J]. Kidney International,2000,57:147-158.
    [3]孙文,冯丽园,赵宗江,等.三七总皂苷干预糖尿病肾病大鼠氧化应激及足细胞凋亡机制的实验研究[J].中华中医药杂志,2011,26(05):1062-1067.
    Sun Wen, Feng Li-Yuan, Zhao Zong-Jiang, et al. Study on antioxidant effects and inhibition of podocyte apoptosis of PNS on DN rat[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2011,26(05):1062-1067.
    [4]Kenneth J. Livak, Thomas D. Schmittgen. Analysis of relative gene expression data using real-time quantitative pcr and the 2-88ct method, methods,2001,25(4):402-408.
    [5]牛洁,刘铜华,王志程,等.复方糖耐康对GK大鼠胰脏的组织学影响[J].山西中医,2009,25(4):50-53.
    Niu Jie, Liu Tong-Hua, Wang Zhi-Cheng, et al. The Histological Effection of Tang-Nai-Kang on Pancreas in GK Rat[J]. Shanxi Journal of Traditional Chinese Medicine,2009, 25(4):50-53.
    [6]Hollenberg NK, Parving HH, Viberti G. Albuminuria response to very high-dose valsartan in type 2 diabetes mellitus[J]. Hypertens 2007,25(9):1921-1926.
    [7]Baribault H.Mouse models of type Ⅱ diabetes mellitus in drug discovery[J]. Methods Mol Biol,2010,602:135-155.
    [8]陈其明,史顺娣,申竹芳,等.糖尿病KK小鼠生物特性的研究[J].中国医学科学院学报,1988,10(6):416-420.
    Chen Qiming, Shi Shunti, Shen hufang, et al. Study on Biological Characteristics of Spontaneous Diabetic KK Mice [J]. Acta Academiae Medicinae Sinicae, 1988,10(6):416-420.
    [9]郭清华,陆菊明,潘长玉.饮食能量对Kkay及Kk小鼠2型糖尿病发病的影响[J].军医进修学院学报,2005,26、(2):140-142.
    Guo Qing-Hua; Lu Ju-Ming; Pan Chang-Yu. The effects on glucose levels in kkay and kk mice by high-caloric diet [J]. Academic Journal of Pla Postgraduate Medical School, 2005,26(2):140-142.
    [10]刘晓丹,杨刚,范秋灵,等.自发性2型糖尿病动物模型KKAy小鼠肾脏损害的特征与演变[J].中国医科大学学报,2011,40(2):104-106.
    Liu Xiao-Dan, Yang Gang, Fan Qiu-Ling, et al. Renal Impairment in KKAy Mice with Spontaneous Type 2 Diabetes [J].2011,40(2):104-106.
    [11]Liu YH.Epithelial to mesenchymal transition in renal fibrogenesispathologic significance,molecular mechanism,and therapeutic intervention [J].J Am Soc Nephrol,2004,15:1-12.
    [12]LiuY, FreedmanBl, Burdon KP. et al. Association of arachidonate 12-lipoxygena- se genotype variation and glycemic control with albuminuria in type 2 diabetes [J].Am J Kidney Dis.2008 Aug;52(2):242-250.
    [13]HA H, LEE HB. Reactive oxygen species and matrix remodeling in diabetic kidney [J]. J Am Soc Nephrology,2003,14(8 Supply 3):S246-249.
    [1]Berx G, Staes K, van Hengel J, et al. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1) [J].Genomics,1995,26(2):281-289.
    [1]Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A:Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112:1486-1494.
    [2]Peter J, Stahl, Diane Felsen. Transforming Growth Factor-P, Basement Membrane, and Epithelial-Mesenchymal Transdifferentiation. American Journal of Pathology,2001,159:1187-1192.
    [3]Elizabeth Gore-hyer, Daniel Shegogue, Malgorzata hfarkiewicz-TGF-P and CfGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol, 2002,283:707-716.
    [4]Li JH, Zhu Ⅲ, Huang Xlly et al. Smad7 inhibits fibrotic effect of TGF-beta on renal tubular epithelial cells by blocking Smad2 activation. J AMSoc Nephrol,2002,13:1464-1472.
    [5]Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of indua-ible Snad7 using Ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol, 2003,14:1535-1548.
    [6]Inazaki K, Kanamaru Y, Kojima Y, Sueyoshi N, Okumura K, Kaneko K, Yamashiro Y, Ogawa H, Nakao A:Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 2004,66:597-604
    [7]34Sato, M., etal. TargeteddisruPtionofTGF-beta1/Smad3signalingProtects against renal tubulointerstitial fibrosis indueed by unilateral urcteral obstruction.JClinlnvest,2003.112 (10):P.1486-94.
    [8]Phanish, M.K., etal., The differential role of smad2 and smad3 in the regulation of Pro-fibrotie TGF betal responses in human proximal-tbule epithelial cells. BioehemJ, 2006.393(Pt2):p.601-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700