用户名: 密码: 验证码:
城市交通信号系统智能控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市交通拥堵的加剧导致了车辆延误增加、交通事故频发、环境恶化等诸多问题,已成为世界各国城市发展共同面临的社会问题。智能交通系统是解决交通拥堵问题的重要途径,城市交通信号控制是当前控制领域和交通工程领域的研究热点之一,也是智能交通系统的重要组成部分。由于城市交通系统本身的强非线性、随机性、时变性特点,以精确数学模型为基础的传统控制方法效果并不理想,因此人工智能的方法愈来愈受到人们的重视。
     本文从控制科学的角度出发,融合了模糊逻辑和遗传算法、人工神经网络等人工智能理论,对城市交通信号系统的智能控制展开了深入研究,以缓解城市交通拥堵带来的危害。
     论文取得了以下主要成果:
     ①提出了基于交通强度的单交叉口交通信号控制控制算法
     该算法突破了以红灯相位和绿灯相位上下游交叉口之间车辆数为模糊控制器输入变量的局限性,还综合了绿灯期间的流率比、红灯持续时间,因此更客观地反映了交叉口各相位车流通行需求的紧急程度。仿真结果表明,本文控制方法比仅考虑车辆排队长度的控制方法更有效地减小了交叉口车辆平均延误。
     ②提出了一种相邻交叉口交通信号协调控制算法
     该算法以中间路段车流量作为协调变量,综合交叉口各相位的交通流状况,确定候选绿灯相位,通过模糊推理确定是否延长当前绿灯相位。仿真结果表明该算法能有效减小交叉口的车辆平均延误。
     ③提出了一种干道交通信号两级协调控制算法
     该算法以相邻交叉口中间路段上的车流量为协调变量,对各相位绿灯延长时间进行调整。该算法突破了绿波带控制方法需要统一各交叉口信号周期长度的局限性。仿真结果表明,该方法比绿波带控制方法更有效减小交叉口的车辆平均延误。
     ④提出了一种区域交通信号分布式协调控制算法
     该算法根据分布式控制原则,不需要统一区域内交叉口的信号周期,而是根据相邻交叉口中间路段的车流量和本交叉口的交通流情况进行协调控制,提高了控制的灵活性和实时性。
     ⑤提出了基于遗传神经网络的短时交通流预测方法
     该预测方法以均方误差作为预测性能评价指标,同时考虑了交通流的时间相关性和空间相关性,并利用遗传算法优化网络的初始权值和阈值。预测结果表明了该方法的有效性。
     总之,本文在有机结合模糊逻辑、遗传算法和神经网络等人工智能理论的基础上,对城市交通信号控制进行了深入的研究,提高了控制的灵活性和实时性,有效减小了车辆平均延误。
The aggravation of urban traffic congestion becomes a social issue for the development of cities over the world, as it causes increased vehicle delay, frequent traffic accidents, and worsening environment. ITS (Intelligent Transportation System) is one importation solution to traffic congestion. Intelligent control of urban traffic signal is not only a hot issue of both automatic control and traffic engineering, but an important element of ITS. As a complex system of heavy nonlinearity, randomness, time-variability, urban traffic system is beyond the capability of traditional control method which is based on precise mathematical model, so increased importance is attached to artificial-intelligence method.
     In this thesis, in order to relieve traffic congestion, in-depth study on intelligent control of urban traffic signal is carried out based on the fusion of fuzzy logic, genetic algorithm, and artificial neural network.
     The main achievements in this thesis include:
     ①A traffic intensity-based control algorithm for isolated intersections is presented.
     This algorithm not only takes into account and the number of vehicles between the two detectors, but also the flow ratio, red signal duration. It breaks through the limitation that the inputs of fuzzy controller only include the number of vehicles between the two detectors. It objectively reflects the urgency degree of traffic flow in each phase. Simulation result shows that this algorithm is more effective in reducing the average delay.
     ②A coordination control algorithm is presented for two adjacent intersections.
     In this algorithm, traffic volume in the link of two adjacent intersections is the coordination variable. The next green phase is determined according to the traffic condition of each red phase. Fuzzy inference is carried out to determine whether to stop the current green phase. Simulation result shows that this algorithm is effective in reducing the average delay.
     ③A hierarchical coordination control algorithm for arterials is put forward.
     According to the concept of decomposition-coordination, traffic volume in the link of two adjacent intersections is the coordination variable. The coordination element modifies the extension of green signal according to coordination variable. This algorithm breaks through the limitation that all intersections are controlled with a same cycle which is applied in green-wave method. It improves the adaptability and real-time operation. Simulation result demonstrates that this algorithm is more effective in reducing vehicle delay.
     ④A distributed coordination control algorithm is presented for area traffic.
     According to the distributed control, it’s unnecessary to determine a common signal cycle for all intersections. The coordination control is carried out according to the traffic volume in the link of two adjacent intersections and the traffic condition of each intersection. This algorithm improves the adaptability and real-time operation.
     ⑤A control-orientated prediction algorithm for short-term traffic flow is presented.
     This algorithm takes into account the temporal and spatial relevancy of traffic flow, with mean-square error being the performance index. Genetic algorithm is applied to optimizing the initial weight and threshold. The prediction result indicates that this method outperforms the traditional BP neural networks in precision.
     In short, an in-depth study for urban traffic signal control is carried out by sufficiently synthesized fuzzy logic, GA and artificial neural network. The control adaptability and real-time property are both improved and average delay is reduced.
引文
[1]陈和,赵坚.从空间资源稀缺性视角探寻城市交通拥堵问题的成因及对策[J].生产力研究. 2007, (6): 88-89.
    [2]许光清.北京交通拥堵的外部性及其政府解决方法初探[J].地理科学进展. 2006, 25(4): 129-137.
    [3]王中亮.治理城市交通拥堵的对策思考——以上海为例[J].上海经济研究. 2006, (4): 76-81.
    [4]樊晓珂.城市交通拥堵问题研究[J].中国公共安全(学术版). 2007, (1): 48-51.
    [5] Shah A. A., Lee Jong. Intelligent Transportation Systems in Transitional and Developing Countries[J]. Aerospace and Electronic Systems Magazine, IEEE. 2007, 22(8): 27-33.
    [6]文国玮.城市交通与道路系统规划[M].北京:清华大学出版社, 2007.
    [7]科学网.科学引路畅通有日——交通科学与交通工程浅析[EB/01]. http://zjz.moc.gov.cn/dpinfo.php?infoid=1168, 2005-07-14.
    [8]中国新闻网.公安部发布05年中国道路交通事故统计分析数据[EB/01]. http://www.chinanews.com.cn/news/2006/2006-01-12/8/677258.shtml, 2006-03-25.
    [9]新华社.公安部:2006年全国共发生道路交通事故378781起[EB/01]. http://www.gov.cn/jrzg/2007-01/01/content_485740.htm, 2007-05-26.
    [10]公安部.与06年比07年道路交通事故减少五万余起[EB/01]. http://www.gov.cn/gzdt/2008-01/04/content_850284.htm, 2008-02-12.
    [11]环球网.日媒:交通拥堵让北京市民每天损失1.1元[EB/01]. http://news.xinhuanet.com/world/2007-12/24/content_7302554.htm, 2008-01-12.
    [12]哈尔滨新闻网.研究称美国每年因交通拥堵损失782亿美元[EB/01]. http://www.harbinnews.com/200709/20070919/20070919FC3B57B296E8851A8068BA5B32F59989.html, 2008-01-12.
    [13]新华网.巴西圣保罗每年因交通拥堵经济损失超24亿美元[EB/01]. http://www.chinanews.com.cn/gj/lmfz/news/2008/03-17/1194155.shtml, 2008-03-17.
    [14]李会.能源污染交通拥堵三难题考验汽车社会[EB/01]. http://www.bjee.org.cn/news/index.php?ID=2787, 2005-07-18.
    [15]栗红强.城市交通控制信号配时参数优化方法研究[D].长春:吉林大学. 2004.
    [16]刘智勇.智能交通控制理论及其应用[M].北京:科学出版社, 2003.
    [17]王秋凤.汽车消费的三道紧箍咒[EB/01]. http://biz.163.com/05/0422/13/1HUQRP9200021F25.html, 2005-07-20.
    [18]杨兆升.智能运输系统概论[M].北京:人民交通出版社, 2005.
    [19]吴兵李晔.交通管理与控制[M].北京:人民交通出版社, 2005.
    [20]张飞舟,范耀祖.交通控制工程--智能交通系统(ITS)系列丛书[M].北京:中国铁道出版社, 2005.
    [21]石建军,宋俪婧,于泉.现代交通控制相关技术的发展趋势分析[J].公路交通科技. 2006, (9): 113-117.
    [22]陈丹,高孝洪,张本.城市道路交叉口交通信号控制系统的发展及现状[J].交通科技. 2005, (6): 76-79.
    [23]钱勇生,王春雷.基于三群协同粒子群优化算法的区域交通控制[J].计算机工程与应用. 2007, (14): 187-189.
    [24]杨庆芳,陈林.交通控制子区动态划分方法[J].吉林大学学报. 2006, 36(2): 139-142.
    [25]尹宏宾,徐建闽.道路交通控制技术[M].广州:华南理工大学出版社, 2000.
    [26]段里仁.道路交通自动控制[M].北京:中国人民公安大学出版社, 1991.
    [27]刘智勇,梁渭清.城市交通信号控制的进展[J].公路交通科技. 2003, (6): 121-125.
    [28]刘红红,杨兆升.实施公交优先的交通信号控制系统中信号协调方法研究[J].交通运输系统工程与信息. 2007, (2): 114-118.
    [29]王波.城市道路交叉口交通组织与信号控制策略研究[D].吉林大学. 2005.
    [30]陈小锋,史忠科.基于遗传算法的交通信号动态优化方法[J].系统仿真学报. 2004, 16(6): 1155-1158.
    [31]杨立才,贾磊,王红.双交叉口两级模糊协调控制算法的研究[J].系统工程理论与实践. 2005, (6): 33-38.
    [32]沈国江,孙优贤.城市交通干线递阶模糊控制及其神经网络实现[J].系统工程理论与实践. 2004, (4): 99-106.
    [33]杜爱月.基于模糊控制的交通信号控制系统及仿真的研究[D].长安大学. 2004.
    [34]杨立才.城市道路交通智能控制策略的研究[D].山东大学. 2005.
    [35] Wong Y. K., Woon W. L. An iterative approach to enhanced traffic signal optimization[J]. Expert Systems with Applications. 2008, 34(4): 2885-2890.
    [36] Xu Jing, Yu Wen-Sheng, Yi Jian-Qiang, Tu Zhi-Shou. Traffic Signal Timing with Neural Dynamic Optimization: Advances in Natural Computation[z].Berlin: 2007:358-367.
    [37] Pau-Lo Hsu, Hsin-Han Liu. The multi-agent system with an adaptive-fuzzy algorithm for flow control of traffic networks[C]. IEEE International Conference on Systems, Man and Cybernetics, 2007: 3300-3304.
    [38] Nishikawa I., Iritani T., Sakakibara K. Improvements of the Traffic Signal Control by Complex-Valued Hopfield Networks[C]. International Joint Conference on Neural Networks,2006: 459-464.
    [39]戴红,杨兆升,肖萍萍.交通流诱导与控制协同优化模型的遗传算法求解[J].吉林大学学报. 2006, 36(3): 157-160.
    [40]徐猛华,黄笑鹃.基于单片机的自适应交通控制系统[J].计算机与现代化. 2003, (12): 97-99.
    [41]承向军,杨肇夏.基于多智能体技术的城市交通控制系统的探讨[J].北方交通大学学报. 2002, (5): 47-50.
    [42]段青.具有自组织能力的道路交通信号灯控制系统[J].中南民族大学学报(自然科学版). 2004, (3): 64-67.
    [43]张晓利.基于小波分析与神经网络的交通流短时预测方法[J].信息与控制. 2007, 36(4): 467-471.
    [44]董超俊,刘智勇.多层混沌神经网络及其在交通量预测中的应用[J].系统仿真学报. 2007, 19(19): 4450-4453.
    [45] Celikoglu Hilmi Berk, Cigizoglu Hikmet Kerem. Public transportation trip flow modeling with generalized regression neural networks[J]. Advances in Engineering Software. 2007, 38(2): 71-79.
    [46]郭璘,方廷健,叶加圣.基于GGA的RBF神经网络及其在交通信息预测中的应用[J].模式识别与人工智能. 2006, 19(6): 831-835.
    [47]曹洁,苏玉萍,吴国龙,王芬.城市交通信号灯两级模糊控制及仿真研究[J].交通与计算机. 2007, (1): 82-85.
    [48]马永红,广晓平,马昌喜.混合交通路口动态多级模糊信号控制[J].兰州交通大学学报. 2007, 26(4): 25-28.
    [49]臧利林,贾磊,杨立才,林忠琴.基于改进GA的城市交通模糊控制研究[J].系统工程理论与实践. 2006, (10): 113-118.
    [50] Yi Hu, Thomas Peter, Stonier Russel J. Traffic signal control using fuzzy logic and evolutionary algorithms[C]. IEEE Congress on Evolutionary Computation, 2007, 2007: 1785-1792.
    [51] Murat Y. Sazi, Gedizlioglu Ergun. A fuzzy logic multi-phased signal control model for isolated junctions[J]. Transportation Research Part C, 2005, (13): 19-36.
    [52]彭力,王巍.利用改进型遗传算法实现两路口交通灯控制[J].计算机应用. 2007, (4): 994-996.
    [53]杨兆升,刘喜敏,卢守峰.基于混合遗传算法的多Agent交通控制系统[J].交通运输系统工程与信息. 2006, (1): 64-68.
    [54]刘智勇,李水友.基于免疫遗传算法的区域交通自适应协调控制[J].控制理论与应用.2006, (1): 119-125.
    [55]承向军,贺振欢,杨肇夏.基于遗传算法的交通信号机器学习控制方法[J].系统工程理论与实践. 2004, (8): 130-135.
    [56] Gang Tong, Fengying Cui, Chunling Fan. Genetic Algorithm and Its Application in the Realtime Traffic Signal Optimization Control[C]. 6th International Conference on ITS Telecommunications Proceedings, 2006: 86-89.
    [57] Lee Jinwoo, Abdulhai Baher, Shalaby Amer, Chung Eui- Hwan. Real-Time Optimization for Adaptive Traffic Signal Control Using Genetic Algorithms[J]. Journal of Intelligent Transportation Systems. 2005, 9(3): 111-122.
    [58]徐雪松,何珍梅,景玉军.城市交通信号免疫自适应控制[J].南昌大学学报. 2007, (2): 186-189.
    [59]程博,郭振宇,王军平,曹秉刚.一种并行免疫进化策略算法研究[J].控制与决策. 2007, (12): 1395-1399.
    [60]尚荣华,焦李成,公茂果,马文萍.免疫克隆算法求解动态多目标优化问题[J].软件学报. 2007, (11): 2700-2711.
    [61]吴燕玲,卢建刚,孙优贤.基于免疫原理的差分进化[J].控制与决策. 2007, (11): 1309-1312.
    [62] Tumwiine J., Mugisha J. Y., Luboobi L. S. On global stability of the intra-host dynamics of malaria and the immune system[J]. Journal of Mathematical Analysis and Applications. 2008, 341(2): 855-869.
    [63] Tan K. C., Goh C. K., Mamun A. A., Ei E. Z. An evolutionary artificial immune system for multi-objective optimization[J]. European Journal of Operational Research. 2008, 187(2): 371-392.
    [64]承向军,杜鹏,杨肇夏.基于多智能体的分布式交通信号协调控制方法[J].系统工程理论与实践. 2005, (8): 130-135.
    [65]于德新,杨兆升,王媛,孙建平.基于多智能体的城市道路交通控制系统及其协调优化[J].吉林大学学报(工学版). 2006, (1): 113-118.
    [66] Adler Jeffrey L., Satapathy Goutam, Manikonda Vikram, Bowles Betty, Blue Victor J. A multi-agent approach to cooperative traffic management and route guidance[J]. Transportation Research Part B: Methodological. 2005, 39(4): 297-318.
    [67]沈国江,孙优贤.面向控制的城市交通网络宏观动态模型[J].浙江大学学报(工学版). 2005, (10): 1485-1490.
    [68]陈昕,杨兆升,王海洋,刘新杰,王彦新.城市交通控制与诱导系统协同研究[J].公路交通科技. 2007, (4): 121-125.
    [69] Teklu Fitsum, Sumalee Agachai, Watling David. A Genetic Algorithm Approach for Optimizing Traffic Control Signals Considering Routing[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, (22): 31-43.
    [70]朱茵,陆化普.城市交通控制系统发展趋势[J].综合运输. 2003, (12): 48-50.
    [71]王殿海.交通流理论[M].北京:人民交通出版社, 2002.
    [72]任福田,刘小明,荣建.交通工程学[M].北京:人民交通出版社, 2005.
    [73]董超俊,刘智勇,邱祖廉.城市交通控制智能优化配时及仿真[J].系统仿真学报. 2005, (2): 472-475.
    [74]翟润平,周彤梅.道路交通控制原理及应用[M].北京:中国人民公安大学出版社, 2002.
    [75]卢凯.不同交通流状况下的交叉口信号控制策略[J].公路交通科技. 2006, 23(4): 128-132.
    [76]杨佩昆,吴兵.交通管理与控制[M].北京:人民交通出版社, 2003.
    [77]乔健,宣慧玉,姜锦虎.基于完全竞争机制的交叉口模糊控制模型[J].系统工程理论方法应用. 2006, 15(2): 116-122.
    [78]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社, 2003.
    [79] P Pappis C., H Mamdani E. A Fuzzy Logic Controller for a Traffic Junction[J]. IEEE Trans on Systems, Man, and Cybernetics, 1977, (10): 707-717.
    [80]徐冬玲,方建安.交通系统的模糊控制及其神经网络实现[J].信息与控制. 1992, 21(2): 74-79.
    [81] Niittymaki Jarkko. Fuzzy logic two-phase traffic signal control for coordinated one-way streets[C]. Proceedings of the 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, 1999: 69-74.
    [82] Chiu S. Adaptive traffic signal control using fuzzy logic[C]. Proceedings of the Intelligent Vehicles '92 Symposium, 1992: 98-107.
    [83] Diakaki Christina, Papageorgiou Markos, Aboudolas Kostas. A multivariable regulator approach to traffic-responsive network-wide signal control[J]. Control Engineering Practice, 2002, (10): 183-195.
    [84]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    [85]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社, 2003.
    [86]雷英杰,张善文,李续武,周创明. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005.
    [87]张文修.遗传算法的数学基础[M].西安:西安交通大学出版社, 2004.
    [88] Halim Ceylan Michael G. H. Bell. Traffic signal timing optimisation based on geneticalgorithm approach, including drivers’routing[J]. Transportation Research Part B. 2004, (38): 329-342.
    [89] Zuyuan Yang, Xiyue Huang, Hongfei Liu, Changcheng Xiang. Multi-phase Traffic Signal Control for Isolated Intersections Based on Genetic Fuzzy Logic[C]. The Sixth World Congress on Intelligent Control and Automation, 2006: 3391-3395.
    [90] Yu-Chiun Chiou,LawrenceWLao. Adaptive traffic signal control with iterative genetic fuzzy logic controller[C]. Taipei, Taiwan: Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, 2004: 287-292.
    [91] Chang S. C., Tsai M. W., Huang G. W. A GA based Intelligent Traffic Signal Scheduling Model[C]. IEEE Symposium on Computational Intelligence in Scheduling, 2007: 93-97.
    [92] Junxia Gao, Jiangeng Li, Xiaohua Zhao, Yangzhou Chen. Two-stage fuzzy control of urban isolated intersection signal for complex traffic conditions[C]. Fifth World Congress on Intelligent Control and Automation, 2004: 5287-5291.
    [93] Hawas Yaser E. A fuzzy-based system for incident detection in urban street networks[J]. Transportation Research Part C: Emerging Technologies. 2007, 15(2): 69-95.
    [94] Zeng Ruili, Zeng Ruili, Li Gang, Lin Ling. Adaptive Traffic Signals Control by Using Fuzzy Logic[C]. Second International Conference on Innovative Computing, Information and Control, 2007: 527-527.
    [95]陈洪,陈森发.单路口交通实时模糊控制的一种方法[J].信息与控制. 1997, (3): 227-233.
    [96] Nair B. M., Nair B. M., Cai J. A fuzzy Logic Controller for Isolated Signalized Intersection with Traffic Abnormality Considered[C]. IEEE Intelligent Vehicles Symposium, 2007: 1229-1233.
    [97] Hsing-Han Liu, Pau-Lo Hsu. Design and Simulation of Adaptive Fuzzy Control on the Traffic Network[C]. SICE-ICASE, 2006. International Joint Conference, 2006: 4961-4966.
    [98] Pitu B. Mirchandani, Ning Zou. Queuing Models for Analysis of Traffic Adaptive Signal Control[J]. IEEE Transactions on Intelligent Transportation Systems. 2007, 8(1): 50-59.
    [99]张兴华.基于递阶遗传算法的模糊控制器的规则生成和参数整定[J].信息与控制. 2006, 35(3): 304-309.
    [100] Valadan Zoej M., Mokhtarzade M., Mansourian A., Ebadi H., Sadeghian S. Rational function optimization using genetic algorithms[J]. International Journal of Applied Earth Observation and Geoinformation. 2007, 9(4): 403-413.
    [101] Kumar Sushil, Naresh R. Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem[J]. International Journal of Electrical Power & Energy Systems. 2007, 29(10): 738-747.
    [102] Stanimirovic Zorica, Kratica Jozef, Dugosija Djordje. Genetic algorithms for solving the discrete ordered median problem[J]. European Journal of Operational Research. 2007, 182(3): 983-1001.
    [103] Ballester Pedro J., Carter Jonathan N. A parallel real-coded genetic algorithm for history matching and its application to a real petroleum reservoir[J]. Journal of Petroleum Science and Engineering. 2007, 59(3): 157-168.
    [104] Chen K. J., Ji P. A genetic algorithm for dynamic advanced planning and scheduling (DAPS) with a frozen interval[J]. Expert Systems with Applications. 2007, 33(4): 1004-1010.
    [105] Alcala Rafael, Alcala-Fdez Jesus, Herrera Francisco, Otero Jose. Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation[J]. International Journal of Approximate Reasoning. 2007, 44(1): 45-64.
    [106] Begum Momotaz, Mann George K., Gosine Raymond G. Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots[J]. Applied Soft Computing. 2008, 8(1): 150-165.
    [107] Chen Shyi-Ming, Huang Chung-Ming. A new approach to generate weighted fuzzy rules using genetic algorithms for estimating null values[J]. Expert Systems with Applications. 2007, 33(6): 1685-1694.
    [108] Park Keon-Jun, Pedrycz Witold, Oh Sung-Kwun. A genetic approach to modeling fuzzy systems based on information granulation and successive generation-based evolution method[J]. Simulation Modelling Practice and Theory. 2007, 15(9): 1128-1145.
    [109] Jean Ming-Der, Lin Bor-Tsuen, Chou Jyh-Horng. Design of a fuzzy logic approach based on genetic algorithms for robust plasma-sprayed zirconia depositions[J]. Acta Materialia. 2007, 55(6): 1985-1997.
    [110] Cuomo Pietro, Di Lascio Luigi. A New Fuzzy Systems Design and Optimization Approach Using Genetic Algorithms[C]. IEEE International Fuzzy Systems Conference, 2007: 1-6.
    [111] Majumdar J., Bhunia A. K. Elitist genetic algorithm for assignment problem with imprecise goal[J]. European Journal of Operational Research. 2007, 177(2): 684-692.
    [112] Srinivas M., Srinivas M., Patnaik L. M. Adaptive probabilities of crossover and mutation in genetic algorithmsAdaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics. 1994, 24(4): 656-667.
    [113]李灵犀,高海军,王飞跃.两相邻路口交通信号的协调控制[J].自动化学报. 2003, 29(6): 947-952.
    [114] Wei Cheng, Xiaolan Liu, Wenfeng Zhang. An Optimal Adaptive Traffic Signal Control Algorithm for Intersections Group[C]. The Sixth World Congress on Intelligent Control andAutomation, 2006: 8683-8686.
    [115] Dinopoulou Vaya, Diakaki Christina, Papageorgiou Markos. Application and Evaluation of the Signal Traffic Control Strategy TUC in Chania[J]. Journal of Intelligent Transportation Systems. 2005, 9(3): 133-143.
    [116] Dotoli Mariagrazia, Fanti Maria Pia, Meloni Carlo. A signal timing plan formulation for urban traffic control[J]. Control Engineering Practice. 2006, 14(11): 1297-1311.
    [117] NHGartner,CStamatiadis. Progression Optimization Featuring Arterial-and Route-Based Priority Signal Networks[J]. Journal of Intelligent Transportation Systems. 2004, (8): 77-86.
    [118] Meenakshy Vasudevan,Gang-LenChang. Design and Development of an Integrated Arterial Signal Control Model[C]. TRB 2006 Annual Meeting, 2006: 1-27.
    [119] Haruko Fujii, Hikaru Shimizu, Masa-aki Kobayashi, Kazuo Kawakubo. An Optimal Signal Control along Two-Way Traffic Arterials[C]. SICE-ICASE, 2006. International Joint Conference, 2006: 120-125.
    [120] Ruimin Li, Huapu Lu. Research of Arterial Traffic Coordinated Fuzzy Control Model Based on Genetic Algorithm[C]. The Sixth World Congress on Intelligent Control and Automation, 2006: 8597-8601.
    [121]沈国江.城市区域交通智能分散控制研究[J].浙江大学学报(工学版). 2006, (4): 585-589.
    [122]李艳,樊晓平.基于模糊控制的城市交叉路口群信号控制及仿真[J].交通运输工程学报. 2003, 3(2): 117-119.
    [123]刘智勇,李水友.基于免疫遗传算法的区域交通自适应协调控制[J].控制理论与应用. 2006, (1): 119-125.
    [124] Spyropoulou Ioanna. Modelling a signal controlled traffic stream using cellular automata[J]. Transportation Research Part C: Emerging Technologies. 2007, 15(3): 175-190.
    [125] Dinopoulou Vaya, Papageorgiou Christina Diakaki and Markos. Applications of the urban traffic control strategy TUC[J]. European Journal of Operational Research, 2006, 175(3): 1652-1665.
    [126]莫汉康,彭国雄,云美萍.诱导条件下交通控制子区自动划分[J].交通运输工程学报. 2002, 2(2): 67-72.
    [127] Chiou Suh-Wen. An efficient computation algorithm for area traffic control problem with link capacity expansions[J]. Applied Mathematics and Computation. 2007, 188(12): 1094-1102.
    [128] Chiou Suh- Wen. An iterative scheme for signal settings and network flows[J]. Applied Mathematics and Computation. 2007, 189(2): 1808-1815.
    [129] Kashani H. R., Saridis G. N. Intelligent control for urban traffic systems[J]. Automatica. 1983, 19(2): 191-197.
    [130] Diakaki Christina, Papageorgiou Markos, McLean Tom. Simulation studies of integrated corridor control in Glasgow[J]. Transportation Research Part C: Emerging Technology. 1997, 5(4): 211-224.
    [131] Wey Wann-Ming. Model formulation and solution algorithm of traffic signal control in an urban network[J]. Computers, Environment and Urban Systems. 2000, 24(4): 355-378.
    [132] Chang Tang-Hsien, Sun Guey-Yin. Modeling and optimization of an oversaturated signalized network[J]. Transportation Research Part B. 2004, (38): 687-707.
    [133] Wakasa Y., Hanaoka K., Iwasa T., Tanaka K. Modeling for control of traffic signal systems[C]. Proceedings of 2005 IEEE Conference on Control Applications, 2005: 1594-1599.
    [134] Shi Xiao-Qiu, Wu Yi-Qi, Li Hong, Zhong Rui. Second-order phase transition in two-dimensional cellular automaton model of traffic flow containing road sections[J]. Physica A: Statistical Mechanics and its Applications. 2007, 385(2): 659-666.
    [135] Sun Tengda, Wang Jinfeng. A traffic cellular automata model based on road network grids and its spatial and temporal resolution's influences on simulation[J]. Simulation Modelling Practice and Theory. 2007, 15(7): 864-878.
    [136] Meng Jian-ping, Dai Shi-qiang, Dong Li-yun, Zhang Jie-fang. Cellular automaton model for mixed traffic flow with motorcycles[J]. Physica A: Statistical Mechanics and its Applications. 2007, 380(1): 470-480.
    [137] Liang Zhao, Fei-Yue Wang. Short-term traffic flow prediction based on ratio-median lengths of intervals two-factors high-order fuzzy time series[C]. IEEE International Conference on Vehicular Electronics and Safety, 2007: 1-7.
    [138] Yadav R. N., Kalra P. K., John J. Time series prediction with single multiplicative neuron model[J]. Applied Soft Computing. 2007, 7(4): 1157-1163.
    [139] Vlahogianni Eleni I., Karlaftis Matthew G., Golias John C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume[J]. Transportation Research Part C: Emerging Technologies. 2006, 14(5): 351-367.
    [140] Jiansheng Liu, Jiansheng Liu, Hui Fu, Xinxing Liao. Combination Prediction for Short-term Traffic Flow Based on Artificial Neural Network[C]. The Sixth World Congress on Intelligent Control and Automation, 2006, 2006: 8659-8663.
    [141] Zhou Xuesong, Mahmassani Hani S. A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework[J].Transportation Research Part B: Methodological. 2007, 41(8): 823-840.
    [142] Doblas Javier, Benitez Francisco G. An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix[J]. Transportation Research Part B: Methodological. 2005, 39(7): 565-591.
    [143] In-nami Junji, Toyoki Hiroyasu. A two-dimensional CA model for traffic flow with car origin and destination[J]. Physica A: Statistical Mechanics and its Applications. 2007, 378(2): 485-497.
    [144]高海军.城市交通信号控制研究[D].中国科学院自动化研究所. 2005.
    [145]史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报. 2004, 4(4): 68-72.
    [146]王均,关伟.基于Kalman滤波的城市环路交通流短时预测研究[J].交通与计算机. 2006, 24(5): 16-19.
    [147] Smith Brian L., Williams Billy M., Keith Oswald R. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies. 2002, 10(4): 303-321.
    [148] Kucuk Ilker, Derebasi Naim. Prediction of power losses in transformer cores using feed forward neural network and genetic algorithm[J]. Measurement. 2006, 39(7): 605-611.
    [149] Oktem Hasan, Erzurumlu Tuncay, Erzincanli Fehmi. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm[J]. Materials & Design. 2006, 27(9): 735-744.
    [150]姚亚夫,曹锋.基于ARIMA的交通流量短时预测[J].交通科技与经济. 2006, (3): 105-107.
    [151]韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报. 2004, (7): 1530-1533.
    [152] Guoqiang Yu, Changshui Zhang. Switching ARIMA model based forecasting for traffic flow[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 2004: 429-432.
    [153]高慧,赵建玉,贾磊.短时交通流预测方法综述[J].济南大学学报(自然科学版). 2008, 22(1): 87-94.
    [154] Herrera L. J., Pomares H., Rojas I., Guillen A., Gonzalez J., Awad M., Herrera A. Multigrid-based fuzzy systems for time series prediction: CATS competition[J]. Neurocomputing. 2007, 70(13-15): 2410-2425.
    [155]杨宏韬,张德江,李秀兰,王秀英.遗传神经网络能耗预测模型在钢铁企业中的应用[J].长春工业大学学报:自然科学版. 2007, 28(7): 186-189.
    [156]薛小兰,温秀兰,张鹏.基于遗传神经网络的机械振动信号预测[J].弹箭与制导学报. 2007, 27(3): 239-240.
    [157]余正红,李志博,尹朝庆.基于遗传神经网络的货运量预测的研究与实现[J].交通与计算机. 2006, 24(5): 93-95.
    [158]龚安,王霞,姜焕军.基于遗传算法的BP神经网络在油田措施规划预测中的应用[J].计算机系统应用. 2006, (11): 21-24.
    [159] Gandhidasan P., Mohandes Mohamed A. Predictions of vapor pressures of aqueous desiccants for cooling applications by using artificial neural networks[J]. Applied Thermal Engineering. 2008, 28(2-3): 126-135.
    [160] Yu Shiwei, Zhu Kejun, Diao Fengqin. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction[J]. Applied Mathematics and Computation. 2008, 195(1): 66-75.
    [161] Vlahogianni Eleni I., Karlaftis Matthew G., Golias John C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach[J]. Transportation Research Part C: Emerging Technologies. 2005, 13(3): 211-234.
    [162]吴浩勇,丛玉良,王宏志.基于神经网络的交通参数预测方法[J].吉林大学学报. 2005, 23(6): 569-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700