用户名: 密码: 验证码:
视觉失真与图像信息隐藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息社会,数据无处不在。如何安全的分发和访问数据,日益重要。信息隐藏能够不引起监听者或者攻击者察觉的将信息隐匿于载体之中,可以不增加通信负担,因而常用于数字版权管理、隐蔽通信和通信数据纠错等方面。信息隐藏必须满足失真约束条件,在水印的不可见性和鲁棒性之间寻求最佳平衡。于是,对于以图像为载体的水印系统,确定合理的视觉失真约束条件至关重要。
     本文从视觉感知机理出发,提出了层次化、多通道的视觉失真模型。将视觉失真分为信号层失真和内容层失真,内容层失真又分为纹理失真和结构失真。对这几类失真分别建模,以指导嵌入水印过程中的图像失真控制。为此,本文从四个方面展开研究:
     第一,信号层失真。前人研究表明:在两幅图像的刺激下,如果复杂细胞的视觉皮层神经元保持响应相同,那么人脑难以察觉两幅图像之间的差异。据此,本文通过独立子空间分析来模拟神经元响应,提出借助具有能量无损特点的角度量化调制方式将水印嵌入到图像的独立子空间系数中。该方案一方面具有天然的低失真特点,另一方面得益于角度量化机制而能够抵御图像的亮度缩放攻击。
     第二,图像的结构与纹理分解。结构和纹理是视觉信号特有的两类成分。结构体现为图像的大尺度的、连贯的边界和轮廓,它表达场景的概貌和景物的形态;纹理反映为零碎的、有规律或无规律的信号抖动区域或者平整的区域,它表现景物表面的质地和光影效果。区分图像的结构和纹理是讨论内容层失真的基础。本文依据稀疏编码原则,改进了基于基元竞争性表达的图像分解方法,以满足后续失真分析和水印算法的需要。
     第三,纹理失真。图像纹理一直被认为是适合信息隐藏的区域。纹理感知的心理学研究和计算机图形学的纹理合成研究表明:特征的高阶统计量是纹理辨识的关键因素。然而在实践中,高阶统计量的非线性特性使得它难以作为失真度量指导水印嵌入。为此,本文采用统计特征设计了线性的失真度量近似方法,在其指导下嵌入水印,能够充分的提高水印嵌入强度,从而提高水印的容量。
     第四,结构失真。正如几何攻击所展现,图像扭曲有时并不造成明显失真,这说明存在一个关于图像结构的无失真空间。利用这个空间可以辅助嵌入水印,并使水印具有抗合谋攻击的能力。结构感知的相关理论指出,人类对大范围结构信息的感知要优先于或者敏感于局部的结构信息。本文依据大尺度优先原则来定义图像的结构失真,并充分的扭曲图像,以达到嵌入水印的目的。
     本文在提出的视觉失真理论的基础上,改进了图像水印算法的性能。图像水印被纳入到能量最小化的框架之下,成为了在不可见性和鲁棒性二者之间寻求平衡的双目标优化问题。该框架一方面兼顾了纹理失真和结构失真的约束,另一方面统一了扩频调制水印和量化调制水印。改进后的图像水印,既不易被察觉,又能够抵御压缩、滤波、亮度缩放以及合谋攻击,从而提高了水印容量。本文提出的视觉失真理论对于其它视觉创意应用也有指导意义。这些应用包括图像补全、融合、修复等编辑工作。
Data is ubiquitous in information society. Secure distribution and access of data become increasingly important. Information hiding, which can embed messages into cover works without arousing the attention from eavesdroppers or attackers, dose not increase the payload of communication, and hence is used for digital rights management, covert communication, error resilient and etc. Information hiding must satisfy the distortion constraint and seek a tradeoff between the invisibility and the robustness of watermark. Therefore, it is crucial for image-based-watermarking to determine a reasonable visual distortion constraint.
     Starting from the laws of visual perception, this thesis proposes a hierarchical, multi-channel model of visual distortion. The visual distortion is layered into signal distortion and content distortion, and the latter is decomposed into textural distortion and structural distortion. Under the models of all the distortion categories, image distortion can be controlled during watermarking. To this end, this thesis carries out research in four aspects.
     At first, signal distortion. The previous studies show that, visual distortion is not perceivable when the response of a complex cell is kept invariant between the stimuli of two images. Therefore, characterizing neural responses by independent subspace analysis, this thesis proposes to embed watermarks into ISA coefficients of the cover image by energy-conserving hiding code of angle quantization index modulation. This approaches presents intrinsically low distortion, and is robust against valumetric attack because of angle quantization.
     Secondly, image decomposition into structure and texture. The structure and the texture are the particular components of visual data. The structure, as the sketch of scene and the shape of object, includes large-scale, continuous edges and contours, while texture, as the surface character or illumination effects, contains fragmentary, regulated or unregulated oscillatory regions as well as smooth regions. Discrimination between the structure and the texture is the foundation of discussion on content distortion. According to principles of sparse coding, this thesis improves the image decomposition approach which is based on completive representation by corresponding bases, so as to meet the requirement of distortion analysis and watermarking schemes.
     Then, texture distortion. Texture has been regarded as suitable region for information hiding. Psychology research on texture perception and graphical study about texture synthesis show that high order statistics of feature are key clues for texture recognition. However, due to its nonlinearity, high order statistics is hard to guide the distortion metric for watermarking. Therefore, this thesis design a linear proximate distortion metric based on statistical feature, under the guidance of which watermark intensity can be increased efficiently, and watermark capacity too.
     At last, structure distortion. As the geometrical attack shown, image warping may incurs no perceptible distortion, which proves the existence of structurally undistorted image space. Within the space, watermark can be hidden and endowed with robustness against collusion attack. The theory on structure perception shows that human is prefer to perceive or more sensible to large-scale structure rather than local one. According to the large-scale priority principle, this thesis defines the structure distortion, and embedding watermarking by image warping.
     Based on the proposed theory of visual distortion, this thesis focuses on the improvement of watermarking schemes. Watermarking is united into a framework of energy minimization, and posed as a biobjective optimization problem for a tradeoff between the invisibility and the robustness. In the framework, constraint about texture distortion and structure distortion are both considered, meanwhile, spread spectrum modulation watermark and quantization index modulation watermark are unified. The improved watermarking is both imperceptible and robust against compression, filtering valumetric scaling and collusion attack, and thus offers high capacity. Moverover, the proposed theory of visual distortion is also useful for other visual creative application, including image completion, blending, inpainting and etc.
引文
[1]Hembrooke E F.Identification of sound and like signals,United States Patent 3,004,104,1961.
    [2]Rosenblatt B.2007 year in review,part 2.Dec.2007,http://www.drmwatch.com/watermarking/article.php/3718651
    [3]Petitolas F A P,Anderson R J.,Kuhn M G.Information hiding—a survey.Proceedings of the IEEE,1999,87(7):1062-1077.
    [4]Sieberg D.Bin Laden exploits technology to suit his needs.http://archives.cnn.corn/2001/US/09/20/inv.terrorist.search/
    [5]柏森,胡中豫,吴乐华等.通信信息隐匿技术.北京:国防工业出版社.2005.第7页.
    [6]Wang T S.,Chang P-C.,Tang C-W.,et al.An error detection scheme using data embedding for H.263 compatible video coding.ISO/IEC JTC1/SC29/WG 11MPEG99/N6340,July 2000.
    [7]Zhou P.,He Y.A fragile watermark error detection scheme for JVT.In:Proc.2003 Int.Symp.Circuits and Systems(ISCAS'03),2003,2:956-958.
    [8]Yilmaz A.,Alatan A A.,Error detection and concealment for video transmission using information hiding.Image Communication,2008,23(4):298-312.
    [9]Moulin P.,Koetter R.Dam-hiding codes.Proceeding of the IEEE,2005,93(12):2083-2126.
    [10]Cox I J.,Killian J.,Leighton F T.,et al.Secure spread spectrum watermarking for multimedia.IEEE Trans.Image Process.,1997,6(12):1673-1687.
    [11]Chen B.,Womell G.W.Quantization index modulation methods:A class of provably good methods for digital watermarking and information embedding.IEEE Trans.Inf.Theory,2001,47(4):1423-1443.
    [12]Chou J.,Pradhan S S.,Ramchandran,On the duality between distributed source coding and data hiding.In:Proc.33rd Asilomar Conf.1999,1503-1507.
    [13]Barron R J.,Chen B.,Womell G W.The duality between information embedding and source coding with side information and some applications.IEEE Trans.Inf.Theory,2003,49(5):1159-1180.
    [14]Ettinger J M.Steganalysis and game equilibria.In:Proc.1998 Workshop on Information Hiding (Lecture Notes in Computer Sciences). Berlin, Germany:Springer-Verlag, 1998.
    [15] Moulin P., O'Sullivan J A. Information-theoretic analysis of information hiding.IEEE Trans. Inf. Theory, 2003,49(3): 563-593.
    [16] Daugmann J G.. Two-dimensional spectral analysis of cortical receptive field profile. Vision Research, 1980,20: 847-856.
    
    [17] Julesz B. Visual pattern discrimination. IRE Trans. Inf. Theory, 1962, 8: 84-92.
    [18] Desolneux A., Moisan L., Morel J M. From Gestalt theory to image analysis a probabilistic approach. Springer, 2008.
    [19] Heeger D J., Teo P C. A model of perceptual image fidelity. In: Proc. IEEE Int. Conf. Image Processing, 1995,343-345.
    [20] Cohen M., Grossberg S. Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance. Percept. Psychophys., 1984,36:428-456.
    [21] Balakrishnan N., Hariharakrishnan K., Schonfeld D., A new image representation algorithm inspired by image submodality models, redundancy reduction, and learning in biological vision. IEEE Trans. Pattern Analysis Machine Intelligence,2005, 27(9):1367-1378.
    
    [22] Hyvainen A, Hoyer P O., Hum J., et al. Statistical models of images and early vision. In: Proc. of AKRR'05, Int'l and Interdisciplinary Conf. on Adaptive Knowledge Representation and Reasoning, 2005,1-14.
    [23] Zhu S C., Wu Y N., Mumford D B. Filter, Random fields, and Maximum Entropy (FRAME) - towards a unified theory for texture modeling," Int'l Journal of Computer Vision, 1998,27:1-20.
    [24] Zhu S. C. Statistical modeling and conceptualization of visual patterns. IEEE Trans. Pattern Analysis Machine Intelligence, 2003,25(6): 691-712.
    [25] Sheikh H R., Bovik A C. Image information and visual quality. IEEE Trans. Image Process., 2006, 15(2): 430-444.
    [26] Marr D. Vision, W. H. Freeman and Company, 1982. (姚国正译,视觉计算理论,北京:高等教育出版社, 1988)
    [27] Hansen T. A neural model of early vision: contrast, contours, corners and surfaces - Contribution toward and integrative architecture of form and brightness perception. Ph.D Dissertation, 2002.
    
    [28] Kandel E R., Scharz J R., Jessell T M. Principles of neural science. New York:Elsevier, 3rd edn. 1991.
    [29] Hubel D H., Wiesel T N. Receptive fields, binocular interaction and functional architexture in the cat's visual cortex. J. Physiol., 1962, 160: 106-154.
    [30]Hubel D H.,Wiesel T N.Receptive fields and functional architecture of monkey striate cortex.J.Physiol.,1968,195:215-243.
    [31]Hubel D H.,Wiesel T N.Uniformity of monkey striate cortex:parallel relationship between field size,scatter,and magnification factor.J.Comp.Neurol.,1974,158:295-306.
    [32]Hubel D H.,Wiesel T N.Functional architecture of macaque monkey visual cortex.In:Proc.Royal Society ser.B,1977,198:1-59.
    [33]Daugman J G.Two-dimensional spectral analysis of cortical receptive field profiles.Vision Research,1980,20:847-856.
    [34]Daugman J.G.Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two-dimensional visual cortical filters.J.Opt.Soc.Am.(A),1985,2(7):1160-1169.
    [35]Pollen D.,Ronner S.Visual cortical neurons as localized spatial frequency filter.IEEE Trans.Syst.,Man,Cybem.,1983,13:907-916.
    [36]Gabor D.Theory of communication.IEEE Part Ⅲ,1946,93(26):429-457.
    [37]vonder Heydt R.Form analysis in visual cortex.In:Gazzaniga M S.editor,The Cognitive Neurosciences,Cambridge MA:MIT Press,1995,365-382.
    [38]Heeger,D.Normalization of cell responses in cat striate cortex.Visual Neuroscience,1992,9:181-198.
    [39]Bell A.,Sejnowski T.The "independent components" of natural scenes are edge filters.Vision Research,1997,37:3327-3338.
    [40]van Hateren J H.,van der Schaaf A.Independent component filters of natural images compared with simple cells in primary visual cortex.In:Proc.Royal Society ser.B,1998,265:359-366.
    [41]Field D J.What is the goal of sensory coding? Neural Comput.,1994,6:559-601.
    [42]Hyv(a|¨)rinen A.,Karhunen J.,Oja E.Independent Component Analysis.John Wiley & Sons,2001.(周宗谭,董国华 徐昕等译,独立分量分析,北京:电子工业出版社,2007.)
    [43]Olshausen B A.,Field D J.Emergence of simple cell receptive field properties by learning a sparse code for natural images.Nature,1996,381(6583):607-609.
    [44]Bell A J.,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution.Neural Computation,1995,7:1129-1159.
    [45]Atick J J.Entropy minimization:A design principle for sensory perception? Int'1Journal of Neural Systems,1992,3:81-90.
    [46]Hyv(a|¨)rinen A.Fast and robust fixed-point algorithms for independent component analysis.IEEE Trans.on Neural Networks,1999,10(3):626-634.
    [47]Hyv(a|¨)rinen A.,Hoyer P O.Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 2000, 12(7): 1705-1720.
    [48] Costa M. Writing on Dirty Paper. IEEE Trans. Inf. Theory, May 1983, 29(3):439-441.
    [49] Chen B., Wornell G. W. Provably Robust Digital Watermarking. In: Proc. of SPIE:Multimedia Systems and Applications Ⅱ, 1999,3845(2): 43-54.
    [50] Conway J H., Sloane N J A. Sphere packings, lattices, and groups. New York:Springer-Verlag, 1988.
    [51] B. Chen, Design and analysis of digital watermarking, information embedding, and data hiding systems," Ph.D Thesis, Massachusetts, USA: Massachusetts Institute of Technology, June 2000.
    [52] Alturki F., Mersereau R. Robust oblivious digital watermarking using image transform phase modulation. In: Proc. IEEE Int'l Conf. Image Processing, 2000,2: 84-87.
    [53] Ourique F., Licks V., Jordan R., et al. Angle QIM: a novel watermark embedding scheme robust against amplitude scaling distortions. In: IEEE Int'l Conf.Acoustics, Speech, and Signal Processing, 2005, 2: ii/797-ii/800,.
    [54] Ourique F., Licks V., Jordan R. Angle QIM: on document to watermark ratio analysis. In: Int. Symposium Signal Processing and Its Applications, 2005, 1:111-114.
    [55] Watson A B. DCT quantization matrices visually optimized for individual images.In: Human Vision, Visual Proc., and Digital Display IV, Proc. SPIE, 1993, 1913:202-216.
    [56] Cohen M., Grossberg S. Neural dynamics of brightness perception: features boundaries, diffusion, and resonance. Percept. Psychophys., 1984, 36: 428-456.
    [57] Grossberg S., Todorovic D. Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena. Percept.Psychophys., 1988,43: 241-277.
    [58] Rogers-Ramachandran D C., Ramachandran V S. Psychophysical evidence for boundary and surface systems in human vision. Vision Research, 1998, 38:71-77.
    [59] Prazdny K. Illusory contours are not caused by simultaneous brightness contrast. Percept. Psychophys., 1983, 34(4):403-404.
    [60] Shapley R., Gordon J. A nonlinear mechanism for the perception of form. In: Investigative Ophthalmology and Visual Science 24 (Supplement), 1983, p. 238.
    [61] Shapley R., Gordon J. The existence of interpolated illusory contours depends on contrast and spatial separation. In: Petry S., Meyer G E. editor, The Perception of Illusory Contours.New York:Springer.1987.
    [62]Heinemann E G..Simultaneous brightness induction as a function of inducing and test field luminances.J.Exp.Psychol.,1955,50:89-96.
    [63]Heinemann E.G.Simultaneous brightness induction.In:Jameson D.,Hurvich L.editor,Handbook of Sensory Physiology,Berlin Heidelberg:Springer.1972,Ⅶ-4:146-169.
    [64]Shapley R.,Enroth-Cugell C.Visual adaption and retinal gain controls.Progress in retinal Research,1984,3:263-346.
    [65]Kanizsa G.Subjective contours.Sci.Am.,1976,234(4):48-52.
    [66]Lamme V A F.,Rodriguez-Rodriguez V.,Spekreijse H.Separate processing dynamics for texture elements,boundaries and surfaces in primary visual cortex of the macaque mokey.Cereb.Cortex,1999,9(4):406-413.
    [67]Mumford D.,Shah J.Optimal approximations by piecewise smoothed functions and associated variational problems,Comm.in Pure and Applied Math.,1989,42(5):577-685.
    [68]Blake A.,Zisserman A.Visual reconstruction,MIT Press,1987.
    [69]Rudin L I.,Osher S.,Fatemi E.Nolinear total variation based noise removal algorithms.Physica D 1992,60:259-268.
    [70]Mallat S.A wavelet tour of signal processing,2nd edition,Academic Press,1999.(杨力华,戴道清,黄文良等译,信号处理的小波导引,北京:机械工业出版社,2002.)
    [71]Gabor D.Information theory in electron microscopy,Lab.Invest.1965,14:801-807.
    [72]Meyer Y.Oscillating patterns in image processing and in some nonlinear evolution equations,In:Univ.Lecture Ser.,AMS,2002,vol.22.
    [73]Aliney S.A property of the minimum vectors of a regularizing functional defined by means of the absolute norm.IEEE Trans.on Signal Process.,1997,45(4):913-917.
    [74]Nikolova M.A variantional approach to remove outliers and impulse noise.JMIV,2004,20(1-2):99-120.
    [75]Chan T.,Esegoglu S.Aspects of total variation regularized L1 function approximation,SIAM Journal on Applied Mathematics,2005,65(5):1817-1837.
    [76]Aujol J F.,Gilboa G.,Chan T.,et al.Structure-texture image decompositionmodeling,algorithms,and parameter selection.Int'1 Joumel of Computer Vision,2006,67(1):111-136.
    [77]Goldfarb D.,Yin W.Parametric maximum flow algorithms for fast total variation minimization,Rice CAAM Report TR07-09,2007.
    [78] Dunn D., Higgins W E. Optimal Gabor filters for texture segmentation. IEEE Trans. Image Process., 1995,4(7): 947-964.
    [79] Jain A K., Farrokhnia F. Unsupervised texture segmentation using Gabor filters.Pattern Recognition, 1991,24(12):1167-1186.
    [80] Guo C E., Zhu S C., Wu Y. N. Towards a mathematical theory of primal sketch and sketchability. In: Proc. of IEEE Int'l Conf. on Computer Vision, 2003, 2:1228-1235.
    [81] Guo C E., Zhu S C., Wu Y N. Primal sketch: integrating texture and structure. Computer Vision and Image Understanding, 2005,106: 5-19.
    
    [82] Jaynes E T. Information theory and statistical mechanics. Physical Review. 1957,106:620-630.
    [83] Zhu S C., Liu X W., Wu Y N. Exploring texture ensembles by efficient Markov chain Monte Carlo - toward a "Trichromacy" theory of texture. IEEE Trans.Pattern Analysis Machine Intelligence, 2000,22(6): 554-569.
    [84] Heeger D., Bergen J. Pyramid-based texture analysis/synthesis. In Proc. ACM SIGGRAPH, 1995,229-238.
    [85] Portilla J., Simoncelli E P.A parametric texture model based on joint statistics of complex wavelet coefficients. Int'l Journal of Computer Vision, 2000, 40(1):49-71.
    [86] Starck J L., Elad M., Donoho D. Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process.,14(10):l570-1582,2005.
    [87] Chen S., Donoho D., Saunder M A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 1998, 20: 33-61.
    [88] Starck J L., Candes E., Donoho D. Astronomical image representation by the curvelet transform, Astron. Astrophys., 2003, 398: 785-800.
    [89] Steidl G., Weickert J., Brox T., et al. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides, SIAM J. Numer.Anal., 2004,42(2): 686-713.
    [90] Aharon M., Elad M., Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process.,2006, 54(11): 4311-4322.
    [91] Peyré G, Fadili J., Starck J L. Learning adapted dictionaries for geometry and texture separation. In: Proc. of SPIE, 2007, 6701: 67011T.
    [92] Jolliffe I T. Principal component Analysis, 2nd edn. Springer, 2002.
    [93] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 1933,24: 417-441.
    [94]Pearson K.On lines and planes of closest fit to systems of points in space.The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,Sixth Series,1901,2:559-572.
    [95]Tipping M E.,Bishop C M.Probabilistic principal component analyzers.Neural Computation,1999,11(2):443-482.
    [96]Roweis S.EM algorithms for PCA and SPCA.In:Advances in Neural Information Processing Systems,MIT Press,1998,10:626-632.
    [97]Tropp J A.Topics in sparse approximation.Ph.D dissertation,Austin:Univ.of Texas at Austin,2004.
    [98]邹谋炎.反卷积和信号复原,北京:国防工业出版社,2001.16-19,85-86.
    [99]Mallat S.,Zhang Z.Matching Pursuit in a time-frequency dictionary.IEEE Trans.Signal Process.,1993,41(12):3397-415,
    [100]Tu Z W.,Chen X R.,Yuille A L.,et al.Image parsing:unifying segmentation,detection and recognition,Int'1 Journel of Computer Vision,2005,63:113-140.
    [101]Treisman A.Features and objects in visual processing,Scientific Am.,1986,255(5):114-125.
    [102]Picard R W.,Elfadel I M.,Pentland A P.Markov/Gibbs texture modeling:aura matrices and temperature effects.In:Proc.IEEE.Conf.Computer Vision and Pattern Recognition,1991,371-377.
    [103]Chellapa R.,Jain A.Markov random field:theory and application.Academic Press,1993.
    [104]Cross G R.,Jain A K.Markov random field texture models.IEEE Trans.Pattem Analysis Machine Intelligence,1983,5:25-39.
    [105]Geman S.,Graffigne C.Markov random field image models and their application to computer vision.In:Proc.Int'1 Congress of Math.,1986.
    [106]Kwatra V.,Essa I.,Bobick A.,et al.Texture optimization for example-based synthesis,ACM Transactions on Graphic,2005,24(3):795-802.
    [107]Tong X.,Zhang J.,Liu L.,et al.Synthesis of bidirectional texture functions on arbitrary surfaces,In:Proc.ACM SIGGRAPH,2002,665-672.
    [108]Liu W Y.,Zhang F.,Liu C X.Spread-spectrum watermark by synthesizing texture,In:Pacific-Rim Conference on Multimedia,LNCS,2007,4810:347-356.
    [109]Zhang F.,Xiong X.,Liu C.X.,et al.Covert communication under textural image,Unpublished preprint,Huazhong University of Science and Technology,2007(send email to zhangfan@hust.edu.cn to get a copy)
    [110]Wang Z.,Bovik A C.,Sheikh H R.,et al.Image quality assessment:from error measurement to structural similarity.IEEE Trans.Image Process.,2004,13(4):1-14.
    [111]Cox I J.,Miller M L.,Bloom J A.Digital watermarking,USA:Elsevier Science,2002.(王颖 黄志蓓 等译,数字水印,电子工业出版社,北京,2003,p.143-146)
    [112]Karybali I G.,Berberidis K.Efficient spatial image watermarking via new perceptual masking and blind detection schemes.IEEE Trans.Inf.Forensics Security,2006,1(2):256-274.
    [113]Lefebvre S.,Hoppe H.Appearance-space Texture Synthesis.ACM Trans.on Graphics.2006,25(3):541-548.
    [114]Ade F.Characterization of texture by "eigenfilter".Signal Processing,1983,5(5):451-457.
    [115]Chou C H.,Li Y C.A perceptually tuned sub-band image coder based on the measure of just-noticeable-distortion profile.IEEE Trans.Circuits Syst.Video Technol.,1995,5:467-476.
    [116]Yang X.,Lin W.,Lu Z.,et al.Motion-compensated residue pre-processing in video coding based on just-noticeable-distortion profile.IEEE Trans.Circuits Syst.Video Technol.,2005,15:742-750.
    [117]Malvar H S.,Florencio D A F.Improved spread spectrum:a new modulation technique for robust watermarking.IEEE Trans.Signal Process.,2003,51:898-905.
    [118]Sheikh H R.,Bovik A C.Image information and visual quality.IEEE Trans.Image Process.,2006,15(2):430-444.
    [119]Sheikh H R.,Sabir M F.,Bovik A C.A statistical evaluation of recent full reference image quality assessment algorithms.IEEE Trans.Image Process.,2006,15(11):3411-3452.
    [120]Navon D.Forest before trees:the precedence of global features in visual perception.Cognitive Psychology,1977,9(2):353-383.
    [121]Chen L.Topological structure in visual perception.Science,1982,218:699-700.
    [122]Chen L.The topological approach to perceptual organization.Visual Cognition,2005,12(4):553-701.
    [123]Potter M C.Meaning in visual research.Science,1975,187:965-966.
    [124]Biederman I.Aspects and extension of a theory of human image understanding.In:Pylyshyn Z.editor,Computational Processes in Human Vision:An Interdisciplinary Perspective,Norwood,New Jersey:Ablex Publishing Corporation,1988.
    [125]王炯炯.视觉系统两条通路的相互关系——脑电与磁共振相结合的研究:[博士学位论文]合肥:中国科学技术大学,1998.
    [126] Han S., Humphreys G W. Interactions between perceptual organization based on Gestalt laws and those based on hierarchical processing. Journal of Experiment Psychology, 1999,61(7):1287-1298.
    [127] Chen L, Zhang S, Srinivasan M V. Global perception in small brains: topological pattern recognition in honey bees. In: Proc. of the American National Academy of Sciences, 2003,100(11): 6884-6889.
    [128]Grossberg S., Mingolla E. Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychological Review,1985,92:173-211.
    [129] Palmer S E. Modern theories of Gestalt perception. In: Humphreys G W, editor, Understanding Vision. CA: Blackwell, 1992.
    
    [130] Gregory R L. Eye and brain. Princeton, NJ: Princeton University Press, 1997.
    [131]Ramachandran V S., Gregory R L. Perceptual filling in of artificially induced scotomas in human vision. Nature, 1991, 350:699-702.
    [132]Boneh D., Shaw J. Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory, 1998,44(5): 1897-1905.
    [133]Dittmann J., Behr A., Stabenau M. Combining digital watermarks and collusion secure fingerprints for digital images. In: Proc. SPIE Security and Watermarking of Multimedia Content I,1999, 3657:171-182.
    [134]Celik M U., Sharma G., Tekalp A M. Collusion-resilient fingerprinting by random pre-warping. IEEE Signal Process. Letters, 2004,11(10):831-835.
    [135]Petitcolas F A P.Stirmark benchmark 4.0. http://www.petitcolas.net/fabien/watermarking/stirmark/
    [136]Petitcolas F A P., Anderson R J. Evaluation of copyright marking systems. In:Proc. ICMS99, Int'l Conf. Multimedia Comput. and Syst., 1999, 1: 574-579.
    [137]D'Angelo A., Barni M., Merhav N. Stochastic image warping for improved watermark de-sychronization. submitted to EURASIP Journal on Information Security, 2007. http://www.ee.technion.ac.il/people/merhav/papers/p116.pdf
    [138]Hu S. Geometric-invariant image watermarking by key-dependent triangulation. Informatica 2008, 32:169-181.
    [139] Wang Y., Lee O. Use of two-dimensional deformable mesh structures for video coding, part I - the synthesis problem: mesh-based function approximation and mapping. IEEE Trans. Circuits Syst. Video Technol., 1996, 6(6): 636- 646.
    [140]Wolberg G. Digital Image Warping. Los Alamitos, CA: Computer Society Press, 1990.
    [141] Becker E B., Grey G F., Oden J T. Finite Elements, An Introduction. Englewood Cliffs, NJ: Prentice-Hall, 1981.
    [142]Harris C.,Stephens M.A combined comer and edge detector.In:Proc.Fourth Alvey Vision Conference,Manchester,1988,147-151.
    [143]周培德,计算几何——算法设计与分析,第二版,北京:清华大学出版社,2005.p.146.
    [144]Barber C B.,Dobkin D P.,Huhdanpaa H T.The Quickhull Algorithm for Convex Hulls.ACM Trans.Mathematical Software,1996,22(4):469-483.
    [145]Fleet D J.,Heeger D J.Embedding invisible information in color images.In:Proc.IEEE Int'1 Conf.Image Processing,1997,532-535.
    [146]Watson A B.,Ahumada A J.Model of human visual motion sensing.J,Opt.Soc.Am.A,1985,2(2):322-341.
    [147]Adelson E H.,Bergen J R.Spatio-temporal energy models for the perception of motion.J.Opti.Soc.Am.A,1985,2:284-299.
    [148]Hays J.,Efros A A.Scene completion using millions of photographs.ACM Transactions on Graphics,2007,26(3):34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700