用户名: 密码: 验证码:
双水相萃取/浮选分离—富集环境中持久性污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入新世纪以来,人们已经逐步意识到环境中持久性污染物(主要是指金属污染物和抗生素残留)在土壤、大气、水源中沉积对环境及人类健康所产生的危害。金属污染物不易被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,在水体中具有持久的危害性。同时随着污染物的迁移转化,有毒金属离子通过食物链进入生物体内,并不断累积,进而破坏生态系统、危害人体健康。抗生素药物在临床、养殖业和农业中的大量使用,一方面会通过动物体内的残留转移到人体,另一方面动物、禽类产生的耐药菌也会传播给人类,给人类的健康和生存带来严重危胁。对于环境样品的分析,样品的前处理是重要环节,液-液萃取、固相萃取是常用的环境样品前处理方法,但是这两种方法或使用挥发性有机溶剂造成二次污染;或处理成本高;或操作繁琐、富集倍数有限,使其应用受到限制。因而,建立高效、无毒、无污染的绿色分离/富集方法尤为重要。因此,本文建立了绿色无毒双水相萃取体系(小分子醇-盐双水相体系),并将其应用在环境中持久性污染物的分离与富集中;同时,建立溶剂浮选技术与光谱法联用分离/富集环境中痕量重金属残留;再次,创建一种集双水相体系与气浮溶剂浮选法相结合的新的绿色分离/富集体系——双水相气浮溶剂浮选(Aqueous two-phase gas solvent sublation, ATGS),并将该体系利用在环境持久性污染物的分析与检测中。
     本课题主要从以下三个方面进行研究:
     (1)双水相萃取技术分离/富集环境中持久性污染物
     a.以火焰原子吸收光谱法(FAAS)为检测手段,研究了乙醇-硫酸铵双水相萃取镉的主要影响因素,并且利用FT-IR光谱,对其萃取机理进行了初步的探讨。实验结果表明,Cd(Ⅱ)与I-、结晶紫在pH 5.0-6.0的乙醇-硫酸铵双水相体系中形成稳定的紫色配合物。当在最佳条件下时,Cd(Ⅱ)的萃取率达到100.00%。该方法校准曲线线性范围为0~0.500μg/mL,相关线性系数为0.9993,方法检出限为0.012μg·mL-1。用于环境水样中镉含量的测定,相对标准偏差为2.8%~3.6%,加标回收率大于95.00%。
     b.在沸水浴加热下,Zn(Ⅱ)对氨苄西林的降解反应具有催化作用,其降解产物可产生荧光。据此建立了一种正丁醇-盐-水双水相体系,萃取间接荧光光度法测定环境中痕量氨苄西林的方法。考察了正丁醇中加入盐的种类、盐用量、Zn(Ⅱ)离子浓度、加热时间及温度对萃取率的影响,优化了萃取条件。氨苄西林降解物浓度在5×10-6~9.0×10-5 mol·L-1范围内与荧光强度呈线性关系,方法检出限为5.16×10-10mol·L-1。且正丁醇萃取氨苄西林降解物富集倍数高(达26倍),试剂用量少,在优化试验条件下实测了长江水、井水、玉带河水样,回收率为94.5%~100.2%。该方法适合于环境水样中氨苄西林的分析测定。
     (2)溶剂浮选技术与光谱法联用分离/富集重金属残留
     a.在酸性条件下,Cr(Ⅵ)能将二苯碳酰二肼(DPC)氧化成紫红色二苯偶氮碳酰,自身被还原为Cr(Ⅱ),Cr(Ⅲ)可与二苯偶氮碳酰生成深紫红色Cr(Ⅲ)—二苯偶氮碳酰配合物,该配位化合物在水相中不易溶解且不稳定,而在有机溶剂苯中稳定且极易溶于苯,利用此特性用N2将Cr(Ⅲ)一二苯偶氮碳酰配合物浮选于苯中,形成真溶液,通过测定有机相吸光度测定溶液中Cr(Ⅵ)含量(λmax=540nm)。用过硫酸铵(少许AgNO3催化)将溶液中Cr(Ⅲ)氧化成Cr(Ⅵ),同法测定Cr(Ⅵ)+Cr (Ⅲ) (∑Cr)含量,差减法计算出Cr(Ⅲ)含量。由于采用了大的富集倍数,使灵敏度大大提高,ε540=4.2×105L·mol-1·cm-1,比水相光度法提高10倍,50 mL溶液中,线性范围0~12μg/50mL。测定2.0μgCr(Ⅵ),RSD=1.80%,方法检出限7.1×10-9mol·L-1,由于络合和浮选的选择性,使本法选择性极强(大多数共存离子不影响测定)。
     b.Mn(Ⅱ)与1,10-二氮杂菲(phen)能生成稳定的配位阳离子[Mn(Phen)3]2+,该阳离子能与碱性染料四碘荧光素(TIF)缔合生成缔合物Mn(phen)3(TIF)2,该缔合物在水中不稳定,但在有机溶剂中稳定且极易溶于有机溶剂,基此用N2浮选三元缔合物于苯中,建立了光度法测定锰的新方法。本法灵敏度高(ε=9.6×105L·mol-1·cm-1),对4.0μg/200mL锰测定6次,测定的RSD=2.3%,检出限为0.5μg·L-1,适用于天然水和酒中锰的测定。
     c.Cu(Ⅱ)易与铜试剂二乙基二硫代氨基甲酸钠(NaDDTC)形成配合物Cu(DDTC)2,该配合物不溶于水且在水中不稳定,而在有机溶剂中稳定,且易溶于有机溶剂,基此建立了基于N2浮选Cu(DDTC)2于苯中的溶剂浮选光度法测定铜的新方法。本法灵敏度高(ε435=2.9×105L·mol-1·cm-1),精密度理想(测定5μg/400mL Cu(Ⅱ)6次,RSD=2.0%),检出限低(400 mL浮选体积检出限2.8×10-2μg·L-1)。适于天然水中痕量铜测定。
     d.Pb2+易与I-形成[PbI4]2-(?)配阴离子,该阴离子可与罗丹明B(RhB+)等阳离子碱性染料形成三元缔合物。该三元体系在水中不稳定,而在有机溶剂中较稳定,基此建立了N2浮选Pb(Ⅱ)—I-—RhB+体系于苯中的溶剂浮选三元配合物测铅新方法,本法灵敏度高(ε=2.2×105L·mol-1·cm-1),选择性好(不同氰化物掩蔽),精密度理想(测定5μg铅10次,RSD=1.7%),实测了半导体厂处理前电镀废水。
     (3)双水相气浮溶剂浮选分离/富集环境中持久性污染物
     a.结合气浮溶剂浮选和双水相萃取(ATPE)的优点,建立了一种新的分离/富集的方法,双水相气浮溶剂浮选(ATGS),并用于环境中痕量Cd(Ⅱ)的分离/富集.同时,以火焰原子吸收光谱(FAAS)检测Cd(Ⅱ),考察了浮选时间、N2流速、丙醇的分相条件、pH和配合剂用量等因素对浮选Cd(Ⅱ)的影响.最后优化出最佳浮选条件和测定条件,并探讨了共存离子对Cd(Ⅱ)浮选的干扰情况。结果表明,2 mol·L-1的KI9.5mL, 1g·L-1的罗丹明B 2.5 mL,盐体积分数为46%,缔合时间17min,气浮流速20 mL·min-1,浮选率可达100%,富集倍数为10,优于单一的双水相萃取。Cd(Ⅱ)含量在0.050-5.000 mg·L-1与吸光度呈线性关系,线性方程为F=2.8967C-0.1474,相关系数为0.9996,检出限为0.0113 mg·L-1,相对标准偏差RSD为1.8%(n=15)。
     b.离子液体[Bmim]BF4-无机盐体系浮选红霉素的最优化浮选条件:当显色剂为75%硫酸,反应时间30 mmin,此时浮选完的富含[Bmim]BF4的上相具有荧光性,可用于ROX和ACE的定量分析。当选择降低浮选溶剂[Bmim]BF4粘度的溶剂为H2O, V[Bmim]BF4:VH2O=1:1时,可有效的降低[Bmim]BF4的粘度,使其作为良好的浮选溶剂。当浮选池体积为50 mL,对于ROX, Na2CO3的浓度为为0.32 g·mL-1,试液pH=11.5;对于ACE, (NH4)2SO4的浓度为0.54 g·mL-1,pH值为5.5。两种浮选体系的气体流速15 mL·min-1,浮选时间50 min,在优化条件下气浮溶剂浮选,浮选率为75%~85%(ROX)和80%-90%(ACE),富集倍数21.25(ROX); 22.5(ACE),分配系数为100和141。
In the new century, people have gradually realized that the sediment of the environmental persistent pollutants (mainly refers to the metal contaminants and antibiotic residues) in the soil, air, and water have damaged to the environment and human health. Metal pollutants can not easily be biodegradable; on the contrary they are able to biomagnification in the food chain, and enrich with the thousands of times. So that metal pollutants have a long-lasting harm in the water. At the same time, as the migration and transformation of pollutants, toxic metal ions enter into the living body through the food chain and accumulate, thus upset the equilibrium of the ecosystem and endanger human body health. Antibiotics are used in large amounts in clinical, aquaculture and agriculture. On the one hand, antibiotics transfer to the human body through the residues of the animals; On the other hand, birds also produce resistant strains which transmitted to humans. It is a serious threat to human health and existence. For the analysis of environmental samples, the sample pretreatment is an important aspect. Liquid-liquid extraction and solid phase extraction are the common environmental sample pretreatment methods. However, the methods are still undesirable for most analyses due to consumption of time and a large amount of volatile, toxic, pollution organic solvents. Additionally, these method can cause secondary pollution and high cost. Thus, the establishment of efficient, nontoxic, pollution-free and green separation/enrichment method is particularly important. Therefore, we established a green and non-toxic aqueous two-phase system (small molecular alcohol-salt aqueous two-phase system) to separate and concentrate the environmental persistent pollutants. Meanwhile, we also established a method which combined solvent sublation with spectrum method to separate/concentrate trace heavy metals in the environment. Once again, we created a new and green separation and concentration system which combined aqueous two-phase system and solvent sublation:Aqueous two-phase gas solvent sublation. And we used this system to analyse and detect the environmental persistent pollutants.
     The main subject of study from the following three aspects:
     (1) Separation and concentration the environmental persistent pollutants by aqueous two-phase extraction
     a. A new method for extraction of Cd(Ⅱ) by aqueous two-phase system with ethanol-(NH4)2SO4 was investigated. The main factors for Cd(Ⅱ) extraction and extraction mechanism were investigated with flame atomic absorption spectrometry (FAAS) FT-IR spectrum, respectively. The results showed that Cd(Ⅱ), I- and crystal violet could form a purple stable complex in the aqueous two-phase system of ethanol-(NH4)2SO4 while the pH value ranges from 5.0 to 6.0. Under the optimum conditions, the extraction yield of Cd(Ⅱ) reached 100.00%. The linear range was from 0 to 0.500μg·mL-1, and correlation coefficient of linear was 0.99926 with a RSD of 2.8%, and the detection limit of Cd(II) was 0.012μg·mL-1. Then the method was applied to the determination of Cd(Ⅱ) in actual water samples, and the satisfactory recovery (>95.00%) was obtained.
     b. An extraction indirect fluorophotometric method for determination of trace ampicillin was established in this paper. The method was based on the ampicillin degradation catalyzed by Zn (Ⅱ) ions with boiling water bath, the degradation product can be extracted with a n-butanol-salt-water two-phase system, and then the fluorescence intensity of the degration product was determined by spectrofluorimetry. The experimental conditions, such as the types of salts, the concentrations of K2CO3 and Zn (Ⅱ) ion, as well as heating temperature and time, were discussed and optimized. Linear range was from 5×10-6 to 9.0×10-5 mol·L-1, and the detection limit was 5.16×10-10 mol·L-1。The enrichment factor of this method can reach 26 times and a few of n-butanol is used. Under the optimum conditions, this method could be successfully applied for the analysis of Chang Jiang water, Well water and yu dai river water and the recoveries were in the range of 94.5%~100.2%. The method has been applied to the determination of trace ampicillin in water sample of the environment.
     (2) Separation and concentration the heavy metals by a method which combined solvent sublation with spectrum method
     a. It is based on that diphenylcarbzide (DPC) can be oxidized by chromium (Ⅵ) to amaranthine diphenylcarbazone, which can associate with chromium (Ⅲ) to form a claret chromium (Ⅲ)-diphenylcar bazone complex in acid medium. This ternary complex has bad solubility and instability in water phase, whereas it can be dissolved easily in organic solvent of benzene with good stability and floated by N2 into benzene to form a real solution. Chromium (Ⅵ) content is determined in the solution by measuring the absorbance of organic phase. Then chromium (Ⅲ) is oxidized into chromium (Ⅵ) by ammonium persulfate and the total chromium can be determined by the same way, so that chromium (Ⅲ) content can be calculated by minus. The sensitivity of this method is improved about 10 times higher than that of water phase spectrophotometry through large dose enrichment. The apparent molar absorptivity is 4.2×105L·mol-1·cm-1, Beer's law is obeyed in the range of 0~12μg/50 mL for Cr (VI). The relative standard deviation is 1.80%, the detection limit is 7.1×10-9mol/L, Because of the selectivity of the complexation and flotation, the method has highly good selectivity (most coexistence ions don't interfere with the determination).
     b. Mn(Ⅱ) and 1,10-phenanthroline can form a stable coordinated cation [Mn(phen)3]2+, this cation can generate association complex Mn(phen)3(TIF)2 with basic dyes four iodine fluorescence (TIF). This association complex is unstable in water, but it is stable and easy dissolves in organic solvent. So a new method that ternary associated complex was flotated into the solution of benzene by N2 was established for the determination of Mn by photometry. The sensitivity of this method is high (8=9.6×105L·mol-1·cm-1), the relative standard deviation is 2.3% by measured six times of 4.0μg/200mL of Mn and the detection limit is 0.5μg·L-1. The method is suitable for the determination of Mn in natural water and wine.
     c. Cu(Ⅱ) and sodium diethyldithiocarbamate can form a coordination compound Cu(DDTC)2. The coordination compound is insoluble and unstable in water, while it is soluble and stable in organic solvent. So a new method that Cu(DDTC)2 was flotated into the solution of benzene by N2 was established for the determination of Cu by solvent flotation photometry. The sensitivity of this method is high (ε435=2.9×105L·mol-1·cm-1), the accuracy is satisfactory that the relative standard deviation is 2.0% by measured six times of 5μg/400mL of Cu(II), the limit of detection (LOD) is low that the LOD is 2.8×10-2μg·L-1when the flotation volume is 400 mL. The method is suitable for the determination of trace Cu in natural water.
     d. Pb2+ and I- can form a coordinated anion [PbI4]2-, this anion can generate ternary associated complex with basic dyes rhodamine B(RhB+). The ternary system is unstable in water, but stable in organic solvent. So a new method that Pb(Ⅱ)——I-——RhB+ system was flotated into the solution of benzene by N2 was established for the determination of Pb by solvent flotation. The sensitivity of this method is high (ε=2.2×105L·mol-1·cm-1), the selectivity is good and the accuracy is satisfactory that the relative standard deviation is 1.7% by measured ten times of 5μg of Pb. The electroplating wastewater before treatment was detected in semiconductor factory.
     (3) Separation and concentration the environmental persistent pollutants by aqueous two-phase gas solvent sublation
     a. Combining solvent sublation with aqueous two-phase extraction (ATPE), a new preconcentration/separation method was established:aqueous two-phase gas solvent sublation (ATGS). Then ATGS was applied to preconcentrate/separate Cd (Ⅱ) in the environment prior to flame atomic absorption spectrometric determination. The effects of analytical parameters including pH, proper condition of phase separation, volume of complex reagent and flotation time on the recoveries of heavy metals were investigated. The recovery of Cd (Ⅱ) was 100%. Cadmium was concentrated 10 times using this method, which is much better than aqueous two-phase extraction alone. For concentrations of Cd (Ⅱ) from 0.050 mg·L-1 to 5.000 mg·L-1, the linear equation was F= 2.8967C-0.1474 and the linear correlation coefficient (R2) was 0. 9996. The detection limit of Cd (Ⅱ) was 0.0113 mg·L-1. Averaging 15 determinations of 1 mg·L-1 Cd (Ⅱ) gave a relative standard deviation of 1.8%. The proposed method is shown to be promising for preconcentration/separation before the determination of trace and ultra-trace substances.
     b. Studied on separation/enrichment of erythromycin antibiotic by [Bmim]BF4-inorganic salt aqueous two-phase solvent sublation.Taking [Bmim]BF4 as sublation solvent, color reaction agent was 75% H2SO4, the sublation solvent was [Bmim]BF4-H2O(V[Bmim]BF4:VH2O=1:1), the salting-out agent was Na2CO3 with 0.32 g·mL-1, pH=11.5 for ROX, and (NH4)2SO4with 0.32 g·mL-1, pH= 11.5 for ACE, respectively. The sublation time was 50 min, gas flow rate was 15 mL·min-1. Under the optimum conditions, the sublation efficiency was 75%~85% for ROX with enrichment multiple 21.25 and 80%~90% for ACE with enrichment multiple 22.5, respectively.
引文
[1]Chang X J. Efficiency of a new poly(arylamidrazone-hydrazide lacmoid) chelating fiber for preconcentrating and separationg traces of chromium, gallium and indium titanium from solutions fresenius[J]. Anal. Chem.,1994,349(6): 438-441.
    [2]苏耀东,程祥圣.共沉淀分离富集法的应用与进展[J].理化检验-化学分册,1999,35(5):236-241.
    [3]Krishna P Q, Gladis J M, Rambabu U. Preconcentrative separation of chromium(VI) species from chromium(Ⅲ) by coprecipitation of its ethyl onto complex naphthalene [J]. Talanta,2004,63(3):541-546.
    [4]Gupta B, Deep A, Malik P. Liquid-liquid extraction and recovery of indium using C yanex 923[J]. Anal. Chem.,2004,513(2):463-471.
    [5]Dietz M L, Dzielawa J A, Laszak I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem.,2003,5(5):682-685.
    [6]Dietz M L, Stepinski D C. Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids[J]. Talanta,2008,75(2):598-603.
    [7]Corti M, Minero C, Degiorgio V J. Cloud point of mixed ionic-nonionic surfactant solutions in the presence of electrolytes[J]. Phys. Chem.,1984,309: 88-92.
    [8]Pramauro E, Prevot A B. Solubilization in micellar systems-Analytical and environmental applications[J]. Pure Appl. Chem.,1995,67(4):551-559.
    [9]Frankewich R P, Hinze W L. Evaluation and Optimization of the Factors Affecting Nonionic Surfactant-Mediated Phase Separations [J]. Anal. Chem.,1994, 66(7):944-954.
    [10]Saitoh T, Tani H, Kamidate T. Phase separation in aqueous micellar solutions of nonionic surfactants for protein separation[J]. Anal. Chem.,1995,14(5):213-217.
    [11]JBohrer A, Gioda A, Binotto R. On-line separation and spectrophotometric determination of low levels of aluminum in high-salt content samples:application to analysis of hemodialysis fluids[J]. Anal. Chem.,1998,362(2-3):163-169.
    [12]Ohashi A, Hashimoto T, Imura H, et al. Cloud point extraction equilibrium of lanthanum(III), europium(III) and lutetium(III) using di(2-ethylhexyl)phosphoric acid and Triton X-100[J]. Talanta,2007,73(5):893-898.
    [13]Ambe S, Abe D, Ozaki T, et al. Multitracer studies on the permeation of rare earth elements through a supported liquid mem-brane containing 2-ethylhexyl phosphonic acid-2-ethylhexyl ester (EHEHPA)[J]. Radiochim. Acta,2003,91(4): 217.
    [14]Kozlowski C A, Kozlowska J, Pellowski W, et al. Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids[J]. Desalination, 2006,198(1-3):141-148.
    [15]Colognesi M, Abollino O, Aceto M. Flow injection determination of Pb and Cd traces with graphite furnace atomic absorption spectrometry[J]. Talanta,1997, 44(5):867-875.
    [16]Gomez-Ariza J L, Giraldez I, Morales E. Use of solid phase extraction for speciation of selenium compounds in aqueous environmental samples [J]. Analyst, 1999,124(1):75-78.
    [17]Minelli L, Veschetti E, Giammanco S, et al. Vanadium in Italian waters: monitoring and speciation of V(Ⅳ) and V(Ⅴ)[J]. Microchem,2000,67(1-3): 83-90.
    [18]Raut N M, Jaison P G, Aggarwal S K. Separation and determination of lanthanides, thorium and uranium using a dual gradient in reversed-phase liquid chromatography[J]. J. Chromatogr. A,2004,1052(1-2):131-136.
    [19]Jaison P G, Telmore V M, Kumar P, et al. Reversed-phase liquid chromatography using mandelic acid as an eluent for the determination of uranium in presence of large amounts of thorium[J]. J. Chromatogr. A,2009,1216(9):1383-1389.
    [20]Evans L, Collins G E. Separation of uranium(Ⅵ) and transition metal ions with 4-(2-thiazolylazo)resorcinol by capillary electrophoresis[J]. J. Chromatogr. A, 2001,911(1):127-133.
    [21]张萍,符靓,李玉杰.电感耦合等离子体质谱法测定渣油中微量金属元素[J].冶金分析,2009,29(7):14-18.
    [22]刘立行,孙立华,马继平.乳浊液进样火焰原子吸收光谱法测定渣油中的铁、镍[J].石油化工,2000,29(6):446-448.
    [23]于庆凯,李丹.阳极溶出伏安法同时测定海水中的铜、铅、镉、锌[J].化学工程师,2009,169(10):25-27.
    [24]魏祥晖.电解金属锰中微量铅镉的极谱法连续测定[J].应用化工,2009,38(7):1074-1075.
    [25]张金生,李丽华,金钦汉.微波消解微波等离子体炬原子发射光谱法测定原油和渣油中的铁、镍、铜和钠[J].分析化学,2005,33(5):690-694.
    [26]Boyd GR, Reemtsma H, Grimm DA, et al. PharmAceuticals and personal care products(PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada[J]. Sci. Total Environ.,2003,311(1-3):135-149.
    [27]Kummerer K. Pharmaceuticals in the environment:Sources, fate, effects and risks [M]. Berlin, Heidelberg, New York:Springer,2001,265.
    [28]Boxall ABA, Fogg LA, Kay P, et al. Veterinary medicines in the environment[J]. Rev. in Envir. Contami.&Toxi.,2004,180(1):1-92.
    [29]张劲强,董元华,安琼.兽药抗生素在土壤环境中的行为[J].土壤,2005,37(4):353-361.
    [30]Loke ML, Sonja Jespersen, Vreeken R, et al. Determination of oxytetracycline and its degradation products by high-performance liquid chromatography tandem mass spectrometry in manure containing anaerobic test systems [J]. J. Chromatogr. B,2003,783(1):11-23.
    [31]http://hi.baidu.com/g7f999/blog/item/a05bce8d64cb081 ab21bba7a.html
    [32]Patricia Penido Maia, Ernani Clarete da Silva, Susanne Rath, et al. Residue content of oxytetracycline applied on tomatoes grown in open field and green house[J]. Food Control,2009,20(1):11-16.
    [33]Stoev G, Miehailova A. Quantitative detemrination of sulofnmaide residues in foods of naimal origin by high-performance liquid chromatography with fluorescence detection[J]. J. Chromatogr. A,2000,871(1-2):37-42.
    [34]Andersen W C, Roybal J E, Gonzales S A, et al. Detemrination of tetracycline resiudes in shrimp and whole milk using liquid chromatogrpahy with ultraviolet detection and residue confimration by masss spectrometry[J]. Anal. Chim. Acta, 2005,529(1-2):145-150.
    [35]罗献刚,罗义,周启星.固相萃取-高效液相色谱法测定畜牧粪便中13种抗生素药物残留[J].分析化学,2008,36:1162-1166.
    [36]徐维海,张干,邹世春.固相萃取-液相色谱/串联质谱法分析水体中痕量抗生素[J].环境化学,2006,25(2):232-233.
    [37]Masakazu H, Harumi T, Kazuo T. Determination of macrolide antibiotics in meat and fish by liquid chromatography-electrospray mass spectrometry[J]. Anal. Chim. Acta,2003,492(1-2):187-197.
    [38]M Dubois, D Fluchard, E Sior. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry[J]. J. Chromatogr. B, 2001,753(2):189-202.
    [39]Carmen L, Rosa C, Ramon C. Determination of macrolide antibiotics by liquid chromatography [J]. J. Chromatogr. A,2001,910(2):285-290.
    [40]Wen Hsien Tsaia, Tzou Chi Huang, Joh Jong Huang. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection[J]. J. Chromatogr. A,2009,1216(11):2263-226.
    [41]Evelyn L. Mc Clure, Charles S. Wong. Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters[J]. J. Chromatogr. A, 2007,1169(1-2):53-62.
    [42]Jinhui Zhou, Xiaofeng Xue, Yi Li, et al. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction[J]. Food Chem., 2009,115(3):1074-1080.
    [43]Paul A. Blackwell, Hans-Christian Holten Lutzh(?)ft. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection[J]. Talanta,2004,64(4):1058-1064.
    [44]S. Morales-Munoz, J.L. Luque-Garcia, M.D. Luque de Castro. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples[J]. J. Chromatogr. A,2004,1059(1-2):25-31.
    [45]V. Mandal, Y. Mohan, S. Hemalatha. Microwave assisted extraction an innovative and promising extraction tool for medicinal plant research[J]. Phcog. Rev.2007, 1(1):7-15.
    [46]Rafaella F. Rodrigues, Alexandre K. Tashima, Regina M.S. Pereira, et al. Cabral coumarin solubility and extraction from emburana (Torresea cearensis) seeds with supercritical carbon dioxide[J]. J. Supercrit. Fluids,2008,43(2):375-382.
    [47]G. I. Burgos-Solorzano, J. F. Brennecke, M. A. Stadtherr. Solubility measurements and modeling of molecules of biological and pharmAceutical interest with supercritical CO2[J]. Fluid Phase Equilib.,2004,220(1):55-67.
    [48]李夏兰,翁连进.反胶束萃取技术及其在抗生素分离上的应用[J].中国抗生素杂志,2003,28(9):576-579.
    [49]Fadnavis N W, Satyavath i B, Deshpande A A. Reverse micellar extraction of antibiotics from aqueous solutions[J]. Biotechnol. Progr.,1997,1(3):503-520.
    [50]Hu Z, Gulari E. Extration of aminoglycoside antibiotics with reverse micelles[J]. J. Chem. Tech. Biotechnol.,1996,65(1):45-54.
    [51]吴子生,贾颖萍,褚莹.反胶团相转移法提取青霉素G的研究[J].高等学校化学学报,1993,14(12):1427.
    [52]张新丽,胡小玲,岳红,等.膜分离技术在抗生素提取中的研究进展[J].化工进展,2003,22(11):1165-1171.
    [53]李十中,胡永平,等.直接结晶苄青霉素钠的新方法[J].中国抗生素杂志,2000,25(3):175-222.
    [54]李十中,王淀佐,胡永平.抗生素提取过程中溶剂萃取技术新方法-超滤/萃 取法[J].中国抗生素,2000,25(1):12-15.
    [55]史荣梅,徐亲民.抗生素发酵液的超滤与溶剂萃取[J].国外医药抗生素杂志分册,1997,18(1):33-39.
    [56]曹学君,邬行彦,吴彤等.反渗透法回收结晶母液中6-APA[J].生物工程学报,1998,14(4):468-471.
    [57]Wei Zhang, Gaohong He, Ping Gao, et al. Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics[J]. Sep. Purif. Technol.,2003,30(1):27-35.
    [58]周捷,吴雪昌.抗生素新药研发中分析分离中的3种方法[J].中国新药杂志,2005,14(3):286-289.
    [59]A. Van Schepdael, I. Van den Bergh, E. Roets, et al. Purity control of oxytetracycline by capillary electrophoresis[J]. J. Chromatogr. A,1996,730(1-2): 305-311.
    [60]卢菀华,陈天豹,邓文汉,等.抗生素的毛细管电泳分离[J].福州大学学报(自然科学版),2000,8(5):106-108.
    [61]徐素平,曹广霞,彭远义.抗生素分离纯化技术[J].安徽农学通报,2009,15(7):79-81.
    [62]Hisao Oka, Ken-ichi Harada, Masanao Suzuki, et al. Separation of spiramycin components using high-speed counter-current chromatography[J]. J. Chromatogr. A,2000,903(1-2):93-98.
    [63]王明娟,胡昌勤,金少鸿.高效液相色谱法-蒸发光散射检测法分析庆大霉素C组分[J].药物分析杂志,2002,22(6):461-464.
    [64]王明娟,胡昌勤,金少鸿.采用HPLC-ELSD法分析小诺霉素中的有关物质[J].药物分析杂志,2002,22(3):205-208.
    [65]王明娟,成双红,张斗盛,等.HPLC-ELSD法测定异帕米星含量[J].中国抗生素杂志,2003,28(1):20-22.
    [66]S.G. Cull, J.D. Holbrey, V. Vargas-Mora, et al. Room-temperature ionic liquids as replAcements for organic solvents in multiphase bioprocess operations[J]. Biotech.& Bioengi.,2000,69(2):342-356.
    [67]D. H. Cheng, X. W. Chen, Y. Shu, et al. Extraction of Cytochrome C by Ionic Liquid 1-Butyl-3-trimethylsilylimidazolium Hexafluorophosphate[J]. Chin. J. Anal. Chem.,2008,36(9):1187-1190.
    [68]王良,闫永胜,朱文帅,等.离子液体溶剂浮选-光度法测定水中痕量四环素类抗生素[J].分析化学研究报告,2009,37(1):72-76.
    [69]国大亮,朱晓薇.双水相萃取法在天然产物纯化中的应用[J].天津药学,2006,18(1):64-67.
    [70]严希康,俞俊棠.生化分离工程[M].北京:化学工业出版社,2001,169-187.
    [71]Jiang Y Y, Xia H S, Yu J, et al. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system[J]. Chem. Eng. J.,2009,147(1):22-26.
    [72]Chethana S, Nayak C A, Raghavarao K S M S. Aqueous two phase extraction for purification and concentration of betalains[J]. J. Food Eng.,2007,81(4):679-687.
    [73]Bora M M, Borthakur S, Rao P C, et al. Aqueous two-phase partitioning of cephalosporin antibiotics:effect of solute chemical nature[J]. Sep. Purif. Technol., 2005,45(2):153-156.
    [74]Pei Y C, Wang J J, Wu K, et al. Ionic liquid-based aqueous two-phase extraction of selected proteins[J]. Sep. Purif. Technol.,2009,64(3):288-295.
    [75]Zvarova T I, Shkinev V M, Vorobeva G A, et al. Liquid-liquid extraction in the absence of usual origanic solvents:application of two-phase aqueous systems based on a water-soluble polymer[J]. Microchim. Acta,1984,3:449-458.
    [76]Shibukawa M, Nakayama N, Hayashi T, et al. Extraction behaviour of metal ions in aqueous polyethylene glycol-sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions[J]. Anal. Chim. Acta,2001,427(2): 293-300.
    [77]Bulgariua L, Bulgariu D. Extraction of metal ions in aqueous polyethylene glycol-inorganic salt two-phase systems in the presence of inorganic extractants: Correlation between extraction behaviour and stability constants of extracted species[J]. J. Chromatogr. A,2008 (1196-1197):117-124.
    [78]Rodrigues G D, Silva M C H, Silva L H M, et al. Liquid-liquid extraction of metal ions without use of organic solvent[J]. Sep. Purif. Technol.,2008,62(3): 687-693.
    [79]蔡红,许秀丽,朱军,等.偶氮胂Ⅰ双水相萃取分离钍、铀、镧、钒、钼的研究[J].稀有金属,2003,27(2):265-267.
    [80]王碧,阮尚全,覃松,等.聚乙二醇-硫酸铵体系双水相萃取光度法测定钯[J].四川大学学报,2003,40(1):108-111.
    [81]谢治民,方正军,李勇,等.聚乙二醇-硫酸铵双水相萃取分离测定铬(Ⅵ)的研究[J].湖南工程学院学报,2008,18(4):69-72.
    [82]陈玉焕,卢雁,张秀英,等.铟在聚乙二醇-硫酸铵双水相体系中的分配[J].化学通报,2003,66(1):63-66.
    [83]邓凡政,魏迎,陈影,等.双水相体系中Cu(Ⅱ), La(Ⅲ), U(Ⅵ), Ce(Ⅳ)光谱行为及萃取分离[J].光谱学与光谱分析,2004,24(12):1637-1639.
    [84]黄振钟,吴欣欣,陈莉莉,等.PEG-(NH4)2SO4-8Q5SAC双水相分光光度法测定工业废水中的微量铜[J].江西师范大学学报,2006,30(2):145-147.
    [85]练萍,李蕾,薛珺.PEG600-PVP-(NH4)2SO4-H2O双水相体系萃取Cu2+[J].赣南师范学院学报,2003,3:49-50.
    [86]李春香,韩娟,徐小慧,等.乙醇-硫酸铵双水相萃取-火焰原子吸收光谱法测定镉[J].冶金分析,2009,29(9):60-65.
    [87]韩立国,牛建平,李全民,等.硫酸铵-乙醇双水相体系萃取分离Bi(Ⅲ)研究[J].河南师范大学学报,2005,33(4):90-93.
    [88]施跃坚,高云涛.金(Ⅲ)在双水相体系中的分配行为及萃取机理研究[J].云南民族大学学报,2009,18(4):344-347.
    [89]张焱,侯玉霞.硫酸铵存在下的丙醇-水体系萃取分离镉[J].光谱实验室,2008,25(3):331-334.
    [90]邓凡政,傅东祈,朱陈银.离子液体双水相萃取分光光度法测定铜[J].冶金分析,2008,28(6):29-32.
    [91]Pei Y C, Wang J J, Wu K, et al. Ionic liquid-based aqueous two-phase extraction of selected proteins[J]. Sep. Purif. Technol.,2009,64(3):288-295.
    [92]Saravanan S, Rao J R, Nair B U, et al. Aqueous two-phase poly(ethylene glycol)-poly(acrylic acid) system for protein partitioning:Influence of molecular weight, pH and temperature[J]. Process Biochem.,2008,43(9):905-911.
    [93]Xie H G, Wang Y J, Sun M. Modeling of the partitioning of membrane protein and phase equilibria for Triton X-100-salt aqueous two-phase systems using a modified generalized multicomponent osmotic virial equation[J]. Process Biochem.,2006,41(3):689-696.
    [94]Alves J G L F, Chumpitaz L D A, Silva L H M, et al. Partitioning of whey proteins, bovine serum albumin and porcine insulin in aqueous two-phase systems[J]. J. Chromatogr. B,2000,743(1):235-239.
    [95]Louwrier A. Model Phase Separations of Proteins Using Aqueous/Ethanol Components [J]. Biotechnol. Tech.,1998,12(5):363-365.
    [96]Shahriari S H, Taghikhani V, Vossoughi M, et al. Measurement of partition coefficients of β-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol) and Na2SO4/KH2PO4 at different temperatures[J]. Fluid Phase Equilib.,2010,292(1-2):80-86.
    [97]Rabelo A P B, Tambourgi E B, Jr. A P. Bromelain partitioning in two-phase aqueous systems containing PEO-PPO-PEO block copolymers[J]. J. Chromatogr. B,2004,807(1):61-68.
    [98]Babu B R, Rastogi N K, Raghavarao K S M S. Liquid-liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system[J]. Chem. Eng. Process.,2008,47(1):83-89.
    [99]Shang Q.K, Li W, Jia Q, et al. Partitioning behavior of amino acids in aqueous two-phase systems containing polyethylene glycol and phosphate buffer[J]. Fluid Phase Equilib.,2004,219(2):195-203.
    [100]Salabat A, Abnosi M H, Bahar A R. Amino acids partitioning in aqueous two-phase system of polypropylene glycol and magnesium sulfate[J]. J. Chromatogr. B,2007,858(1-2):234-238.
    [101]Li M, Zhu Z Q, Rodrigues A E. Process Integration of Separation of Amino Acids by a Temperature-Induced Aqueous Two-Phase System[J]. Ind. Eng. Chem. Res.,2002,41(2):251-256.
    [102]Umakoshi H, Kuboi R, Komasawa A I. Control of Partitioning of Bacterial Cells and Characterization of Their Surface Properties in Aqueous Two-Phase Systems[J]. J. Ferment. Bioeng.,1997,84(6):512-518.
    [103]Mokhtarani B, Karimzadeh R, Amini M H, et al. Partitioning of Ciprofloxacin in aqueous two-phase system of poly(ethylene glycol) and sodium sulphate[J]. Chem. Eng. J.,2008,38(2):241-247.
    [104]Jiang Y Y, Xia H S, Yu J, et al. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system[J]. Chem. Eng. J.,2009,147(1):22-26.
    [105]Han J, Wang Y, Kang W B, et al. Phase equilibrium and macrolide antibiotics partitioning in real water samples using a two-phase system composed of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and an aqueous solution of an inorganic salt[J]. Microchim. Acta,2010,169(1-2):15-22.
    [106]Li C X, Han J, Wang Y, et al. Extraction and mechanism investigation of trace roxithromycin in real water samples by use of ionic liquid-salt aqueous two-phase system[J]. Anal. Chim. Acta,2009,653(2):178-183.
    [107]Miao S, Chen J P, Cao X J. Preparation of a novel thermo-sensitive copolymer forming recyclable aqueous two-phase systems and its application in bioconversion of Penicillin G[J]. Sep. Purif. Technol.,2010,75(2):156-164.
    [108]Liu Q F, Yu J, Li W L, et al. Partitioning Behavior of Penicillin G in Aqueous Two Phase System Formed by Ionic Liquids and Phosphate[J]. Sep Sep. Purif. Technol.,2006,41(12):2849-2858.
    [109]Kajiuchi T, Kobayashi K, Akehata T. Proceedings of the conference on Bioseparation and Biotechmology downstream processing [J]. Nagoya, Japan, 1991,162.
    [110]Negrete A, Ling T C, Lyddiatt A. Aqueous two-phase recovery of bio-nanoparticles:A miniaturization study for the recovery of bacteriophage T4 [J]. J. Chromatogr. B,2007,854(1-2):13-19.
    [111]Modlin R F, Alred P A, Tjerneld F. Utilization of temperature-induced phase separation for the purification of ecdysone and 20-hydroxyecdysone from spinach. J. Chromatogr. A,1994,668:229-236.
    [112]邓凡政,郭东方.芦丁在离子液体双水相中分配性能[J].应用化学,2007,24(7):838-840.
    [113]谢涛,廖安平等.双水相萃取三七中三七皂苷的研究[J].中药材,2008,31(4):535-537.
    [114]林强,霍清.双水相体系萃取甘草酸盐的研究[J/OL].中草药,2002,33(8):702-704.
    [115]Sebba F. Solvent sublation [M].New York:American Elsevier,1962:112-117
    [116]闫永胜.气浮分离、固相萃取与光谱法联用及应用研究[D].武汉:华中科技大学,2003.
    [117]周春山.化学分离富集方法及应用[M].中南工业大学出版社.
    [118]Cervera J, Cela R, Perez-Bustamante J A. Analytical solvent sublation of metallic dithizonates part 1. solvent sublation of copper[J]. Analyst,1982,107: 1425-1430.
    [119]Guo H, Yen W T. Effect of cell design and electrode configuration on the efficiency of applied potential and sulfide mineral flotation[J]. Miner. Eng., 2003,16(9):877-880.
    [120]胡熙庚,黄和慰,毛钜凡.浮选理论与工艺[M].长沙:中南工业大学出版社,1991:9-82.
    [121]Ablumofu A. Solvement methods for floatation theory and issue[J]. Overseas Mill Run Of Metal Mill,2002,3:16-20.
    [122]Bayat O, Arslan V, Cebeci Y. Combined application of different collectors in the floatation concentration of Turkish feldspars[J]. Miner. Eng.,2006,19: 98-101.
    [123]Hellberg P E. Ortho Ester-Based Cleavable Cationic Surfactants [J]. J. Surfactants Deterg.,2002,5(3):217-225.
    [124]Mesquita L M S, Lins F F, Torem M L. Interaction of a hydrophobic bacterium strain in a hematite - quartz flotation system[J]. Int. J. Miner. Process.,2003, 71(1-4):31-44.
    [125]Laskowski J S, Tlhone T, Williams P, et al. Fundamental properties of the polyoxyp- ropylene alkyl ether flotation frothers[J]. Int. J. Miner. Process., 2003,72:289-299.
    [126]肖希和.泡沫分离法处理含锌废水的研究[D].上海大学硕士学位论文,2003.
    [127]李新学.表面活性剂混合体系的表面活性与应用性能研究[D].浙江大学博士学位论文,2001.
    [128]Cervantes J, Rodrguez-Rodrguez E, Guzman-Andrade J J. Trimethylsilylation of natural silicates:useful route toward polysiloxanes[J]. Silicon Chemistry, 2003,2:185-194.
    [129]Banisi S, Finch J A. Testing a flotation column at the Sarcheshmeh coppermine[J]. Miner. Eng.,2003,14(7):785-789.
    [130]Sampaio C H, Aliaga W, Villanueva M. Rougher flotation of copper minerals in columns[J]. Miner. Eng.,2005,18(7):731-733.
    [131]Sebba F. Ion Flotation [M]. New York:American Elsevier,1962:145-150
    [132]Karger B L. Adsorptive bubble separation techniques [M]. New York: Academic,1972,578-591.
    [133]Valsaraj K T, Thibodeaux L J. Studies in batch and continuous solvent sublation. I. a complete model and mechanisms of sublation of neutral and ionic species from aqueous solution[J]. Sep. Sci. Technol,1991,26:37-58.
    [134]Fan M X. Study on separation and concentration of daidzein in puerariae by solvent sublation&mechanisms of solvent sublation [D].2006,19-24.
    [135]Grieves R B. The separation of phenol from dilute, alkaline aqueous solution by solvent extraction, solvent sublution and foam fractionation[J].Anal Chem Acta,1974,73:293-298
    [136]董慧茹,乐秀毓.溶剂浮选吸光度法的理论与实践[J].化学通报,1987,2:1-7
    [137]Valsaraj K T, Thibodeaux L J. Studies in batch and continuous solvent sublation Ⅱ. Continuous countercurrent solvent sublation of neutral and ionic species from aqueous solutions [J]. Sep. sci. & tech.,1991,26(3):367-380.
    [138]Lu Y J, Zhu X H. A mathematical model and mechanism of sublation of dye-surfactant ion complexes[J]. Anal. Bioanal. Chem.,2002,374:906-914.
    [139]Lu Y J, Zhu X H.A mathematical model of solvent sublation of some surfactants [J]. Talanta,2002,57:891-898.
    [140]Lu Y J, Liu J, Xiong J.. Study of a mathematical model of metal complexes in solvent sublation [J]. J. Colloid Interf. Sci.,2003,263:261-269.
    [141]闫永胜,黄卫红,陆晓华.碘-溴化十六烷基三甲铵缔合体系溶剂浮选褪色光度法测定SO32-的研究[J].冶金分析.2004,23(4):25-27.
    [142]任欣,陈卫国,朱锡海.溶剂气浮法分离机理的基础研究[J].中山大学学报,1996,35(6):22-28.
    [143]Clake A N, Wilson D J. Foam Flotation, Theory and Applications[M]. Dekker, New York,1983, Chap.6.
    [144]Smith J S, Valsaraj K T. The process of solvent subaltion[J]. Chem. Eng. Process.,1998,5:69-76.
    [145]Lu Y J, Wang Y, Xiong Y. The kinetics and thermodynamics of surfactants in solvent sublation [J]. Fresenius J. Anal. Chem.,2001,370:1071-1076.
    [146]董慧茹,程群.溶剂浮选-石墨炉原子吸收光谱法测定水样中痕量Pb(Ⅱ)、 Ni(Ⅱ)和Co(Ⅱ)[J].分析科学学报,2006,22(2):173-175.
    [147]董慧茹,孟凡春.溶剂浮选法分离富集污水中痕量羧酸类和胺类有机污染物的研究[J].分析科学学报,2005,21(6):607-609.
    [148]李海燕,曾昭睿.溶剂浮选光度法测定印染废水中的活性艳红X-3B[J].分析科学学报,2006,22(3):287-289.
    [149]Yan Y S, Li C X. Study on determination of CrⅥ & in industrial waste water by spectrophotometry with benzene flotation[J]. Metallurgical Analysis,2004, 24(5):23-25.
    [150]Yan Y S, Xu W Z. Determination of trace boron by ternary-assiociation compound solvent flotation spectrophotometry [J]. Metallurgical Analysis,2006, 26(2):25-27.
    [151]闫永胜,张国营.溶剂浮选缔合物光度法测定痕量硒[J].分析试验室,2001,20(5):56-58.
    [152]Doyle F M. Sonication assisted air floatation removes oil more effectively [J]. Water Environ. Tech.,2003,15(7):18-19.
    [153]Das B, Naik P K. Electrokinetics,adsorption and floatation studies of sphalerite using DI(2-ethylhexyl) phosphoric acid[J]. Can. Metal. Q.,2004,43(3): 355-362.
    [154]Tommy Y L, Cui H Z, Nadeem A, et al. The effects of air content on permeability of lightweight concrete[J]. Cem. Concr. Res.,2006,36: 1874-1878.
    [155]吕玉娟,李继桢,张雪利,等.溶剂气浮法去除水中腐殖酸的动力学和热力学初步研究[J].分析化学,2006,34(2):239-242.
    [156]李保山.分光光度法测定经溶剂浮选的痕量钯[J].石油化工,2006,24(8):571-574.
    [157]董慧茹,张利静,刘国文,等.溶剂浮选法分离富集工业废水中痕量有机污染物的研究[J].分析试验室,2005,24(5):19-23.
    [158]Matis K A. Adsorption, floatation and reclaim of metal ions[J]. Overseas Mill Run Of Metal Mill,2004,3:40-44.
    [159]Aoerldqi C. Removed heavy metal in wastewater using biologic adsorption floatation[J]. Overseas Mill Run Of Metal Mill,2001,7:18-22.
    [160]周东琴,魏得洲.沟戈登氏菌对重金属的生物吸附-浮选和解吸性能[J].环境科学,2006,27(5):961-965.
    [161]孙体昌.用沉淀浮选法去除废水中氨氮的工艺与机理研究[D].北京:北京科技大学,2003.
    [162]Huang C J, Liu J C. Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer[J]. Wattre Research,1999,33(16): 3403-3412.
    [163]Bi P Y, Dong H R. Separation and Enrichment of L-Phenylalanine by Flotation Complexation Extraction[J]. Chinese J. Anal. Chem.,2008,36(5):658-662.
    [164]陈金銮,万晶,施汉昌.电解浮选用于活性污泥固液分离的研究[J].环境科学,2006,27(11):2333-2338.
    [165]Ibrahim M Y, Mostafa S R, Fahmy M F M, et al. Utilization of electro flotation in remediation of oily wastewater [J]. Sep. Sci. Technol.,2001,36(16): 3749-3762.
    [166]Mostefa N M, Tir M. Coupling flocculation with electroflotation for waste oil/ water emulsion treatment.Optimization of the operating conditions[J] Desalination,2004,161(2):115-121.
    [167]Ge J, Qu J, Lei P, et al. New bipolar electrocoagulation electroflotation process for the treatment of laundry wastewater[J]. Sep. Purif. Technol.,2004, 36(1):33-39.
    [168]陈锋,张宝砚,毕诗文.溶剂浮选-气相色谱法测定铝酸钠溶液中的硬脂酸钠[J].分析化学,2006,32(2):213-215.
    [169]闫永胜,黄卫红.碘-溴化十六烷基三甲铵缔合体系溶剂浮选褪色光度法测定S032-的研究[J].分析试验室,2004,23(4):25-27.
    [170]祝优珍.浮选光度法测定饮用水中亚硝酸根[J].化学世界,2003,9:468-471.
    [171]吴利欢,赵建芬,王红英.浮选分离法的研究钒的沉淀富集-溶剂浮选光度法的研究与应用[J].西江大学学报,2000,(2):61-65.
    [172]胡欣,常志东,孙兴华.泡载分离富集青霉素生产废水中乙酸丁酯的研究[J].中国抗生素杂志,2005,30(1):38-41.
    [173]董慧茹,王士辉.溶剂浮选分离富集麻黄草中有效成分[J].分析化学,2004.32(4):503-506.
    [174]李毅,崔桂君,闫永胜.溶剂浮选三元缔合物间接光度法测定药品中维生素C的研究[J].光谱实验室,1999,16(5):528-530.
    [175]王淑兰,陈淑桂.溶剂浮选一偏最小二乘回归光度法测定地质样品中痕量贵金属元素[J].分析化学,1999,27(1):38-40.
    [176]番寿龙,建方方,汪信.新型黄金浮选剂的合成及浮选性能研究[J].贵金属,2001,22(3):18-22.
    [177]汤德元,汤正河,谭蕾.溶剂浮选法净化湿法磷酸中氟的新工艺[J].贵州工业大学学报(自然科学版),2004,33(1):75-78.
    [178]Paski R D. Establishment of method to separate PVC and PET using floatation [J]. Overseas Mill Run Of Metal Mill,2005,5:27-32.
    [179]杨福廷.阳离子表面活性剂对洗涤法脱墨废水浮选脱色的研究[J].精细化 工,1994,13(3):49-52.
    [180]Zong Z G. Reclaim precious metals from dental scrap using floatation [J]. Overseas Mill Run Of Metal Mill,1998,35 (1):33-34
    [181]黄传兵,王毓华,陈兴华,等.铝土矿反浮选脱硅研究综述[J].金属矿山,2005.348:21-24.
    [182]李伟,柴金玲,谷学新.新型的萃取技术—双水相萃取[J].化学教育(Chinese Journal of Chemical Education),2005,3(2):7-9.
    [183]马万山,钟黎,孙光辉,等.硫酸铵-碘化钾-乙醇体系萃取分离钯[J].化学研究与应用(Chemical Research and Application),2003,15(5):691-693.
    [184]王贵方,李志敏,邢云.硫酸铵存在下碘化物-4-氨基安替吡啉-丙醇体系萃取分离镉[J].光谱实验室(Chinese Journal of Sepctroscopy Laboratory),2005,22(6):1264-1268.
    [185]杜惠蓉.乙醇-盐-水-5-Br-PADAP体系中萃取分离测定钌[J].四川师范大学学报(自然科学版](Journal of Sichuan University (Natural Science)),2005, 28(5):594-598.
    [186]石影,邓凡政,石燕.双水相体系中镍的光谱性能及测定[J].光谱学与光谱分析(Spectroscope and spectral Analysis),2003,23(3):591-593.
    [187]Shibukawa M, Nakayama N, Hayashi T. Extraction behaviour of metal ions in aqueous polyethylene glycol-sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions[J]. Anal. Chim. Acta,2001,427(3): 293-300.
    [188]Bulgariu L, Bulgariu D. The extraction of Zn(Ⅱ) in aqueous PEG (1550)-(NH4)2SO4 two-phase system using Cl- ions as extracting agent[J]. J. Serb. Chem. Soc,2007,72(3):289-297.
    [189]Akama Y, Sali A. Extraction mechanism of Cr(VI) on the aqueous two-phase system of tetrabutylammonium bromide and (NH4)2SO4 mixture[J]. Talanta, 2002,57(4):681-686.
    [190]Bulgariu L, Bulgariu D, Sarghie I, et al. Cd(Ⅱ) Extraction in PEG-based two-phase aqueous systems in the presence of iodide ions. Analysis of PEG-rich solid phases[J]. Cent. Eur. J. Chem.,2007,5(1):291-302.
    [191]Yoshikumi N, Baba T, Tsunoda N, et al. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel[J]. Talanta,2005,66(1):40-44.
    [192]李全民,耿新华,刘奇,等.硫酸铵存在下碘化钾-乙醇体系萃取分离镉[J].应用化学(Chinese Journal of Applied Chemistry),2000,17(1):69-71.
    [193]王志华,马全明,马泉莉,等.双水相萃取体系的研究[J].应用化学(Chinese Journal of Applied Chemistry),2001,18(3):173.
    [194]马万山,钟黎,高素英,等.硫酸铵-溴化钾-乙醇体系萃取分离金[J].分析化学研究报告(Chinese Journal of Analytical chemistry),2004,32(1):56-59.
    [195]马万山,李玉玲,郭花蕾,等.硫酸铵-硫氰酸铵-乙醇体系萃取分离铂[J].理化检验-化学分册(Physical Testing and Chemical Analysis Part B:Chemical Analysis),2006,42(4):245.
    [196]Hardman J G, Limbird L E, Gilman A G. Goodman and Gilman's the Pharmacological Basis of Therapeutics,10th ed., McGraw-Hill Company,New York, USA,2001.
    [197]Boxall A B A, Fogg L A, Kay P, Blackwell P A, et al. Veterinary medicines in the environment [J]. Rev.in Envir. Contami.& Toxi.,2004,180:1-92.
    [198]Saleh G A, Askal H F, Darwish L A, et al. Spectroscopic Analytical Study for the Charge-Transfer Complexation of Certain Cephalosporins with Chloranilic Acid [J]. Anal. Sci.,2003,19:281-287.
    [199]Wei Liu, Zhujun Zhang, Zuoqin Liu, Determination ofβ-lactam antibiotics in milk using micro-flowchemiluminescence system with on-line solid phase extraction [J]. Anal. Chim. Acta,2007,592:187-192.
    [200]P. Gutierez Navarro, A. El Bekkouri, E. Rodriguez Reinoso, Spectrofluorimetric study of the degradation of a-aminob-lactam antibiotics catalysed by metal ions in methanol [J]. Analyst,1998,123:2263-2266
    [201]M.A. Bacigalupo, G. Meroni, F. Secundo, R. Lelli, Time-resolved fluoroimmunoassay for quantitative determination of ampicillin in cow milk samples with different fat contents[J], Talanta,2008,77(1):126-130
    [202]Benito-Pena E, Partal-Rodera A I, E.Leon-Gonzalez M, et al. Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection[J]. Analytica Chimica Acta,2006,556:415-422
    [203]Denooz R, Charlier C. Simultaneous determination of five β-lactam antibiotics(cefepim, ceftazidim, cefuroxim, meropenem and piperacillin)in human plasma by high-performance liquid chromatography with ultraviolet detection[J]. J. Chromatogr. B,2008,864:161-167.
    [204]Mastovska K, Lightfield A R. Streamlining methodology for the multiresidue analysis of β-lactam antibiotics in bovine kidney using liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2008,1202: 313-223.
    [205]Bailon-Perez M I, Garcia-Campana A M, Iruela M D, et al. Multiresidue determination of penicillins in environmental waters and chicken muscle samples by means of capillary electrophoresis-tandem mass spectrometry[J]. Electrophoresis,2009,30(10):1708-1717.
    [206]Santos S M, Henriques M, Duarte A C, et al. Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples [J] Talanta,2007,71:731-737.
    [207]Ozkan S A, Erk N, Uslu B, et al. Study on electrooxidation of cefadroxil monohydrate and its determination by differential pulse voltammetry[J]. J. Pharm.Biomed. Anal,2000,23:263-273.
    [208]Okerman L, DeWasch K, Van Hoof J, et al. Simultaneous determination of different antibiotic residues in bovine and in porcine kidneys by solid-phase fluorescence immunoassay[J] J. AOAC Int.2003,86:236-240.
    [209]Samsonova Z V, Shchelokova O S, Ivanova N L, et al. Enzyme-linked immunosorbent assay of ampicillin in milk[J]. Appl. Biochem. Microbiol, 2005,41:589-595.
    [210]Benito-Pena E, Moreno-Bondi M C, Orellana G, et al. Development of a Novel and Automated Fluorescent Immunoassay for the Analysis of β-Lactam Antibiotics[J]. J. Agric. Food Chem,2005,53(17):6635-6642.
    [211]Sternesjo A, Gustavsson E. Biosensor Analysis of β-Lactams in Milk Using the Carboxypeptidase Activity of a Bacterial Penicillin Binding Protein[J]. J. AOAC Int.2006,89(3):832-837.
    [212]Navarro P G, Blazquez I H, Osso B Q, et al. Penicillin degradation catalysed by Zn(Ⅱ) ions in methanol[J]. Int. J. Biol. Macromol.,2003,33:159-166.
    [213]何江,温欣荣,涂常青.硫酸铵-碘化钾-罗丹明6G体系浮选分离镉(Ⅱ)的研究[J].分析实验室,2007,26(8):65-68.
    [214]Tii lay O, Serife T, Vedat Y, et al. Determination of lead and cadmium in food samples by the coprecipitation method[J]. Food Chem.,2009,113(4): 1314-1317.
    [215]Kontrec J, Kralj D, Brecevic L. Cadmium removal from calcium sulphate suspension by liquid membrane extraction during recrystallization of calcium sulphate anhydrite[J]. Colloids Surf. A.,2003,223 (3):239-249
    [216]Tuzen M, Parlar K, Soylak M.2005. Enrichment/separation of cadmium(Ⅱ) and lead (Ⅱ) in environmental samples by solid phase extraction[J]. J. Hazard. Mater.,2005,121(1B):79-87.
    [217]Sharma Y C. Thermodynamics of removal of cadmium by adsorption on an indigenous clay[J]. Chem. Eng. J.,2008,145(1):64-68.
    [218]Anthemidis A N, Zachariadis G A, Farastelis C G, et al. On-line Liquid-liquid extraction system using a new phase separator for flame atomic absorption spectrometric determination of ultra-trace cadmium in natural waters[J]. Talanta,2004,62(3):437-443.
    [219]Yoshikuni N, Baba T, Tsunoda N, et al. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel[J]. Talanta,2005,66(1):40-44.
    [220]温欣荣,涂常清.在硫酸铵存在下孔雀绿-水液-固体系浮选分离汞(Ⅱ)[J].分析化学,2003,30(1):89-92.
    [221]吕玉娟,高原,魏波,等.溶剂气浮法分离水中的Zn离子的研究[J].分析实验室,2006,25(7):50-53.
    [222]闫永胜,李春香,赵干卿,等.氮气-苯浮选光度法测定痕量锰[J].分析实验室,2000,19(2):53-55.
    [223]李松田,邢朝晖,闫永胜.气浮溶剂浮选光度法测定食品中痕量SO32-的研究[J].贵金属,2005,41(2):77-86.
    [224]陈婷玉,李春香,闫永胜.碘化钾-亚甲基蓝浮选光度法测定痕量Pb(Ⅱ)的研究[J].化学试剂,2006,28(8):485-486.
    [225]李春香,徐婉珍,李松田,等.甲苯浮选金属离子-碘离子-甲基蓝缔合物光度法测定高盐溶液中痕量铜银镉锌[J].冶金分析,2007,27(3):75-77.
    [226]任欣,陈卫国,朱锡海.溶剂气浮法分离机理的基础研究[J].中山大学学报(自然科学版),1996,35(6):23-28.
    [227]吕玉娟,朱锡海.十二烷基苯磺酸的溶剂气浮研究[J].水处理技术,2002,28(4):203-206.
    [228]高云涛,施润菊,项朋志,等.金在氯化钠-氯化亚锡-罗丹明B体系中的浮选行为与机理[J].黄金,2007,7(21):51-53.
    [229]李全民,白海鑫,吕文英.氯化钠-硫氰酸铵-结晶紫体系浮选分离锌(Ⅱ)[J].应用化学,2002,19(7):650-652.
    [230]Shibukawa M, Nakayama N, Hayashi T, et al.. Extraction behaviour of metal ions in aqueous polyethylene glycol sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions[J]. Anal. Chim. Acta,2001,427(2): 293-300.
    [231]马万山,钟黎,高素英,等.硫酸铵-溴化钾-乙醇体系萃取分离金[J].分析化学,2004,32(1):56-59.
    [232]李全民,耿新华,刘奇,等.硫酸铵存在下碘化钾-乙醇体系萃取分离镉[J].应用化学,2000,17(1):69-71.
    [233]辜鹏,谢放华,黄海艳,王丹.双水相萃取技术的研究现状与应用[J].化工技术与开发,2007,36(11):29-33.
    [234]巴晓革,林锦兴,邱召法.新型绿色分离体系一离子液体双水相及其在生物分离中的应用[J].化学世界,2007,(4):240-252.
    [235]Alan B M, Stephen F M, Victor R K. Nonaqueous electrolytes for electrochemical capacitors:Imidazolium cations and inorganic fluorides with organic carbonates. J. Electrochem. Soc.1997,144(1):84-86.
    [236]Wang J J, Tian Y, Zhao Y, Zhuo K L. A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane,2-butanone and N, N-dimethylformamide. Green Chem.,2003,5(3):618-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700