用户名: 密码: 验证码:
不结球白菜遗传图谱构建及重要农艺性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜(Brassica campestris ssp. chinensis Makino)是十字花科芸薹属中最重要的蔬菜作物之一,原产中国,不仅营养丰富而且具有适应性广及生长迅速等特点,在中国、韩国、日本等东亚国家普遍栽培,近年来欧美等国家也广泛引种逐渐成为世界性的重要蔬菜。其许多重要农艺性状都是由数量性状位点控制,这些数量性状具有较复杂的遗传机制。而遗传连锁图谱的构建和重要农艺性状QTL定位可以为揭示这些复杂机制奠定良好基础。本研究利用双单倍体群体构建了不结球白菜遗传连锁图谱,并在此基础上进行了主要农艺性状的QTL定位研究。研究结果如下:
     1.利用DH群体构建不结球白菜遗传图谱
     为了将不结球白菜分子遗传图谱和国际上A基因组参考图谱对应起来,利用国际上发表的大白菜和甘蓝型油菜A基因组特异SSR标记作为锚定标记,以164个DH株系组成的群体为作图群体进行了分子遗传图谱的构建研究。共筛选到231个在双亲间具有多态性的标记并用于图谱构建,在此基础上构建到一张由10条连锁群组成的图谱,其长度分布在39.44 cM和126.66 cM之间,共包含了99个SSR标记和47个SRAP标记。图谱全长为678.25 cM,每个连锁群上的标记数目为5-50个,其中A02连锁群上标记数最多为50个,A10连锁群上标记最少只有5个。图上标记间平均距离为4.65 cM,标记间距离为2.53 cM-10.98 cM。A02连锁群上标记密度最大,A07连锁群标记间距离最大为10.98 cM。在A02和A05连锁群上各有一个大于20 cM的空隙。根据芸薹属A基因组遗传连锁群上定位的SSR标记,将各连锁群按A参考图谱的连锁群进行命名,即A01-A10,并与10条染色体对应起来。在本研究结果的基础上可继续增加分子标记数目,最终有利于开发不结球白菜中与重要农艺性状紧密连锁的分子标记,进而为分子标记辅助选择奠定良好基础。
     2.光合色素含量的QTL定位与分析
     对复杂农艺性状进行QTL定位及分子标记辅助育种是现代育种中非常重要的环节。为揭示出控制光合色素含量的QTL位点并寻找与QTL位点紧密连锁的分子标记,我们利用包含有112个株系的不结球白菜DH群体进行了光合色素含量QTL定位与分析。该群体通过对两个高代自交系材料SW-13和SU-124杂交所得的Fl后代‘暑绿’进行游离小孢子培养获得。在‘暑绿’图谱基础上进行增加标记和整合,通过在芸薹属A基因组参照图谱中公共的SSR标记将连锁群与染色体相对应。采用复合区间作图法(CIM)对叶片叶绿素a、叶绿素b、总叶绿素、类胡萝卜素含量、叶绿素a/b进行了QTL定位和遗传效应分析。共检测到11个QTL位点,分布在3条连锁群上,分别是A02,A08和A10。其中可解释变异率最大值达38.0%。研究结果以期为不结球白菜高光效增产育种分子标记辅助选择提供理论依据并为芸薹属其他作物的相关育种程序提供参考价值。
     3.抽薹开花性状的QTL定位与分析
     春季生产中,不结球白菜先期抽薹直接导致其产量和商品质量下降。因此选育耐抽薹的品种是实现不结球白菜周年供应的重要途径之一。本研究利用已构建的包括164个株系的DH群体和两年的重复试验结果,采用复合区间作图法对不结球白菜与抽薹开花天数等相关的QTL进行定位及遗传效应的分析。在10个连锁群上共检测到19个QTL,主要分布在A02、A04和A05连锁群上:控制现蕾天数的QTL有5个,控制抽薹天数的QTL有6个,控制开花天数的QTL有6个,控制抽薹指数的QTL有2个;另外估算了单个QTL的遗传贡献率和加性效应,发现各QTL加性效应各不相等,各位点的遗传贡献率介于10.26%-21.19%之间;相关性状QTL的位置往往集中在连锁群上相同或相近的区域。这些定位到的QTL将为不结球白菜抽薹开花时间等性状的分子标记辅助选择提供理论基础。
     4.与产量相关的QTL定位与分析
     应用SSR和SRAP分子标记构建的146个标记位点的不结球白菜遗传连锁图谱和164个DH株系群体,采用Win QTL Cartographer 2.5软件的复合区间作图法对不结球白菜与产量性状相关的QTL进行定位及遗传效应的分析。在10个连锁群上共检测到26个QTL,主要分布在A02、A05和A07连锁群上:控制叶片叶柄重量比值的有4个,控制叶柄厚度的有5个,控制叶片重量的有3个,控制叶柄重量的有2个,控制单株重的有2个;另外估算了单个QTL的遗传贡献率和加性效应,发现各QTL加性效应各不相等,各位点的遗传贡献率介于5.28%-22.26%之间;一些控制不同性状的QTL位点在连锁群上共连锁。这些定位到的QTL将为不结球白菜产量等性状的分子标记辅助选择提供理论基础。
Non-heading Chinese cabbage(Brassica campestris syn. rapa ssp. chinensis Makino) is one of the most important vegetable crops in the Brassica genus. Non-heading Chinese cabbage, known as Pak Choi, originated in China, is among the most popular vegetables crops in eastern Asia like China, Korea and Japan and is now common in Europe and America. Like the other Brassicas, non-heading Chinese cabbage is a good source of nutrients and has the characteristics of extensive adaptability and fast growth. Many important agronomic traits are quantitative in nature and have a complex genetic basis. The identification of quantitative trait loci (QTL) represents a first step towards dissecting the molecular basis of such complex traits. A pre-requisite for QTL mapping studies is the availability of genetic maps. Its molecular marker-based linkage map construction and QTL mapping will provide an available reference to genomic structural study and genetic breeding in non-heading Chinese cabbage. In this study, several doubled haploid (DH) populations of non-heading Chinese cabbage were obtained through isolated microspore culture, and then used for molecular genetic linkage map construction, and mapping QTL for several important agronomic traits. The results are as follows:
     1. Construction of a Genetic Linkage Map Using DH Population in Non-heading Chinese Cabbage
     In this chapter, a DH population including 164 lines was used to construct a detailed genetic map to establish the identity of linkage groups corresponding to reference map of Brassica A genome. A set of simple sequence repeats (SSR) markers provided anchors to previously published linkage maps for B. campestris and B. napus, and was used to designate linkage groups. Our selection of primer pairs corresponded to 231 genetic loci that we were able to map. The resulting consensus map presented 10 linkage groups ranging from 39.44 to 126.66 cM, including 99 SSR markers,47 sequence-related amplified polymorphism (SRAP) markers. The total length of the map was 678.25 cM and the average interval distance of the linkage map was 4.65 cM. The number of markers on the 10 linkage groups ranged from 5 (A10) to 50 (A02), with an average interval distance from 2.53 cM (A02) to 10.98 cM (A07). A map interval with the markers separated more than 20 cM was observed on A02 and A05, respectively. Accordingly, these linkage groups were named following the A01 to A10 of reference map, and were assigned to corresponding chromosomes. This map could be used to identify more markers, which would eventually be linked to genes controlling important agronomic characters in non-heading Chinese cabbage. Furthermore, considering the good genome coverage we obtained, together with an observed homogenous distribution of the loci across the genome, this map is a powerful tool to be used in marker assisted breeding.
     2. Quantitative Trait Loci for Photosynthetic Pigment Concentration
     Quantitative trait loci (QTL) mapping and marker development are essential steps in any molecular breeding programme. In this study, QTL for photosynthetic pigment concentration were identified using a DH population of 112 lines derived from an Fi hybrid of non-heading Chinese cabbage,'Shulv', obtained from a cross between Brassica campestris lines SW-13 and SU-124 through microspore culture. QTL mapping was carried out using a modification to the map of'Shulv'. Alignment of the linkage groups was carried out with those of reference B. campestris maps, allowing the assignment of these groups as A01-A10. QTLs underlying photosynthetic pigment concentration in leaf were mapped with composite interval mapping (CIM) method, the numbers, location, explained variation and additive effect of QTLs were determined. In total,11 QTL were associated with photosynthetic pigment concentration and identified on linkage groups A02, A08, and AlO.The maximum phenotypic variance for a single QTL was 38.0%. Markers closely linked to these QTL could assist in the development of non-heading Chinese cabbage cultivars with increased yield, due to having improved photosynthetic capabilities. The objectives in this study were to investigate QTL underlying photosynthetic pigments concentration and to facilitate breeding for high photosynthetic efficiency through marker assisted selection (MAS) in non-heading Chinese cabbage and, through homology based approaches other Brassica crops.
     3. Mapping QTL for Bolting and Flowering Time Traits
     Early bolting of non-heading Chinese cabbage during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting or flowering is a major objective to enable year-round production for the non-heading Chinese cabbage. With CIM method, a genetic linkage map of non-heading Chinese cabbage were adopted to map and analyse QTL controlling the days of bolting and flowering. This study was based on a DH population with 164 lines in two years. The results as follows:19 putative QTLs, including 5 for days of squaring,6 for days of bolting, 6 for days of flowering,2 for bolting index were major mapped on A02, A04 and A05 linkage groups. There were unequal gene effects on the traits and unequal variation explained on the expression of the bolting and flowering time traits. These QTLs individually explained between 10.26% and 21.19% of the phenotypic variation. The QTL of associated traits often located on the same loci or near region of a linkage group. These mapped QTL could be used to marker assisted selection program for the bolting and flowering time traits in non-heading Chinese cabbage in the future.
     4. Mapping and Analysis of QTL Controlling Yield Components
     A SSR and SRAP genetic linkage map with 146 markers and a DH population with 164 lines were employed in mapping and analysis quantitative trait loci. The number, location, variation explained and additive effect of QTL underlying yield trait were determined by using CIM method with software Win QTL Cartographer 2.5. The results as follows:26 putative QTLs, including 4 for ratio of blade and petiole,5 for petiole thickness, 3 for blade weight,2 for petiole weight,2 for plant weight were major mapped on A02, A05 and A07 linkage groups. There were unequal gene effects on the traits and unequal variation explained on the expression of the yield trait. These QTLs individually explained between 5.28% and 22.26% of the phenotypic variation. Co-location of QTL for different traits was found in many cases, which might suggest pleiotropy or tight linkage. These mapped QTL could be used to marker assisted selection programme for the yield trait in non-heading Chinese cabbage in the future.
引文
1. Abiola O, Angel J M, Avner P, et al., The nature and identification of quantitative trait loci:A community's view [J]. Nat Rev Genet,2003,4(11):911-916
    2. Ajisaka H Y, Kuginuki K, Hida S, et al., A linkage map of DNA markers in Brassica campestris [J]. Breed Sci,1995,45(Suppl):195
    3. Ajisaka H, Kuginuki Y, Hida K, et al., Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage(Brassica campestris ssp. pekinensis syn. campestris L.) using bulked segregant analysis [J]. Euphytica,2001,118:75-81
    4. Aranzana M J, Kim S, Zhao K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes [J]. PLoS Genet,2005,1:531-539
    5. Axelsson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTL within several Brassica species could be the result of duplicated copies of one ancestral gene [J]. Genome,2001,44: 856-864
    6. Bodmer W F. Human genetics:The molecular challenge [J]. Cold Spring Harb Symp Quant Biol, 1986,51:1-13
    7. Bohn M, Khairallah M M, Gonzalez-De-Leon D, et al., QTL mapping in tropical maize:I. Genomic region affecting leaf feeding resistance to sugarcane borer and other traits [J]. Crop Science,1996, 36(5):1352-1361
    8. Bonierbale M W, Plaisted R L, Tanksley S D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato [J].Genetics,1988,120(4):1095-1103
    9. Botstein D, White R L, Skolnick M, et al., Construction of a map in man using restriction genetic fragment polymorphisms [J]. Am J Hum Genet,1980,32:314-331
    10. Brugmans B, van der Hulst R, Visser R, et al., A new and versatile method for the successful conversion of AFLP markers into simple single locus markers [J]. Nucleic Acids Res,2003,31:55
    11. Carlin B P, Louis T A. Bayes and Empirical Bayes methods for data analysis.2nd edition [M]. London, Chapman & Hall/CRC,2000
    12. Chen Z Z, Snyden S, Fan Z G. Efficient production of doubled haploid through plants chromosome doubling of isolated microspores in Brassica napus [J]. Plant Breed,1994,113:217-221
    13. Cheng Y, Geng J F, Li Y, et al., Unconditional and conditional QTL mapping for plant height in non-heading Chinese cabbage [J]. HortScience,2009,44:268-273
    14. Cheng Y, Geng J F, Zhang J Y, et al., The construction of a genetic linkage map of non-heading Chinese cabbage(Brassica campestris ssp. chinensis Makino) [J].J Genet Genomics,2009,36:501-508
    15. Choi S R, Teakle G R, Plaha P, et al., The reference genetic linkage map for the multinational Brassica rapa genome sequencing project [J]. Theor Appl Genet,2007,115:777-792
    16. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994,138(3):963-971
    17. Chyi Y S, Hoeneche M E, Sernyk J L. A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris) [J]. Genome,1992,35:746-757
    18. Cui X M, Dong Y X, Hou X L, et al., Development and characterization of microsatellite markers in Brassica rapa ssp. chinensis and transferability among related species [J]. Agricultural Science China,2008,7:257-265
    19. Davis T M, Yu H, Haigis K M, et al., Template mixing:A method of enhancing detection and interpretation of co dominant RAPD markers [J]. Theor. Appl. Genet,1995,91(4):582-588
    20. De Vicente M C, Tanksley S D. QTL analysis of transgressive segregation in an intrespecific tomato cross [J]. Genetics,1993,134:585-596.
    21. Demeke T, Adams R P, Chibbar R. Potential taxonomic use of random amplified polymorphic DNA (RAPD):a case study in Brassica [J]. Theor Appl Genet,1992,84:990-994
    22. Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character [J].Genetics,1996,142 (1):285-294
    23. Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action [J]. Genetics,1987,116:113-125
    24. Fan S Y, Le J G, Cheng G J, et al., Chinese cabbage-pak-choi transcriptome map construction with cDNA-AFLP techniques [J]. Agricultural Science China,2008,7:1181-1188
    25. Ferreira M E, Satagopan J, Yandell B S, et al., Mapping loci controlling vernalization requirement and flowering time in Brassica napus [J].Theor Appl Genet,1995,90:727-732
    26. Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers [J].Theor.Appl.Genet.,2003a,107:271-282
    27. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers [J]. Genet Resour Crop Evol,2003b,50(3):227-238
    28. Gelfand A E, Smith A F M. Sampling-based approaches to calculating marginal densities [J]. JAM Stat Assoc,1990,85:398-409
    29. Geng J F, Zhu C S, Zhang X W, et al., A genetic linkage map of nonheading Chinese cabbage [J]. J Am Soc Hort Sci,2007,132:816-823
    30. Grattapaglia D, Sederoff R. Genetic linkage map of eucalyptus erophylla using a pseudotestcross mapping strategy and RAPD marker [J]. Genetics,1994,137:1121-1137
    31. Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J]. Biometrics,1995,82:711-732
    32. Haley S S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity,1992,69:315-324
    33. Hirai M. Genetic analysis of clubroot resistance in Brassica crops [J]. Breeding Science,2006,56: 223-229
    34. Hosaka K, Kianian S F, Mcgrath J M, et al., Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and n=9 diploid species [J].Genome,1990,33(1):131-142
    35. Hu J G, Quiros C F. Identification of broccoli and cauliflower cultivars with RAPD markers [J]. Plant Cell Rep,1991,10:505-511
    36. Huang N, Angeles E R, Doming J. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR [J]. Theor App Genet,1997,95:313-320
    37. Jansen R C. Interval mapping of multiple quantitative trait loci [J]. Genetics,1993,135:205-211
    38. Jefferys A J, Wilson V, Thein S L. Hypervariable'minisatellite'regions in human DNA [J]. Nature, 1985,314:67-73
    39. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics, 1995,140:1111-1127
    40. Jourdren C, Barret P, Horvais R, et al. Identification of RAPD markers linked to linolenic acid genes in rapeseed [J]. Euphytica,1996,90:351-357
    41. Kao C H, Zeng Z B, Teasdole R. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999,152:1203-1216
    42. Kearsey M J, Farquhar A G. QTL analysis in plants:where are we now? [J]. Heredity,1998,80: 137-142
    43. Keightley P D, Bulfield G. Detection of quantitative trait loci from frequency changes at marker loci under selection [J]. Genet Res.1993,62:195-203
    44. Kim J S, Chung T Y, King G J, et al., A sequence-tagged linkage map of Brassica rapa [J]. Genetics, 2006,174:29-39
    45. Kole C, Kole P, Vogelzang R, et al., Genetic linkage map of a Brassica rapa recombinant inbred population [J]. J Heredity,1997,88:553-557
    46. Kole C, Williams P H, Rimmer S R, et al., Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Bassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana [J]. Genome,2002,45:22-27
    47. Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers [J]. Plant J,1993,4:403-410
    48. Kraakman A T, Niks R E, Van den Berg P M, et al., Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars [J]. Genetics,2004,168:435-446
    49. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199
    50. Lander E S, Green P. Construction of multilocus genetic maps in Humans [J]. Proc. Nat. Acad. Sci., USA,1987,84:2363-2367
    51. Lander E S. The new genomics:global views of bology [J]. Science,1996,274:536-539
    52. Lathrop G M, Lalouel J M, Julier C, et al., Strategies for multilocus analysis in Humans [J]. Proc. Nat. Acad. Sci. USA,1984,81:3443-3446
    53. Levinson G, Gutman G A. Slipped-strand mispairing:a major mechanism for DNA sequence evolution [J]. Mol. Biol. Evol.1987,4:203-221
    54. Li G Y, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet,2001,103:455-461
    55. Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. Am J Hum Genet,1989,44(3):397-401
    56. Lou P, Zhao J J, Kim J S, et al., Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa [J]. J Exp Bot,2007,58:4005-4016
    57. Lowe A J, Moule C, Trick M, et al., Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species [J]. Theor Appl Genet,2004,108:1103-1112
    58. Luo Z W, Ma L. An improved formulation of marker heterozygosity in recurrent selection and backcross schemes [J]. Genet Res,2004,83:49-53
    59. Luo Z W, Wu C I, Kearsey M J. Precision and high-resehition mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes [J]. Genetics,2002,161:915-929
    60. Matsumoto E, Yasui C, Ohi M, et al., Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis) [J]. Euphytica,1998,104,79-86
    61. Mazzucato A, Papa R, Bitocchi E, et al., Genetic diversity, structure and marker-trait associations in a collection of Italian tomato(Solanum lycopersicum L.) landraces [J]. Theor Appl Genet,2008, 116:657-669
    62. McGrath J M, Quiros C F. Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea [J]. Theor Appl Genet,1991,82:668-673
    63. Michelmore R W, Shaw D V. Quantitative genetics:Character dissection [J]. Nature,1988,335: 672-673
    64. Nakamura Y, Leppert M, O'Connell P, et al., Variable number of tandem repeat (VNTR) markers for human gene mapping [J]. Science,1987,235:1616-1622
    65. Novakova B, Salava J, Lydiate D. Construction of a genetic linkage map for Brassica campestris L. (syn. Brassica rapa L) [J]. Genetika Slechteni,1996,32,249-256
    66. Nozaki T, Anji M, Takahashi T, et al., Analysis of isozyme loci and their linkages in Brassica campestris L. [J]. Breed Sci,1995,45:57-64
    67. Nozaki T, Kunazaki A, Koba T, et al., Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brasssica campestris L. [J]. Euphytica,1997,95:115-123
    68. Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J]. Theor Appl Genet,1993,85:985-993
    69. Powell W. Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms [J]. Heredity,1996,79:48-59
    70. Pradhan A K, Gupta V, Mukhopadhyay A, et al., A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers [J]. Theor Appl Genet,2003,106:607-614
    71. Pritchard J K, Rosenberg N A. Use of unlinked genetic markers to detect population stratification in association studies [J]. Am J Hum Genet,1999,65:220-228
    72. Robertson D S A. A possible technique for isolating genetic DNA for quantitative trait in plants [J].Theor Bio,1985,117:1-10
    73. Saiki R K, Scharf S, Faloona F, et al., Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia [J]. Science,1985,230 (4732): 1350-1354
    74. Saito M, Kubo N, Matsunoto S, et al., Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa [J]. Theor Appl Genet,2006,114:81-91
    75. Sakamoto K, Saito A, Hayashida N, et al., Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Theor Appl Genet,2008,117:759-767
    76. Satagopan J M, Yandell B S, Newton M A, et al., A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo [J]. Genetics,1996,144:805-816
    77. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris [J]. Genetics,1923,8:552-560
    78. Schranz M E, Quijada P, Sung S, et al., Characterization and effects of the replicated flowering time gene FLC in Brassica rapa [J]. Genetics,2002,162:1457-1468
    79. Sillanpaa M J, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data [J]. Genetics,1999,151:1605-1619
    80. Soengas P, Hand P, Vicente J G, et al., Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa [J]. Theor Appl Genet,2007,114: 637-645
    81. Soller M, Beckmann J S. Marker-based mapping of quantitative trait loci using replicated progenies [J]. Theor Appl Genet,1990,80:205-208
    82. Song K M, Sloeum M K, Osborn T C. Molecular marker analysis of genes encoding morphological variation in Brassica rapa (syn. campestris) [J]. Theor Appl Genet,1995,90:1-10
    83. Song K M, Suzuki J Y, Solcum M K, et al., A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci [J]. Theor Appl Genet,1991,82:296-304
    84. Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap [J]. Plant J,1993,3:739-744
    85. Stephens D A, Fisch R D. Bayesian analysis of quantitative trait locus data using reservible jump Markov chain Monte Carlo [J]. Biometrics,1998,54 (4):1334-1347
    86. Stracke S, Haseneyer G, Veyrieras J, et al., Association mapping reveals gene action and interactions in the determination of flowering time in barley [J]. Theor Appl Genet,2009,118:259-273
    87. Stuber CW, Sisco P H. Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybrids [C]. Proc 46th Annual Corn and Sorghum Industry Research Conf, American Seed Trade Assoc,1991,41:70-83
    88. Suwabe K, Iketani H, Nunome T, et al., Characteristics of microsatellites in Brassica rapa genome and their potential utilisation for comparative genomics in cruciferae [J]. Breeding Science,2004, 54:85-90
    89. Suwabe K, Iketani H, Nunome T, et al., Isolation and characterization of microsatellites in Brassica rapa L. [J]. Theor Appl Genet,2002,104:1092-1098
    90. Suwabe K, Tsukazaki H, Iketani H, et al., Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana:the genetic origin of clubroot rsistance [J]. Genetics,2006,173:309-319
    91. Tanhuanpaa P K, Schulman A. Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera [J]. Molecular Breeding,2002,10:51-62
    92. Tanhuanpaa P K, Vilkke J P, Vikki H J. Mapping a QTL for oleic acid concentration in spring turnip rape(Brassica rapa ssp. oleifera) [J]. Theor Appl Genet,1996,92:952-956
    93. Tanksley S D, Bernatzky R, Lapitan N L, et al., Conservation of gene repertoire but not gene order in pepper and tomato [J]. Proc Natl Acad Sci USA,1988,85(17):6419-6423
    94. Tanksley S D, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato-a re-examination [J]. Theor Appl Genet,1988,75:811-823
    95. Tanksley S D. Mapping polygenes [J]. Annu Rev Genet,1993,27:205-233
    96. Tanner M A, Wong H W. The calculation of posterior distributions by data augmentation [J]. JAM Stat Assoc,1987,82:528-549
    97. Teutonico R A, Osborn T C. Mapping loci controlling vernalization requirement in Brassica rapa [J]. Theor Appl Genet,1995,91:1279-1283
    98. Teutonico R A, Osborn T C. Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea and Arabidopsis thaliana [J]. Theor Appl Genet,1994,89,885-894
    99. Thornsberry J M, Goodman M M, Doebley J, et al., Dwarf8 polymorphisms associate with variation in flowering time [J]. Nat Genet,2001,28:286-289
    100. Uimari P, Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms [J]. Genetics,1997,146:735-743
    101. Van Ooijen J W, Voorrips R E. Joinmap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands.2001
    102. Van Ooijen J W. MapQTL version 5.0:software for the mapping of quantitative trait loci in experimental populations. In:Wageningen:Plant Research International,2004
    103. Vos P, Hogers R, Bleeker M, et al., AFLP:A new technique for DNA fingerprinting [J]. Nucleic Acids Res,1995,23:4407-4414
    104. Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction [J]. Am J Hum Genet,1989,44(3):388-396
    105. Wen W, Mei H, Feng F, et al., Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice(Oryza sativa L.) [J]. Theor Appl Genet,2009, 119:459-470
    106. Williams J G K, Kubelik A R, Livak K J, et al., DNA polymorphisms amplified by arbitrary primers is useful as genetic markers [J]. Nucleic Acids Research,1990,18 (22):6531-6535
    107. Wu J, Yuan Y X, Zhang X W, et al., Maapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Plant Soil,2008,310:25-40
    108. Wu R, Zeng Z B. Linkage and linkage disequilibrium mapping in natural population [J]. Genetics, 2001,157:899-909
    109. Xiao J, Li J, Yuan L, et al., Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross [J]. Theor Appl Genet,1996, 92:230-244
    110. Xu S Z. Mapping quantitative trait loci using multiple families of line crosses [J]. Genetics,1998, 148:517-524
    111. Yang H, Shankar M, Buirchell B J, et al., Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.) [J]. Theor Appl Genet,2002,105:265-270
    112. Yang X, Yu Y J, Zhang F L, et al., Linkage map construction and quantitative trait loci analysis for bolting based on a double haploid population of Brassica rapa [J]. J Inter Plant Biol,2007,49 (5): 664-671
    113. Yao J, Wang L X, Liu L H, et al., Association mapping of agronomic traits on chromosome 2A of wheat [J]. Genetica,2009,137:67-75
    114. Yi N J, Xu S H. Bayesian mapping of quantitative trait loci for complex binary traits [J]. Genetics, 2000,155:1391-1403
    115. Yi N, Yandell B S, Churchill G A, et al., Bayesian model selection for genome-wide epistatic quantitative trait loci analysis [J]. Genetics,2005,170:1333-1344
    116. Yu J, Pressoir G, Briggs W H, et al., A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet,2006,38:203-208
    117. Yu S C, Zhang F L, Yu R B, et al., Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica campestris ssp. pekinensis) [J]. Mol Breed,2009,23:573-590
    118. Zeng Z B, Liu J, Stam L F, et al., Genetic architecture of a morphological shape difference between two Drosophila species [J]. Genetics,2000,54:299-310
    119. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136(4):1457-1468
    120. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci[J]. Proc Natl Acad Sci USA,1993,90:10972-10976
    121. Zhang F L, Wang M, Liu X C, et al., Quantitative trait loci analysis for resistance against Turnip mosaic virus based on a doubled-haploid population in Chinese cabbage [J]. Plant Breed,2008,127: 82-86
    122. Zhang X W, Wu J, Zhao J J, et al., Identification of QTL related to bolting in Brassica rapa ssp. Pekinensis (syn. Brassica campestris ssp. pekinensis) [J]. Agricultural Sciences in China,2006, 5(4):265-271
    123. Zhang Y M, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci [J]. Recent Res Dev Genet Breed,2005,2:1-23
    124. Zheng X Y, Wang Y J, Song S H, et al., Identification of heat tolerance linked molecular markers of Chinese cabbae(Brassica campestris ssp. pekinensis) [J]. Agricultural Science China,2002,1:789-791
    125. Zhu C S, Gore M, Buckler E S, et al., Status and prospects of association mapping in plants [J]. Plant Genome,2008,1:5-20
    126. Zhu J. Mixed model approaches for mapping quantitative trait loci [J]. Hereditas,1998,20 (Suppl): 137-138
    127. Zietkiewicz E, Patalski A, Labuda D. Genomic fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomics,1994,20:176-183
    128.白建荣,郭秀荣,侯变英.分子标记的类型、特点及在育种中的应用[J].山西农业科学,1999,27(4):33-38
    129.曹家树,曹寿椿.中国白菜叶部性状动态观察及其演化方向研究[J].南京农业大学学报,1995,18(2):34-41
    130.曾国平,曹寿椿.不结球白菜主要经济性状遗传规律的研究Ⅱ.15个农艺性状的遗传力和基因效应分析[J].南京农业大学学报,1998,21(1):31-35
    131.车永和.几种代表性分子标记技术[J].江苏农业科学,2003,2:3-5
    132.陈云鹏,曹家树,缪颖,等.芸薹类蔬菜基因组DNA遗传多样性的RAPD分析[J].浙江大学学报,2000,26(2):131-136
    133.程智慧,宋述尧,林义章.蔬菜栽培学各论[M].北京:科学出版社,2010
    134.崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及与产量的关联分析[J].作物学报,2007,33(5):744-750
    135.戴君惕.作物分子数量遗传学研究现状与应用前景[J].作物研究,1996,10(1):39-42
    136.单晓政,李英,高素燕,等.不结球白菜分子遗传图谱的构建及分析[J].西北植物学报,2009,29(6):1116-1121
    137.范淑英,乐建刚,成广杰,等.用cDNA-AFLP技术构建白菜转录图谱[J].中国农业科学,2008,41(6):1735-1741
    138.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    139.方智远,侯喜林,祝旅.蔬菜学[M].南京:江苏科学技术出版社,2004
    140.高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    141.耿建峰,侯喜林,张晓伟,等.利用DH群体构建不结球白菜遗传连锁图谱[J].南京农业大学学报,2007,30(2):23-28
    142.耿建峰.利用DH群体构建不结球白菜遗传连锁图谱及重要农艺性状QTL定位[D].南京:南京农业大学,2007
    143.韩和平,孙日飞,张淑江,等.大白菜中与芜菁花叶病毒(TuMV)感病基因连锁的AFLP标记[J].中国农业科学,2004,37(4):539-544
    144.韩建明,侯喜林,徐海明,等.不结球白菜(Brassica campestris ssp. chinensis Makino)种质资源SRAP遗传分化分析[J].作物学报,2007,33(11):1862-1868
    145.韩建明,侯喜林,徐海明,等.不结球白菜种质资源遗传多样性RAPD分析[J].南京农业大学学报,2008,31(3):31-36
    146.郝慧楠,王倩,侯喜林,等.不结球白菜主要农艺性状的分离分析[J].南京农业大学学报,2010,33(4):8-12
    147.何风华.水稻QTL分析的研究进展[J].西北植物学报,2004,24:2163-2169
    148.何余堂,涂金星,傅廷栋,等.中国白菜型油菜种质资源的遗传多样性研究[J].作物学报,2002,28:697-703
    149.侯喜林,曹寿椿,管晓春,等.白菜新品种‘矮抗五号’[J].园艺学报,2003,30(5):637
    150.侯喜林,曹寿椿,张蜀宁,等.优质白菜新品种‘暑绿’[J].园艺学报,2004,31(3):421
    151.侯喜林.不结球白菜育种研究新进展[J].南京农业大学学报,2003,26(4):111-115
    152.黄细松.白菜开花时间相关基因的分子标记及春化相关基因的克隆和表达分析[D].杭州:浙江大学,2006
    153.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29:1-10
    154.冷月强,侯喜林,史公军.白菜抗霜霉病基因的RAPD标记[J].园艺学报,2007,34(3):763-766
    155.李合生,孟庆伟,夏凯,等.现代植物生理学[M].北京:高等教育出版社,2002
    156.李宏.QTL定位的研究方法[J].生物学通报,2002,37(6):53-54
    157.李巧燕,林瑞庆,朱兴全.SRAP分子标记及其应用概述[J].热带医学杂志,2006,6(4):467-470
    158.李维明,唐定中,吴为人,等.用籼/籼交重组自交系群体构建的分子遗传图谱及其与釉/粳交群体的分子图谱的比较[J].中国水稻科学,2000,14(2):71-78
    159.林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679
    160.刘春燕,齐照明,韩冬伟,等.大豆产量相关性状的多年多点QTL分析[J].东北农业大学学报, 2010,41(11):1-9
    161.刘剑锋,张沉,张勤,等.利用Bayesian-MCMC方法进行畜禽复杂离散性状QTL定位[J].中国科学C辑,2006,36(3):240-246
    162.刘仁虎,孟金陵MapDraw,在Execel中绘制遗传连锁图的宏[J].遗传,2003,25(3):317-321
    163.刘树兵,王洪刚,孔令让,等.高等植物的遗传作图[J].山东农业大学学报,1999,30(1):73-78
    164.刘贞琦,刘振业,曾淑芬.水稻某些光合生理特性的研究[J].中国农业科学,1982,(5):33-39
    165.刘振业,刘贞琦.光合作用的遗传与育种[M].贵阳:贵州人民出版社,1984
    166.卢钢,曹家树,陈杭,等.白菜几个重要园艺性状的QTLs分析[J].中国农业科学,2002,35(8):969-974
    167.罗玉娣,李建国.SSR标记及其在蔬菜育种中的应用[J].热带农业科学,2005,25(6):58-71
    168.吕家龙.蔬菜栽培学各论南方本[M].北京:中国农业出版社,2003
    169.摩尔根T.H(卢志霖译).基因论[M].北京:科学出版社,1959
    170.莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别[J].作物学报,1993,19(1):1-6
    171.潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].科学通报,2005,15(2):167-172
    172.阮成江,何祯祥,钦佩.中国作物QTL定位最新进展[J].植物学通报,2003,20(1):10-22
    173.沈波,庄杰云,张克勤,等.水稻叶绿素含量的QTL及其与环境互作分析[J].中国农业科学,2005,38(10):1937-1943
    174.沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988,(3):62-64
    175.沈新莲,张天真.作物分子标记辅助选择育种研究的进展与展望[J].高技术通讯,2003,2:105-110
    176.宋晓飞.大白菜分子遗传图谱的构建及农艺性状QTL定位[D].保定:河北农业大学,2006
    177.孙秀峰,陈振德,李德全.大白菜干烧心病的QTL定位和分析[J].分子植物育种,2008,6(4):702-708
    178.孙秀峰,陈振德,李德全.利用大白菜抗感干烧心病F2群体构建AFLP遗传连锁图[J].分子植物育种,2006,4(1):65-70
    179.唐荣华,张君诚,吴为人.SSR分子标记的开发技术研究进展[J].西南农业学报,2002,15(4):106-109
    180.屠曾平.水稻光和特性研究与高光效育种[J].中国农业科学,1997,30(3):28-35
    181.汪斌,兰涛,吴为人,等.水稻叶绿素含量的QTL定位[J].遗传学报,2003,30(12):1127-1132
    182.王林生,宋忠利,李毓珍,等.植物数量性状的QTL定位分析[J].安徽农业科学,2006,34(18):4527-4529
    183.王美,张凤兰,孟祥栋,等.中国白菜AFLP分子遗传图谱的构建[J].华北农学报,2004,19(1):28-33
    184.吴国胜,王永健,姜亦魏.大白菜耐热性遗传效应研究[J].园艺学报,1997,24(2):141-144
    185.吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析[J].作物学报,2000,26(4):501-507
    186.席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1):88-92
    187.邢永忠,徐才国,华金平.水稻株高和抽穗期基因定位和分离[J].植物学报,2001,43(7):721-726
    188.徐东辉,孙日飞,张延国,等.大白菜叶色相关性状的QTL定位与分析[J].园艺学报,2007,34(1):99-104
    189.徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994
    190.徐云碧.分子标记在数量基因定位中的应用[J].遗传,1992,14(2):45-48
    191.杨国华,李绍清,冯玲玲,等.水稻剑叶叶绿素含量相关性状的QTL分析[J].武汉大学学报(理学版),2006,52(6):751-756
    192.杨旭,余阳俊,张凤兰,等.利用DH群体进行白菜株高和开展度的QTL定位与分析[J].扬州大学学报,2008a,29(4):90-94
    193.杨旭,余阳俊,张凤兰,等.应用DH群体进行白菜叶片数和单株重的QTL定位与分析[J].分子植物育种.2008b,6(6):1213-1218
    194.于拴仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析[J].中国农业科学,2003a,36(2):190-195
    195.于拴仓,王永健,郑晓鹰.大白菜部分形态性状的QTL定位与分析[J].遗传学报,2003b,30(12):1153-1160
    196.于拴仓,王永健,郑晓鹰.大白菜耐热性QTL定位与分析[J].园艺学报,2003c,30(4):417-420
    197.于拴仓,王永健,郑晓鹰.大白菜叶球相关性状的QTL定位与分析[J].中国农业科学,2004,37(1):106-111
    198.余阳俊,张凤兰,赵岫云,等.大白菜晚抽薹性快速评价方法[J].中国蔬菜,2004,6:16-18
    199.俞志华.分子标记及其在植物遗传育种中的应用[J].生物学通报,1999,34(10):10-12
    200.原玉香,孙日飞,张晓伟,等.芸薹种作物抽薹相关基因BrFLC1的CAPS标记[J].园艺学报,2008,35(11):1635-1640
    201.原玉香.白菜类作物抽薹开花的分子遗传分析[D].北京:中国农业科学院,2008
    202.张波.不结球白菜晚抽薹分子标记及抽薹性遗传分析[D].南京:南京农业大学,2007
    203.张凤兰,赵岫云.用小孢子培养创建大白菜双单倍体永久作图群体[J].华北农学报,2003,18(4):55-57
    204.张俊华,屈淑平,崔崇士.大白菜抗芜菁花叶病毒的QTL分析[J].植物病理学报,2008,38(2):178-184
    205.张立阳,张凤兰,王美,等.大白菜永久高密度分子遗传图谱的构建[J].园艺学报.2005,32(2):249-255
    206.张立阳.大白菜连锁图谱的构建和重要农艺性状的QTL定位[D].扬州:扬州大学,2005
    207.张鲁刚,王鸣,陈杭,等中国白菜RAPD分子连锁图谱的构建[J].植物学报,2000,42(5):485-489
    208.张明科,张鲁刚,巩振辉,等.白菜紫色性状RAPD连锁标记的筛选与染色体定位研究[J].西北植物学报,2008,28(5):0901-0906
    209.张晓芬,王晓武,娄平,等.利用大白菜DH群体构建AFLP遗传连锁图谱[J].园艺学报,2005,32(3):443-448
    210.张增翠,侯喜林,曹寿椿.不结球白菜维生素C和可溶性糖含量的遗传分析[J].园艺学报,1999,26(3):170-174
    211.章元明.作物QTL定位方法研究进展[J].科学通报,2006,51:2223-2231
    212.赵凡,于拴仓,石岭,等.SSR作为锚定标记构建白菜X芜菁分子遗传图谱[J].分子植物育种,2010,8(2):375-382
    213.朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业生命科学版),2000,26(1):1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700