用户名: 密码: 验证码:
载羟基喜树碱聚乳酸羟基乙酸微球的制备及抑制肝癌栓塞后血管生成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1载羟基喜树碱的聚乳酸羟基乙酸微球的制备及表征
     目的:通过乳液溶剂挥发法制备可以用于动脉栓塞研究的PLGA空白微球及载有HCPT的PLGA载药微球,并且对微球的特性进行表征。
     材料与方法:采用O/W乳液乳剂挥发法制备PLGA微球,通过比较有机溶剂二氯甲烷与二甲基甲酰胺比例、投药比、聚合物浓度、乳化时间、乳化转速等对微球的形态、载药量及粒径分布情况的影响,筛选出制备微球的最佳方案。根据筛选出的处方制备空白PLGA微球及载药PLGA微球,评价制备方案的稳定性。通过荧光显微镜、电镜等进行微球的形态表征,激光粒度仪测定粒径分布。使用恒温摇床研究载药37℃下在PBS中缓释药物的情况,HPLC法检测不同时间点的取样浓度,计算累计释药量,绘制微球的药物缓释曲线。
     结果:使用乳液溶剂挥发法制备了粒径为85±37μm的载HCPT的PLGA微球,载药量0.4%,包封率64%,制备了粒径为90±41μm的空白PLGA微球。荧光显微镜下可观察到HCPT在微球内分布均匀,扫描电子显微镜下微球表面光整。体外药物释放实验表面微球的缓释作用良好,在第25天时微球累计释放了载药量的29.2%。
     结论:乳液溶剂挥发法可以制备适合进行栓塞治疗使用的PLGA载药微球。
     2PLGA微球栓塞兔VX2种植性肝癌模型的实验研究
     目的:研究PLGA空白微球进行兔VX2种植性肝癌模型栓塞的可行性,通过与临床中常用栓塞剂PVA颗粒栓塞效果的对比,研究PLGA微球栓塞对肿瘤生长的影响。
     材料与方法:制备兔VX2种植性肝癌模型30只,MR检查确定肝癌模型成功建立后将30只实验动物分为三组进行肝动脉栓塞治疗:A组进行生理盐水假栓塞,B组使用150-250μm的PVA颗粒栓塞剂进行栓塞,C组使用实验第一部分制备的空白的PLGA微球进行栓塞。栓塞后的第7天处死实验动物。计算栓塞前后肿瘤的坏死率及肿瘤生长率,比较不同栓塞方法对肿瘤生长的影响。
     结果:PLGA微球可以经过2.7F微导管顺利进行栓塞治疗。三组肿瘤的生长率分别为:A组372.5±80.1%,B组175.3±80.9%,C组164.1±57.2%,A组与B组及C组间肿瘤生长率有统计学差异(P<0.05),B组肿瘤生长率虽然大于C组,但是无统计学差异(P>0.05)。肿瘤坏死率在A组肿瘤坏死率与B组和C组存在统计学差异(P<0.05),但是B组与C组间肿瘤坏死率无统计学差异(P>0.05)。
     结论:PLGA微球可以作为肝癌动物模型中栓塞剂进行实验研究。
     3载HCPT的PLGA微球抑制栓塞后残存肿瘤新生血管形成的实验研究
     目的:研究载HCPT的微球抑制肝癌栓塞治疗后残存肿瘤组织内新生血管.
     材料与方法:制备兔VX2肝癌模型40只,将40只荷瘤兔随机分为四组:A组接受生理盐水假栓塞,B组使用PLGA微球进行栓塞,C组使用载HCPT的PLGA微球进行栓塞,D组使用HCPT与碘油乳剂灌注肝动脉后再以150-250μm PVA颗粒栓塞供血动脉。在栓塞后第1天及第5天分别处死各组实验动物5只,4%多聚甲醛固定,石蜡包埋后切片,免疫组化染色分别检测HIF-1α、VEGF及MVD的表达情况。
     结果:所有实验动物均成功进行了栓塞治疗并存活到实验观察终点。栓塞治疗后肿瘤组织内均可见肿瘤细胞的大片坏死,坏死区间点片状残存的肿瘤组织。免疫组织化学染色显示HIF-1α在残存肿瘤细胞的细胞核及胞浆内均有表达,正常肝脏组织及靠近肝脏的肿瘤组织内未见明显的HIF-1α表达。VEGF表达以坏死区旁边残存肿瘤细胞及血管内皮细胞中表达为主,正常肝脏组织及与之相邻的肿瘤组织也存在不同程度的表达。新生血管再肿瘤组织散在分布,在肿瘤组织边缘微血管密度较其他部位高。统计学分析发现进行PLGA栓塞的实验动物残存肿瘤组织HIF-1α和VEGF的表达以及MVD明显高于其他的实验组(P<0.05),而接受生理盐水假栓塞、载药微球及HCPT乳剂栓塞的实验组肿瘤组织内HIF-1α和VEGF的表达无明显的差别(P>0.05)
     结论:载HCPT的PLGA微球可能通过缓慢释放HCPT抑制残存肿瘤组织新生血管的形成,增强栓塞治疗的效果。
Part I Preparation and Characterization of the HCPT Loaded PLGA microspheres
     Objective:To prepare the HCPT loaded PLGA microspheres and blank PLGA microspheres with the emulsion solvent evaporation method. The microspheres were characterized after the preparations.
     Materials and methods:The microspheres were prepared with O/W emulsion solvent evaporation method. The factors affecting the formation of microspheres including organic solvent ratio of dichloromethane and dimethylformamide, polymer concentration, emulsification time, stirring rate were screened to get suitable programs for the best parameter to control the microsphere morphology, drug loading and particle size distribution. The blank microspheres and drug loaded microspheres were prepared with the screened method. The microspheres were characterized with the fluorescence microscopy to detect the loaded HCPT, electron microscopy to observe the morphology, laser particle size analyzer determination of particle size distribution. In vitro drug release was performed within the dialysis bag in a constant temperature shaker with PBS at37℃. The concentration of samples at different time points were calculated the cumulative amount of drug release to create a release curve.
     Results: The blank PLGA microspheres and HCPT loaded microspheres were successfully prepared with the emulsion solvent evaporation method. The average diameter of the PLGA loading HCPT microspheres was85±37μm (mean±standard deviation), and average diameter the blank PLGA microspheres was90±41μm (mean±standard deviation). The drug loading rate was0.4%and the encapsulation rate was65%. HCPT distributed uniformly in the microspheres with green fluorescence in the fluorescent microscope. The microspheres showed smart surface in the scanning electron microscope. HCPT were sustained released form the microsphere and29.2%drugs were released from the microspheres in the25th days in the vitro release system.
     Conclusion:The emulsion solvent evaporation method can be used to prepared PLGA drug-loading microspheres that were suitable for the transcatheter arterial embolization.
     Part II Experimental Evaluation of the PLGA microspheres for Embolization in the Rabbit VX2Liver Tumor Model
     Objective:To investigate the feasibility of blank PLGA microspheres in the rabbit VX2implanted liver tumor model embolism. Compare the embolic effect of the PLGA microspheres with PVA particles which is commonly used in clinic as embolic agent by evaluating the tumor growth rate.
     Materials and mthods:Thirty tumor-bearing rabbits which were conformed with MRI were divided into threes groups randomly (10in each group). The rabbits in the group A were treated with false embolization with saline. The transcatheter arterial embolizaton was performed in the group B with blank PLGA microspheres. The rabbits in the group C received transcatheter arterial embolizaion with PVA particles (150-250μm). The rabbits were humanly sacrificed in seventh days after the embolization and the liver scan was performed with MRI before the sacrifice. The tumor growth rate was calculated by comparing the tumor volume before and after the embolic therapy.
     Results:PLGA microspheres can be subjected to2.7F micro-catheter to perform embolization. Three groups of tumor growth rates were372.5±80.1%,175.3±80.9%and164.1±57.2%in group A, group B and group C, respectively. There was statistically significant difference among groups (P<0.05). Although tumor growth rate in group B was greater than that in group C, there was no significant difference (P>0.05). Ther was sigfificant difference among groups for the tumor necrosis rate, but there was no significant difference between group B and group C.
     Conclusion:PLGA microspheres can be used as the embolic agent in liver cancer animal models for experimental research.
     Part III Experimental evaluation the inhibition of angiogenesis in residual tumor after embolization with HCPT loaded PLGA microspheres
     Objective:To investigate the inhibition of angiogenesis in the residual tumor after embolization with HCPT loaded PLGA microspheres.
     Materials and methods:A total of40tumor bearing rabbits of VX2carcinoma was divided into4groups randomly (10in each group). The rabbits in group A received saline false embolism. The rabbits in group B were embolized with PLGA microspheres. The rabbits in group C were treated with PLGA microspheres containing HCPT. For the animals in group D, emulsion containing HCPT and Lipiodol was infused to the hepatic artery and then the150-250μm PVA particles were used to embolize the tumor feeding arteries. Five animals were sacrificed in1st or5th days after embolization with sodium pentobarbital (100mg/kg). The tumor samples were harvested and fixed in4%paraformaldehyde. Then the samples were embedded in paraffin and sliced for immunohistochemical staining to detect the expression of HIF-1α and VEGF and MVD.
     Results:The interventional therapy was successfully performed in all animals. And the animals survived to the end of the experimental observation. Large area necrosis was found in the animals slice that receiving emblolic therapy and residual tumor cells scattered in the tumor. Immunohistochemical staining showed that HIF-1expression in both the nucleus and cytoplasm in the residual tumor cells but not in the liver tissue and tumor cells near the normal liver tissues. VEGF staining was mainly found in the residual tumor cells and vascular endothelial cells of the residual tumor tissues, and a few in normal liver tissue and adjacent tumor tissue. The neovascularization localized in the tumor edge predominantly. There was significant difference for the expression of HIF-la and VEGF and MVD respectively (P<0.05). The expression of HIF-1α and VEGF and MVD in the animals treated with PLGA microspheres was significantly higher than the experimental group in the residual tumor tissues. There was no significant difference for the expression of HIF-1α and VEGF and MVD in group1,3and4(P>0.05).
     Conclusion:HCPT loaded PLGA microspheres showed the inhibition of angiogenesis in the residual tumor by inhibiting the HIF-1α with the HCPT released from the microspheres, therefore enhancing the effect of embolization.
引文
[1]Jaxel C, Kohn KW, Wani MC, et al. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase Ⅰ:evidence for a specific receptor site and a relation to antitumor activity[J]. Cancer Res,1989, 49(6):1465-1469.
    [2]Hsiang YH, Hertzberg R, Hecht S, et al. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I[J]. J Biol Chem,1985, 260(27):14873-14878.
    [3]Hatefi A, Amsden B. Camptothecin delivery methods[J]. Pharmaceutical research,2002,19(10):1389-1399.
    [4]Zhang L, Yang M, Wang Q, et al.10-Hydroxycamptothecin loaded nanoparticles:preparation and antitumor activity in mice[J]. Journal of controlled release,2007,119(2):153-162.
    [5]Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials,2000,21(23): 2475-2490.
    [6]Lencioni R, de Baere T, Burrel M, et al. Transcatheter treatment of hepatocellular carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): technical recommendations[J]. Cardiovasc Intervent Radiol,2012,35(5): 980-985.
    [7]Seki A, Hori S, Kobayashi K, et al. Transcatheter arterial chemoembolization with epirubicin-loaded superabsorbent polymer microspheres for 135 hepatocellular carcinoma patients:single-center experience[J]. Cardiovasc Intervent Radiol,2011,34(3):557-565.
    [8]Namur J, Citron SJ, Sellers MT, et al. Embolization of hepatocellular carcinoma with drug-eluting beads:doxorubicin tissue concentration and distribution in patient liver explants[J]. J Hepatol,2011,55(6):1332-1338.
    [9]Shenderova A, Burke TG, Schwendeman SP. Stabilization of 10-hydroxycamptothecin in poly (lactide-co-glycolide) microsphere delivery vehicles[J]. Pharmaceutical research,1997,14(10):1406-1414.
    [10]Freiberg S, Zhu X. Polymer microspheres for controlled drug release [J]. International journal of pharmaceutics,2004,282(1-2):1-18.
    [11]Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Advanced drug delivery reviews,1997,28(1):5-24.
    [12]Namur J, Wassef M, Millot JM, et al. Drug-eluting beads for liver embolization:concentration of doxorubicin in tissue and in beads in a pig model[J]. J Vasc Interv Radiol,2010,21(2):259-267.
    [13]Lee KH, Liapi EA, Cornell C, et al. Doxorubicin-loaded QuadraSphere microspheres:plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer[J]. Cardiovasc Intervent Radiol,2010, 33(3):576-582.
    [14]Taylor RR, Tang Y, Gonzalez MV, et al. Irinotecan drug eluting beads for use in chemoembolization:in vitro and in vivo evaluation of drug release properties[J]. Eur J Pharm Sci,2007,30(1):7-14.
    [15]Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization[J]. J Vasc Interv Radiol,2006,17(2 Pt 1):335-342.
    [16]Hong K, Khwaja A, Liapi E, et al. New intra-arterial drug delivery system for the treatment of liver cancer:preclinical assessment in a rabbit model of liver cancer[J]. Clin Cancer Res,2006,12(8):2563-2567.
    [17]Giovanella BC, Hinz HR, Kozielski AJ, et al. Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin[J]. Cancer Res,1991,51(11):3052-3055.
    [18]Mi Z, Burke TG. Marked interspecies variations concerning the interactions of camptothecin with serum albumins:a frequency-domain fluorescence spectroscopic study[J]. Biochemistry,1994,33(42):12540-12545.
    [19]Bastian P, Bartkowski R, Kohler H, et al. Chemo-embolization of experimental liver metastases. Part Ⅰ:distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy[J]. Eur J Pharm Biopharm,1998,46(3):243-254.
    [20]Lin YH, Vasavada RC. Studies on microencapsulation of 5-fluorouracil with poly(ortho ester) polymers[J]. J Microencapsul,2000,17(1):1-11.
    [21]Jalil R, Nixon JR. Microencapsulation using poly (L-lactic acid) II: Preparative variables affecting microcapsule properties[J]. J Microencapsul, 1990,7(1):25-39.
    [22]Wei W, Yue ZG, Qu JB, et al. Galactosylated nanocrystallites of insoluble anticancer drug for liver-targeting therapy:an in vitro evaluation[J]. Nanomedicine (Lond),2010,5(4):589-596.
    [23]Sinha VR, Trehan A. Biodegradable microspheres for protein delivery[J]. J Control Release,2003,90(3):261-280.
    [24]Klose D, Siepmann F, Elkharraz K, et al. PLGA-based drug delivery systems: importance of the type of drug and device geometry[J]. Int J Pharm,2008, 354(1-2):95-103.
    [25]Sah H, Lee BJ. Development of new microencapsulation techniques useful for the preparation of PLGA microspheres[J]. Macromolecular rapid communications,2006,27(21):1845-1851.
    [26]Park TG Degradation of poly (D, L-lactic acid) microspheres:effect of molecular weight[J]. Journal of controlled release,1994,30(2):161-173.
    [27]Park TG Degradation of poly(lactic-co-glycolic acid) microspheres:effect of copolymer composition[J].Biomaterials,1995,16(15):1123-1130.
    [28]Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release[J]. Journal of controlled release,2007,122(3):338-344.
    [1]Vaidya S, Tozer KR, Chen J. An overview of embolic agents[J]. Semin Intervent Radiol,2008,25(3):204-215.
    [2]Laurent A. Microspheres and nonspherical particles for embolization[J]. Techniques in vascular and interventional radiology,2007,10(4):248-256.
    [3]Liu X, Heng WS, Paul, et al. Novel polymeric microspheres containing norcantharidin for chemoembolization[J]. J Control Release,2006,116(1): 35-41.
    [4]Qian J, Truebenbach J, Graepler F, et al. Application of poly-lactide-co-glycolide-microspheres in the transarterial chemoembolization in an animal model of hepatocellular carcinoma[J]. World J Gastroenterol, 2003,9(1):94-98.
    [5]Bastian P, Bartkowski R, Kohler H, et al. Chemo-embolization of experimental liver metastases. Part I:distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy[J]. Eur J Pharm Biopharm,1998,46(3):243-254.
    [6]Breedis C, Young G. The blood supply of neoplasms in the liver[J]. Am J Pathol,1954,30(5):969-977.
    [7]Chuang VP, Wallace S. Hepatic artery embolization in the treatment of hepatic neoplasms[J]. Radiology,1981,140(1):51-58.
    [8]Goldstein HM, Wallace S, Anderson JH, et al. Transcatheter occlusion of abdominal tumors[J]. Radiology,1976,120(3):539-545.
    [9]Barth KH, Strandberg JD, White RI, Jr. Long term follow-up of transcatheter embolization with autologous clot, oxycel and gelfoam in domestic swine[J]. Invest Radiol,1977,12(3):273-280.
    [10]Jack CR, Jr., Forbes G, Dewanjee MK, et al. Polyvinyl alcohol sponge for embolotherapy:particle size and morphology [J]. AJNR Am J Neuroradiol, 1985,6(4):595-597.
    [11]Brown DB, Nikolic B, Covey AM, et al. Quality improvement guidelines for transhepatic arterial chemoembolization, embolization, and chemotherapeutic infusion for hepatic malignancy[J]. J Vasc Interv Radiol,2012,23(3): 287-294.
    [12]Uchida H, Ohishi H, Matsuo N, et al. Transcatheter hepatic segmental arterial embolization using lipiodol mixed with an anticancer drug and Gelfoam particles for hepatocellular carcinoma[J]. Cardiovasc Intervent Radiol,1990, 13(3):140-145.
    [13]Charnsangavej C, Chuang VP, Wallace S, et al. Angiographic classification of hepatic arterial collaterals[J]. Radiology,1982,144(3):485-494.
    [14]Turjman F, Massoud TF, Vinters HV, et al. Collagen microbeads:experimental evaluation of an embolic agent in the rete mirabile of the swine[J]. AJNR Am J Neuroradiol,1995,16(5):1031-1036.
    [15]Beaujeux R, Laurent A, Wassef M, et al. Trisacryl gelatin microspheres for therapeutic embolization, II:preliminary clinical evaluation in tumors and arteriovenous malformations[J]. AJNR Am J Neuroradiol,1996,17(3): 541-548.
    [16]Sharma KV, Dreher MR, Tang Y, et al. Development of "imageable" beads for transcatheter embolotherapy[J]. J Vasc Interv Radiol,2010,21(6):865-876.
    [17]Osuga K, Hori S, Hiraishi K, et al. Bland embolization of hepatocellular carcinoma using superabsorbent polymer microspheres[J]. Cardiovasc Intervent Radiol,2008,31(6):1108-1116.
    [18]Gyves JW, Ensminger WD, VanHarken D, et al. Improved regional selectivity of hepatic arterial mitomycin by starch microspheres[J]. Clin Pharmacol Ther, 1983,34(2):259-265.
    [19]Sonomura T, Yamada R, Kishi K, et al. Dependency of tissue necrosis on gelatin sponge particle size after canine hepatic artery embolization[J]. Cardiovasc Intervent Radiol,1997,20(1):50-53.
    [20]Derdeyn CP, Moran CJ, Cross DT, et al. Polyvinyl alcohol particle size and suspension characteristics[J]. AJNR Am J Neuroradiol,1995,16(6): 1335-1343.
    [21]Hong K, Khwaja A, Liapi E, et al. New intra-arterial drug delivery system for the treatment of liver cancer:preclinical assessment in a rabbit model of liver cancer[J]. Clin Cancer Res,2006,12(8):2563-2567.
    [22]Lee KH, Liapi EA, Cornell C, et al. Doxorubicin-loaded QuadraSphere microspheres:plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer[J]. Cardiovasc Intervent Radiol,2010, 33(3):576-582.
    [1]Hsu HC, Wei TC, Tsang YM, et al. Histologic assessment of resected hepatocellular carcinoma after transcatheter hepatic arterial embolization[J]. Cancer,1986,57(6):1184-1191.
    [2]Sakurai M, Okamura J, Kuroda C. Transcatheter chemo-embolization effective for treating hepatocellular carcinoma. A histopathologic study [J]. Cancer,1984, 54(3):387-392.
    [3]Semenza GL. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer,2003, 3(10):721-732.
    [4]Liang B, Zheng C, Feng G, et al. Experimental evaluation of inhibitory effect of 10-hydroxycamptothecin on hypoxia-inducible factor-1 alpha expression and angiogenesis in liver tumors after transcatheter arterial embolization[J]. J Vasc Interv Radiol,2010,21(10):1565-1572.
    [5]Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases[J]. Cancer Res,1999,59(22):5830-5835.
    [6]Yamaguchi R, Yano H, Iemura A, et al. Expression of vascular endothelial growth factor in human hepatocellular carcinoma[J]. Hepatology,1998,28(1): 68-77.
    [7]Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma[J]. N Engl J Med,1991, 324(1):1-8.
    [8]Liou TC, Shih SC, Kao CR, et al. Pulmonary metastasis of hepatocellular carcinoma associated with transarterial chemoembolization[J]. J Hepatol,1995, 23(5):563-568.
    [9]Suzuki H, Mori M, Kawaguchi C, et al. Serum vascular endothelial growth factor in the course of transcatheter arterial embolization of hepatocellular carcinoma[J]. Int J Oncol,1999,14(6):1087-1090.
    [10]Kim YB, Park YN, Park C. Increased proliferation activities of vascular endothelial cells and tumour cells in residual hepatocellular carcinoma following transcatheter arterial embolization[J]. Histopathology,2001,38(2): 160-166.
    [11]Saccheri S, Lovaria A, Sangiovanni A, et al. Segmental transcatheter arterial chemoembolization treatment in patients with cirrhosis and inoperable hepatocellular carcinomas[J]. J Vasc Interv Radiol,2002,13(10):995-999.
    [12]Li X, Feng GS, Zheng CS, et al. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level[J]. World J Gastroenterol,2004,10(19): 2878-2882.
    [13]Li X, Feng GS, Zheng CS, et al. Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: an experimental study [J]. World Journal of Gastroenterology,2003,9(11): 2445-2449.
    [14]Liao XF, Yi JL, Li XR, et al. Angiogenesis in rabbit hepatic tumor after transcatheter arterial embolization[J]. World J Gastroenterol,2004,10(13): 1885-1889.
    [15]Yasuda S, Arii S, Mori A, et al. Hexokinase II and VEGF expression in liver tumors:correlation with hypoxia-inducible factor 1 alpha and its significance[J]. J Hepatol,2004,40(1):117-123.
    [16]Jensen RL, Soleau S, Bhayani MK, et al. Expression of hypoxia inducible factor-1 alpha and correlation with preoperative embolization of meningiomas[J]. J Neurosurg,2002,97(3):658-667.
    [17]Virmani S, Rhee TK, Ryu RK, et al. Comparison of hypoxia-inducible factor-1 alpha expression before and after transcatheter arterial embolization in rabbit VX2 liver tumors[J]. J Vasc Interv Radiol,2008,19(10):1483-1489.
    [18]Liang B, Zheng CS, Feng GS, et al. Correlation of hypoxia-inducible factor 1 alpha with angiogenesis in liver tumors after transcatheter arterial embolization in an animal model [J]. Cardiovasc Intervent Radiol,2010,33(4): 806-812.
    [19]Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy[J]. J Cell Mol Med,2009,13(9A):2780-2786.
    [20]Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway[J]. Cancer Res,2002,62(15):4316-4324.
    [21]Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Advanced drug delivery reviews,1997,28(1):5-24.
    [22]Johnson PJ, Kalayci C, Dobbs N, et al. Pharmacokinetics and toxicity of intraarterial adriamycin for hepatocellular carcinoma:effect of coadministration of lipiodol[J]. J Hepatol,1991,13(1):120-127.
    [23]Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization[J]. J Vasc Interv Radiol,2006,17(2 Pt 1):335-342.
    [24]Li QY, Zu YG, Shi RZ, et al. Review camptothecin:current perspectives[J]. Curr Med Chem,2006,13(17):2021-2039.
    [25]Taylor RR, Tang Y, Gonzalez MV, et al. Irinotecan drug eluting beads for use in chemoembolization:in vitro and in vivo evaluation of drug release properties[J]. Eur J Pharm Sci,2007,30(1):7-14.
    [26]Kaiser J, Kramer I. Loading profile of topotecan into polyvinyl alcohol microspheres (DC Bead) over a 7-day period[J]. J Oncol Pharm Pract,2012, 18(2):222-228.
    [27]Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release[J]. Journal of controlled release,2007,122(3):338-344.
    [28]Shi W, Yu S. Inhibitory effect of HCPT on expression of HIF-lalpha and downstream genes in hypoxic human cervical SiHa cancer cells[J]. J Huazhong Univ Sci Technolog Med Sci,2007,27(5):586-589.
    [1]Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA:a cancer journal for clinicians,2011.
    [2]Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma[J]. Hepatology,2002,35(5):1164-1171.
    [3]Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma:a randomised controlled trial [J]. Lancet,2002,359(9319):1734-1739.
    [4]Osuga K, Maeda N, Higashihara H, et al. Current status of embolic agents for liver tumor embolization[J]. Int J Clin Oncol,2012,17(4):306-315.
    [5]Carr BI, Zajko A, Bron K, et al. Phase II study of Spherex (degradable starch microspheres) injected into the hepatic artery in conjunction with doxorubicin and cisplatin in the treatment of advanced-stage hepatocellular carcinoma: interim analysis[J]. Semin Oncol,1997,24(2 Suppl 6):S6-97-S96-99.
    [6]Nitta N, Ohta S, Tanaka T, et al. Gelatin microspheres:initial clinical experience for the transcatheter arterial embolization[J]. Eur J Radiol,2008, 67(3):536-540.
    [7]Veltri A, Moretto P, Doriguzzi A, et al. Radiofrequency thermal ablation (RFA) after transarterial chemoembolization (TACE) as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC)[J]. Eur Radiol,2006, 16(3):661-669.
    [8]Malagari K, Pomoni M, Kelekis A, et al. Prospective randomized comparison of chemoembolization with doxorubicin-eluting beads and bland embolization with BeadBlock for hepatocellular carcinoma[J]. Cardiovasc Intervent Radiol, 2010,33(3):541-551.
    [9]Osuga K, Anwar Khankan A, Hori S, et al. Transarterial embolization for large hepatocellular carcinoma with use of superabsorbent polymer microspheres: initial experience[J]. Journal of Vascular and Interventional Radiology,2002, 13(9):929-934.
    [10]Bonomo G, Pedicini V, Monfardini L, et al. Bland embolization in patients with unresectable hepatocellular carcinoma using precise, tightly size-calibrated, anti-inflammatory microparticles:first clinical experience and one-year follow-up[J]. Cardiovasc Intervent Radiol,2010,33(3):552-559.
    [11]Grosso M, Vignali C, Quaretti P, et al. Transarterial chemoembolization for hepatocellular carcinoma with drug-eluting microspheres:preliminary results from an Italian multicentre study [J]. Cardiovascular and interventional radiology,2008,31(6):1141-1149.
    [12]Poon RT, Tso WK, Pang RW, et al. A phase I/II trial of chemoembolization for hepatocellular carcinoma using a novel intra-arterial drug-eluting bead[J]. Clin Gastroenterol Hepatol,2007,5(9):1100-1108.
    [13]Hakansson L, Hakansson A, Morales O, et al. Spherex (degradable starch microspheres) chemo-occlusion--enhancement of tumor drug concentration and therapeutic efficacy:an overview[J]. Semin Oncol,1997,24(2 Suppl 6): S6-100-S106-109.
    [14]Forsberg JO. Transient blood flow reduction induced by intra-arterial injection of degradable starch microspheres. Experiments on rats[J]. Acta Chir Scand, 1978,144(5):275-281.
    [15]Lorelius LE, Benedetto AR, Blumhardt R, et al. Enhanced drug retention in VX2 tumors by use of degradable starch microspheres[J]. Invest Radiol,1984, 19(3):212-215.
    [16]Wollner IS, Walker-Andrews SC, Smith JE, et al. Phase Ⅱ study of hepatic arterial degradable starch microspheres and mitomycin[J]. Cancer Drug Deliv, 1986,3(4):279-284.
    [17]Ensminger WD, Gyves JW, Stetson P, et al. Phase I study of hepatic arterial degradable starch microspheres and mitomycin[J]. Cancer Res,1985,45(9): 4464-4467.
    [18]Yamasaki T, Saeki I, Harima Y, et al. Effect of transcatheter arterial infusion chemotherapy using iodized oil and degradable starch microspheres for hepatocellular carcinoma[J]. J Gastroenterol,2012,47(6):715-722.
    [19]Speakman TJ. INTERNAL OCCLUSION OF A CAROTID-CAVERNOUS FISTULA[J]. J Neurosurg,1964,21:303-305.
    [20]Barth KH, Strandberg JD, White RI, Jr. Long term follow-up of transcatheter embolization with autologous clot, oxycel and gelfoam in domestic swine[J]. Invest Radiol,1977,12(3):273-280.
    [21]Sone M, Osuga K, Shimazu K, et al. Porous gelatin particles for uterine artery embolization:an experimental study of intra-arterial distribution, uterine necrosis, and inflammation in a porcine model[J]. Cardiovasc Intervent Radiol, 2010,33(5):1001-1008.
    [22]Ohta S, Nitta N, Takahashi M, et al. Degradable gelatin microspheres as an embolic agent:an experimental study in a rabbit renal model [J]. Korean J Radiol,2007,8(5):418-428.
    [23]Ohta S, Nitta N, Watanabe S, et al. Gelatin Microspheres:Correlation between Embolic Effect/Degradability and Cross-linkage/Particle Size[J]. Cardiovasc Intervent Radiol,2012.
    [24]Amesur NB, Zajko AB, Carr BI. Chemo-embolization for unresectable hepatocellular carcinoma with different sizes of embolization particles[J]. Dig Dis Sci,2008,53(5):1400-1404.
    [25]Bastian P, Bartkowski R, Kohler H, et al. Chemo-embolization of experimental liver metastases. Part Ⅰ:distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy[J]. Eur J Pharm Biopharm,1998,46(3):243-254.
    [26]Ekelund L, Lin G, Jeppsson B. Blood supply of experimental liver tumors after intraarterial embolization with gelfoam powder and absolute ethanol[J]. Cardiovasc Intervent Radiol,1984,7(5):234-239.
    [27]Tamburino C, La Manna A, Di Salvo ME, et al. First-in-man 1-year clinical outcomes of the Catania Coronary Stent System with Nanothin Polyzene-F in de novo native coronary artery lesions:the ATLANTA (Assessment of The LAtest Non-Thrombogenic Angioplasty stent) trial[J]. JACC Cardiovasc Interv,2009,2(3):197-204.
    [28]Stampfl S, Stampfl U, Bellemann N, et al. Biocompatibility and recanalization characteristics of hydrogel microspheres with polyzene-F as polymer coating[J]. Cardiovasc Intervent Radiol,2008,31(4):799-806.
    [29]Stampfl S, Bellemann N, Stampfl U, et al. Inflammation and recanalization of four different spherical embolization agents in the porcine kidney model[J]. J Vasc Interv Radiol,2008,19(4):577-586.
    [30]Stampfl S, Bellemann N, Stampfl U, et al. Arterial distribution characteristics of Embozene particles and comparison with other spherical embolic agents in the porcine acute embolization model[J]. J Vasc Interv Radiol,2009,20(12): 1597-1607.
    [31]Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead:in vitro characterization of a drug-delivery device for transarterial chemoembolization[J]. J Vasc Interv Radiol,2006,17(2 Pt 1):335-342.
    [32]Laurent A, Beaujeux R, Wassef M, et al. Trisacryl gelatin microspheres for therapeutic embolization, I:development and in vitro evaluation[J]. AJNR Am J Neuroradiol,1996,17(3):533-540.
    [33]Beaujeux R, Laurent A, Wassef M, et al. Trisacryl gelatin microspheres for therapeutic embolization, II:preliminary clinical evaluation in tumors and arteriovenous malformations[J]. AJNR Am J Neuroradiol,1996,17(3): 541-548.
    [34]Spies JB, Benenati JF, Worthington-Kirsch RL, et al. Initial experience with use of tris-acryl gelatin microspheres for uterine artery embolization for leiomyomata[J]. J Vasc Interv Radiol,2001,12(9):1059-1063.
    [35]Gyves JW, Ensminger WD, VanHarken D, et al. Improved regional selectivity of hepatic arterial mitomycin by starch microspheres[J]. Clin Pharmacol Ther, 1983,34(2):259-265.
    [36]Stampfl U, Stampfl S, Bellemann N, et al. Experimental liver embolization with four different spherical embolic materials:impact on inflammatory tissue and foreign body reaction[J]. Cardiovasc Intervent Radiol,2009,32(2): 303-312.
    [37]Stampfl S, Stampfl U, Rehnitz C, et al. Experimental evaluation of early and long-term effects of microparticle embolization in two different mini-pig models. Part Ⅰ:kidney[J]. Cardiovasc Intervent Radiol,2007,30(2):257-267.
    [38]Derdeyn CP, Graves VB, Salamat MS, et al. Collagen-coated acrylic microspheres for embolotherapy:in vivo and in vitro characteristics[J]. AJNR Am J Neuroradiol,1997,18(4):647-653.
    [39]Stampfl S, Stampfl U, Rehnitz C, et al. Experimental evaluation of early and long-term effects of microparticle embolization in two different mini-pig models. Part II:liver[J]. Cardiovasc Intervent Radiol,2007,30(3):462-468.
    [40]Kos S, Wasan E, Weir G, et al. Elution Characteristics of Doxorubicin-loaded Microspheres Differ by Drug-loading Method and Microsphere Size[J]. Journal of Vascular and Interventional Radiology,2011,22(3):361-368.
    [41]Liu DM, Kos S, Buczkowski A, et al. Optimization of doxorubicin loading for superabsorbent polymer microspheres:in vitro analysis[J]. Cardiovasc Intervent Radiol,2012,35(2):391-398.
    [42]Maeda N, Osuga K, Higashihara H, et al. In vitro characterization of cisplatin-loaded superabsorbent polymer microspheres designed for chemoembolization[J]. J Vasc Interv Radiol,2010,21(6):877-881.
    [43]Lee KH, Liapi EA, Cornell C, et al. Doxorubicin-loaded QuadraSphere microspheres:plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer [J]. Cardiovasc Intervent Radiol,2010, 33(3):576-582.
    [44]Maeda N, Osuga K, Shimazu K, et al. In vivo evaluation of cisplatin-loaded superabsorbent polymer microspheres for use in chemoembolization of VX2 liver tumors[J]. J Vasc Interv Radiol,2012,23(3):397-404 e391.
    [45]Osuga K, Hori S, Hiraishi K, et al. Bland embolization of hepatocellular carcinoma using superabsorbent polymer microspheres [J]. Cardiovasc Intervent Radiol,2008,31(6):1108-1116.
    [46]Osuga K, Khankan AA, Hori S, et al. Transarterial embolization for large hepatocellular carcinoma with use of superabsorbent polymer microspheres: initial experience[J]. J Vasc Interv Radiol,2002,13(9 Pt 1):929-934.
    [47]Seki A, Hori S. Switching the loaded agent from epirubicin to cisplatin: salvage transcatheter arterial chemoembolization with drug-eluting microspheres for unresectable hepatocellular carcinoma[J]. Cardiovasc Intervent Radiol,2012,35(3):555-562.
    [48]Lewis AL, Gonzalez M, Lloyd AW, et al. DC bead:in vitro characterization of a drug-delivery device for transarterial chemoembolization[J]. Journal of Vascular and Interventional Radiology,2006,17(2):335-342.
    [49]Hong K, Khwaja A, Liapi E, et al. New intra-arterial drug delivery system for the treatment of liver cancer:preclinical assessment in a rabbit model of liver cancer[J]. Clin Cancer Res,2006,12(8):2563-2567.
    [50]Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads:efficacy and doxorubicin pharmacokinetics[J]. J Hepatol,2007,46(3):474-481.
    [51]Taylor RR, Tang Y, Gonzalez MV, et al. Irinotecan drug eluting beads for use in chemoembolization: in vitro and in vivo evaluation of drug release properties[J]. Eur J Pharm Sci,2007,30(1):7-14.
    [1]Jain RK. Molecular regulation of vessel maturation[J]. Nat Med,2003,9(6): 685-693.
    [2]Folkman J. Fundamental concepts of the angiogenic process [J]. Curr Mol Med, 2003,3(7):643-651.
    [3]Algire GH. Vascular reactions of normal and malignant tissues in vivo. VII. Observations on vascular reactions in destruction of tumor homografts[J]. J Natl Cancer Inst,1954,15(3):483-491.
    [4]Folkman J. Tumor angiogenesis:therapeutic implications[J]. N Engl J Med, 1971,285(21):1182-1186.
    [5]Holash J, Maisonpierre PC, Compton D,lynnetwwwdagriorglynnet. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF[J]. Science,1999,284(5422):1994-1998.
    [6]Folkman J. Tumor angiogenesis[J]. Adv Cancer Res,1985,43:175-203.
    [7]Tanaka K, Fukumoto S. [Tumor angiogenesis and cancer therapy][J]. Gan To Kagaku Ryoho,1983,10(7):1564-1568.
    [8]Singh H, Tahir TA, Alawo DO,lynnetwwwdagriorglynnet. Molecular control of angiopoietin signalling[J]. Biochem Soc Trans,2011,39(6):1592-1596.
    [9]Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J]. Cell,1996,86(3):353-364.
    [10]Folkman J, Hanahan D. Switch to the angiogenic phenotype during tumorigenesis[J]. Princess Takamatsu Symp,1991,22:339-347.
    [11]Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation[J]. Recent Results Cancer Res,2010,180:103-114.
    [12]Kalluri R. Basement membranes:structure, assembly and role in tumour angiogenesis[J]. Nat Rev Cancer,2003,3(6):422-433.
    [13]Bhadada SV, Goyal BR, Patel MM. Angiogenic targets for potential disorders[J]. Fundam Clin Pharmacol,2011,25(1):29-47.
    [14]Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors[J]. Nat Rev Cancer,2002,2(10):727-739.
    [15]Carmeliet P, Dor Y, Herbert JM,lynnetwwwdagriorglynnet. Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis[J]. Nature,1998,394(6692):485-490.
    [16]Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis[J]. J Intern Med,2013,273(2):114-127.
    [17]Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases[J]. J Biochem,2013,153(1):13-19.
    [18]Zhang L, Wang JN, Tang JM,lynnetwwwdagriorglynnet. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells [J]. Molecular Biology Reports,2012,39(5):5085-5093.
    [19]Minata M, Harada KH, Kudo M,lynnetwwwdagriorglynnet. The Prognostic Value of Vascular Endothelial Growth Factor in Hepatocellular Carcinoma for Predicting Metastasis after Curative Resection[J]. Oncology,2013,84:75-81.
    [20]Raskopf E, Vogt A, Sauerbruch T,lynnetwwwdagriorglynnet. siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo[J]. J Hepatol,2008,49(6):977-984.
    [21]Brodsky SV, Mendelev N, Melamed M,lynnetwwwdagriorglynnet. Vascular density and VEGF expression in hepatic lesions[J]. J Gastrointestin Liver Dis, 2007,16(4):373-377.
    [22]Kim GD, Cheong OJ, Bae SY,lynnetwwwdagriorglynnet. 6"-Debromohamacanthin A, a Bis (Indole) Alkaloid, Inhibits Angiogenesis by Targeting the VEGFR2-Mediated PI3K/AKT/mTOR Signaling Pathways[J]. Mar Drugs,2013,11(4):1087-1103.
    [23]Miao H, Wei BR, Peehl DM,lynnetwwwdagriorglynnet. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway[J]. Nat Cell Biol, 2001,3(5):527-530.
    [24]Birukova AA, Cokic I, Moldobaeva N,lynnetwwwdagriorglynnet. Paxillin is involved in the differential regulation of endothelial barrier by HGF and VEGF[J]. Am J Respir Cell Mol Biol,2009,40(1):99-107.
    [25]Awazu Y, Nakamura K, Mizutani A,lynnetwwwdagriorglynnet. A Novel Inhibitor of c-Met and VEGF Receptor Tyrosine Kinases with a Broad Spectrum of In Vivo Antitumor Activities[J]. Mol Cancer Ther,2013.
    [26]Zhou B, Ma R, Si W,lynnetwwwdagriorglynnet. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth[J]. Cancer Lett, 2013.
    [27]Yu HB, Zhang HF, Zhang X,lynnetwwwdagriorglynnet. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism[J]. Hepatogastroenterology,2010, 57(102-103):1241-1246.
    [28]Schmitt M, Horbach A, Kubitz R,lynnetwwwdagriorglynnet. Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF):a novel mechanism for tumor invasion[J]. J Hepatol,2004,41(2):274-283.
    [29]Philip PA, Mahoney MR, Holen KD,lynnetwwwdagriorglynnet. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer[J]. Cancer,2012,118(9):2424-2430.
    [30]Nakamura T, Ozawa S, Kitagawa Y,lynnetwwwdagriorglynnet. Antiangiogenic agent SU6668 suppresses the tumor growth of xenografted A-431 cells[J]. Oncol Rep,2006,15(1):79-83.
    [31]Gervaz P, Fontolliet C. Therapeutic potential of the anti-angiogenesis drug TNP-470[J]. Int J Exp Pathol,1998,79(6):359-362.
    [32]Sin N, Meng L, Wang MQ,lynnetwwwdagriorglynnet. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2[J]. Proc Natl Acad Sci U S A,1997,94(12):6099-6103.
    [33]钱骏,Daryusch V, Elsie O,lynnetwwwdagriorglynnet.血管生成抑制剂烟曲霉素衍生物在介入治疗肝细胞癌实验中的应用[J].中华放射学杂志,2006,40(1):4.
    [34]Sakao S, Tatsumi K. The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension[J]. Respiration,2011,81(3): 253-261.
    [35]Naumova E, Ubezio P, Garofalo A,lynnetwwwdagriorglynnet. The vascular targeting property of paclitaxel is enhanced by SU6668, a receptor tyrosine kinase inhibitor, causing apoptosis of endothelial cells and inhibition of angiogenesis[J]. Clin Cancer Res,2006,12(6):1839-1849.
    [36]Fire A, Xu S, Montgomery MK,lynnetwwwdagriorglynnet. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811.
    [37]Tabernero J, Shapiro GI, Lorusso PM,lynnetwwwdagriorglynnet. First-in-Humans Trial of an RNA Interference Therapeutic Targeting VEGF and KSP in Cancer Patients with Liver Involvement[J]. Cancer Discov,2013, 3(4):406-417.
    [38]Lu J, Getz G, Miska EA,lynnetwwwdagriorglynnet. MicroRNA expression profiles classify human cancers[J]. Nature,2005,435(7043):834-838.
    [39]Weis SM, Cheresh DA. Tumor angiogenesis:molecular pathways and therapeutic targets[J]. Nat Med,2011,17(11):1359-1370.
    [40]Campbell NE, Kellenberger L, Greenaway J,lynnetwwwdagriorglynnet. Extracellular matrix proteins and tumor angiogenesis[J]. J Oncol,2010,2010: 586905.
    [41]Desgrosellier JS, Cheresh DA. Integrins in cancer:biological implications and therapeutic opportunities[J]. Nat Rev Cancer,2010,10(1):9-22.
    [42]Tian B, Li Y, Ji XN,lynnetwwwdagriorglynnet. Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential[J]. Journal of Cancer Research and Clinical Oncology,2005,131(2):80-86.
    [43]Ogasawara S, Yano H, Momosaki S,lynnetwwwdagriorglynnet. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues[J]. Oncology Reports,2005,13(6): 1043-1048.
    [44]Qian J, Yin J, Liang H,lynnetwwwdagriorglynnet. Experimental study on transarterial administration of GRGDSP combined with transarterial chemoembolization in rats with hepatic carcinoma[J]. Cardiovasc Intervent Radiol,2008,31(2):377-382.
    [45]Prokopiou EM, Ryder SA, Walsh JJ. Tumour vasculature targeting agents in hybrid/conjugate drugs[J]. Angiogenesis,2013.
    [46]Chaudhary AK, Pandya S, Ghosh K,lynnetwwwdagriorglynnet. Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: An overview[J]. Mutat Res,2013.
    [47]Della Porta P, Soeltl R, Krell HW,lynnetwwwdagriorglynnet. Combined treatment with serine protease inhibitor aprotinin and matrix metalloproteinase inhibitor Batimastat (BB-94) does not prevent invasion of human esophageal and ovarian carcinoma cells in vivo[J]. Anticancer Res,1999,19(5B): 3809-3816.
    [48]Raskopf E, Sauerbruch T, Schmitz V. Apoptotic potency of angiostatic compounds in the treatment of cancer[J]. Curr Pharm Biotechnol,2012,13(11): 2283-2289.
    [49]Kim S, Park HS, Son HJ,lynnetwwwdagriorglynnet. [The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma][J]. Korean J Hepatol,2004,10(1): 62-72.
    [50]Klagsbrun M, Moses MA. Molecular angiogenesis[J]. Chem Biol,1999,6(8): R217-224.
    [51]Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action[J]. Exp Cell Res,2006,312(5):594-607.
    [52]Folkman J. Endogenous angiogenesis inhibitors[J]. APMIS,2004,112(7-8): 496-507.
    [53]Jia H, Li Y, Zhao T,lynnetwwwdagriorglynnet. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma[J]. Cancer Immunol Immunother,2012,61(11):1977-1987.
    [54]Zhang L, Ge W, Hu K,lynnetwwwdagriorglynnet. Endostar down-regulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells[J]. Mol Biol Rep,2012,39(1):89-95.
    [55]Prabha S, Sharma B, Labhasetwar V. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice[J]. Cancer Gene Ther,2012,19(8):530-537.
    [56]Chen S, Chen J, Ma Qlynnetwwwdagriorglynnet. Clinical Therapeutic Effect and Biological Monitoring of p53 Gene in Advanced Hepatocellular Carcinoma[J]. Am J Clin Oncol,2011.
    [57]Yu M, Chen W, Zhang J. p53 gene therapy for pulmonary metastasis tumor from hepatocellular carcinoma[J]. Anticancer Drugs,2010,21(9):882-884.
    [58]Liu L, Cao Y, Chen C,lynnetwwwdagriorglynnet. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5[J]. Cancer Res,2006, 66(24):11851-11858.
    [59]Cervello M, Bachvarov D, Lampiasi N,lynnetwwwdagriorglynnet. Molecular mechanisms of sorafenib action in liver cancer cells [J]. Cell Cycle,2012, 11(15):2843-2855.
    [60]Bagi CM, Gebhard DF, Andresen CJ. Antitumor effect of vascular endothelial growth factor inhibitor sunitinib in preclinical models of hepatocellular carcinoma[J]. Eur J Gastroenterol Hepatol,2012,24(5):563-574.
    [61]Zhu AX. Beyond sorafenib:novel targeted therapies for advanced hepatocellular carcinoma[J]. Expert Opin Investig Drugs,2010,19(5): 663-672.
    [62]Cui HZ, Dai GH, Shi Y,lynnetwwwdagriorglynnet. Sorafenib Combined with TACE in Advanced Primary Hepatocellular Carcinoma[J]. Hepatogastroenterology,2013,60(122):305-310.
    [63]Zhao Y, Wang WJ, Guan S,lynnetwwwdagriorglynnet. Sorafenib combined with transarterial chemoembolization for the treatment of advanced hepatocellular carcinoma:a large-scale multicenter study of 222 patients[JJ. Ann Oncol,2013.
    [64]Arjaans M, Oude Munnink TH, Oosting SF,lynnetwwwdagriorglynnet. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake [J]. Cancer Res,2013.
    [65]Fang P, Hu JH, Cheng ZG,lynnetwwwdagriorglynnet. Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma:a systematic review of phase II trials[J]. PLoS One,2012,7(12):e49717.
    [66]Kong J, Kong JG, Pan B,lynnetwwwdagriorglynnet. Insufficient Radiofrequency Ablation Promotes Angiogenesis of Residual Hepatocellular Carcinoma via HIF-1 alpha/VEGFA[J]. Plos One,2012,7(5).
    [67]Mayor S. No rebound tumour growth after sunitinib treatment[J]. Lancet Oncol,2013,14(3):e93.
    [68]Park SJ, Lee JL, Park Ⅰ,lynnetwwwdagriorglynnet. Comparative Efficacy of Sunitinib versus Sorafenib as First-Line Treatment for Patients with Metastatic Renal Cell Carcinoma[J]. Chemotherapy,2013,58(6):468-474.
    [69]Jha PK, Vankalakunti M, Siddini V,lynnetwwwdagriorglynnet. Sunitinib induced nephrotic syndrome and thrombotic microangiopathy[J]. Indian J Nephrol,2013,23(1):67-70.
    [70]Lin HJ, Su CC, Lu HF,lynnetwwwdagriorglynnet. Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2,-9, FAK, Rho A and Rock-1 gene expression[J]. Oncol Rep,2010,23(3):665-670.
    [71]Chatterjee S, Bhattacharjee B. Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor [J]. Bioinformation, 2012,8(25):1249-1254.
    [72]Kim JH, Shim JS, Lee SK,lynnetwwwdagriorglynnet. Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human umbilical vein endothelial cells:crucial involvement of the down-regulation of matrix metalloproteinase[J]. Jpn J Cancer Res,2002,93(12):1378-1385.
    [73]Liang B, Zheng C, Feng G,lynnetwwwdagriorglynnet. Experimental evaluation of inhibitory effect of 10-hydroxycamptothecin on hypoxia-inducible factor-1 alpha expression and angiogenesis in liver tumors after transcatheter arterial embolization[J]. J Vase Interv Radiol,2010,21(10): 1565-1572.
    [74]Qian J. Interventional therapies of unresectable liver metastases[J]. J Cancer Res Clin Oncol,2011,137(12):1763-1772.
    [75]Li X, Feng GS, Zheng CS,lynnetwwwdagriorglynnet. Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma:an experimental study [J]. World J Gastroenterol,2003, 9(11):2445-2449.
    [76]Yang Y, Sun M, Wang L,lynnetwwwdagriorglynnet. HIFs, angiogenesis, and cancer[J]. J Cell Biochem,2013,114(5):967-974.
    [77]Sergio A, Cristofori C, Cardin R,lynnetwwwdagriorglynnet. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC):the role of angiogenesis and invasiveness[J]. Am J Gastroenterol,2008,103(4): 914-921.
    [78]Dai CX, Gao Q, Qiu SJ,lynnetwwwdagriorglynnet. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery[J]. BMC Cancer,2009,9: 418.
    [79]Gadaleta CD, Ranieri G. Trans-arterial chemoembolization as a therapy for liver tumours:New clinical developments and suggestions for combination with angiogenesis inhibitors[J]. Crit Rev Oncol Hematol,2011,80(1):40-53.
    [80]Maataoui A, Qian J, Vossoughi D,lynnetwwwdagriorglynnet. Transarterial chemoembolization alone and in combination with other therapies:a comparative study in an animal HCC model[J]. Eur Radiol,2005,15(1): 127-133.
    [81]Gasparini G, Longo R, Fanelli M,lynnetwwwdagriorglynnet. Combination of antiangiogenic therapy with other anticancer therapies:results, challenges, and open questions[J]. J Clin Oncol,2005,23(6):1295-1311.
    [82]Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy[J]. Nat Rev Cancer,2004,4(6):423-436.
    [83]Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy[J], Science,2005,307(5706):58-62.
    [84]Algire GH, Chalkley HW, Earle WE,lynnetwwwdagriorglynnet. Vascular reactions of normal and malignant tissues in vivo. Ⅲ. Vascular reactions' of mice to fibroblasts treated in vitro with methylcholanthrene[J]. J Natl Cancer Inst,1950,11(3):555-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700