用户名: 密码: 验证码:
塔里木盆地阿克库勒凸起奥陶系岩溶型储层形成与保持研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿克库勒凸起奥陶系碳酸盐岩经历了多期构造运动和古岩溶作用,储层主要为岩溶型储层,大型洞穴、裂缝和溶蚀孔洞是其主要的储集空间,储层非均质性强。通过岩心、钻井、分析化验数据、测井、地震等资料的综合对比分析,建立了塔河油田奥陶系碳酸盐岩加里东中期、海西早期岩溶的识别标志,总结了岩溶储层时空分布特征,提出北部多期不整合叠加区厚层纯灰岩中优质岩溶储层发育受控于多期表生岩溶的“复合效应”,南部短期暴露地区有利储层形成受控于有利相带、古地貌、断裂-裂缝等多因素有效匹配的“联合效应”。总结了岩溶孔洞后期充填与保持的规律,建立了岩溶型储层复合-联合成因机理、地质模式与地质-地球物理综合预测模型。
     证实塔北地区存在加里东期运动及该期岩溶作用,指出早期断裂及伴生裂缝发育程度是加里东中期岩溶作用的主控因素,该期岩溶具有层控性,断控性,较强非均质性。该期岩溶的存在与发现,对塔河油田外围乃至整个塔北地区的油气勘探具有重要意义。
     海西早期岩溶作用对塔河主体区储层影响最大,在构造运动阶段性发生和地层脉动式隆升的影响下,区域上形成三套洞穴层,每个洞穴层发育期与盆地内沉积层序的高水位海平面稳定期对应,洞穴层序次为上老下新。塔河主体区发育岩溶壮年期的高幅度地貌非均质裂缝-洞穴储层,海西晚期岩溶对于奇中北部三叠系覆盖区内影响较大,由于多期次岩溶叠加,岩溶残丘夷平作用强,处于岩溶发育的老年期,岩溶储层不发育。
     锶同位素在划分岩溶期次方面具有明显的优势。加里东中期岩溶形成的岩溶缝洞方解石,具有低~(87)Sr/~(86)Sr比值特征,~(87)Sr/~(86)Sr比值主要由围岩的重溶锶控制。海西早期岩溶形成的岩溶缝洞方解石具有高~(87)Sr/~(86)Sr比值特征,~(87)Sr/~(86)Sr比值受壳源锶和来自围岩的重溶锶控制;
     塔河地区洞穴充填体系包括重力坍塌、机械搬运沉积和化学充填三类。北部以机械充填为主,南部以化学充填为主,主要受控于岩溶发育期次和古地貌特征。指出地表溶沟起源于密集落水洞的发育,地表河谷对应于近地表岩溶通道塌陷形成的表面凹坑,深埋阶段岩溶塌陷形成规模较大联合塌陷古洞穴系统,地震剖面上上显示为独特的圆形图案的断层(平面图)对应串珠状反射。利用、压力、产能流体资料对洞穴系统连通性法进行了分析。
     “串珠状”反射代表了优质储层在地震剖面上的反射特征,振幅变化率属性能较好地表征上奥陶统覆盖区岩溶型储层发育展布。振幅变化率中的强振幅变化区或条带代表了储层发育区,地震测井联合反演表明岩溶型储层主要发育在风化面以下200m左右,具有低波阻抗、低层速度、高孔隙度特征。波阻抗反演和地震反射强度的方法预测洞穴系统的充填性质。
The Lower-mid Ordovician of the northern part of Tarim Basin is a shallow-marinecarbonate platform deposits which has experienced multi-stage erosions and karstificationproduced karstic reservoir as the mainly reservoir type between the Late Ordovician andLate Devonian , Part of lower-mid Ordovician of the Tahe Oilfield was sub-aerially exposedfor 100 millions of years . During this lengthy exposure period, an extensive karst systemdeveloped that is characterized by an irregular erosional surface, meters-size dissolutioncavities, collapse breccias, sinkholes, paleosols, and fractures. Large caves, corroded fissuresand vugular-solution caves are dominating storage spaces of karstified reservoirs withgreater heterogeneity. It is difficult to study the distribution laws and to prediction them. Theexploration and development of oil and gas in Ordovician have been restricted by thesefactors.
     In this thesis, an integrated approach was applied that emphasized integration of seismicdata with available conventional core, wireline logs, and geochemical data to analyze theformation mechanism, the controlling factors and the distribution rules of Ordovicianreservoirs were studied by the integrated application of the theories and technologies ofpetroleum geology, tectonic geology, sedimentary petrology, inorganic geochemistry andgeophysics.
     Five-element model which control the development of karst reservoirs through theanalysis of the structure and dynamic conditions of deposition, burial history and fluidevolution were proposed, the five elements are the structure (basin, tectonic deformation),sequence (structure, style), fluid (surface, ground, deep source), rocks (sedimentary faciesand diagenetic phase) and environmental control. Using the analysis results ofCathodoluminescence and plane- light petrograph, stable carbon and oxygen isotopiccomposition analyses, Sr isotopic composition, trace elements fluid-inclusionhomogenization temperature analyses, as well as Devonian palynological data, Karst geneticmodel is proposed. Ordovician karstification mainly occur in the surface or near-surfacemeteoric conditions, and was affected by the mid-Caledonian and early Hercynian tectonicmovements.
     The first and secondary episodes of mid-Caledonian karstification were controlled bylithology, exposure time of the erosion and later alteration, thus,the karst of mid-Caledonianperiod is mainly distributed in southern part of Tahe Oilfield where there is the thick upperOrdovician sediments coverage. the principal factor of paleo-karstification duringCaledonian movement was the development degree of early faults and its associated fracture.the main characteristics of paleo-karstification during Caledonian were summarized, that isdistribution controlled by strata, distribution controlled by fault and available reservoir withgreater heterogeneitities. The existence and discovery of Caledonian paleo-karstification hasgreat significance in the process of exploration in peripheral area of Tahe Oil Field.
     Early Hercynian is the main period of karst formation and preservation of work area.three paleokarst cave horizons were formed due to early Hercynian cycling tectonic uplift,inan order of the lower the newer. Cave distribution is mainly controlled by the lithology,paleogeomorphology, extension fracture and faults, phreatic surface-water discharge karstmode of peninsula type was established.
     Cave–fractured reservoir with heterogeneities were well developed in Tahe main areawhere the karst development was in the mature stage with high amplitude landscape andabundant geomorphologic elements, including fluvial channels,canyons, fluvial valleys,sinkholes, tower karsts and hills. In YuQi area, late hercynian karstification had moreinfluence on the karstified reservoir, because the superimposition of multi-stageskarstification caused serious strata denudation and deplanation of pimple plain, Large high residual and dissolve ditch were not well developed, in peneplain state and old age of karstdevelopment, karst reservoir are not developed.
     Tahe Oilfield Ordovician karstification genetic model is proposed on basis ofrecognition of the karst, restoration of the palaeogeomorphology, karst cycles analysis,controlling factors on karst, and the karstification mechanism in this area and its implicationsfor carbonate reservoir are well understood with the use of adjacent interference well testdata ,the inter-well connectivity are analyzed ,then we can distinguish Connected-cavesystems and disconnected caves, which laid a geological foundation for the implementationof different strategies for the production of technology. Multi-phase karsts developmentformed multi-storey cave-style oil storage space with excellent reservoir conditions, andcreated a good oil conduit system and thereby controlled the distribution of the reservoirs.
     Strontium isotope have better ability of provenance,and have distinct advantages in thedivision of paleokarst stages. Lower~(87)Sr/~(86)Sr ratios is the character of calcites formed in thekarst of Middle Caledonian, and~(87)Sr/~(86)Sr ratios of calcites are controlled by the~(87)Sr/~(86)Sr8r7atios from host rocks. However, the calcites of Early Herlynian paleokarst have higher
     Sr/~(86)Sr ratios, and controlled by the terrestrial strontium and the dissolved strontium fromthe wall rocks. Furthermore, the north areas have higher~(87)Sr/~(86)Sr ratios than the areascovered with O3s Formation, the increased proportion of strontium isotope from host rocks isthe main reason.
     The interaction between the surface karst-drainage system and the shallow-subsurfacecave-passage system is evidenced by the observation that surface canyons appear to initiatein areas associated with intense sinkhole development. Surface river valleys tend tocorrespond to dip-oriented surface depressions partly related to near-surface cave collapse.During burial into the deeper subsurface, the combination of intrastratal collapse (karstifiedstrata) and suprastratal collapse (postkarst-deposited strata) created large damage zoneshundreds of meters thick and kilometers wide. Coalescedcollapsed paleocave systems can beinterpreted from the unique circular pattern of faults (observed in map view) that areassociated with seismic bright spots. On the basis of static karstification model,theconnectivity of cave system was identified by integration with pressure production and fluidsdata,
     Beaded reflections on the seismic profile represent high quality reservoir, and theattribute of amplitude variation rate can well depict the distribution of karstified reservoir inareas covered with Upper Ordovician. well log-seismic joint inversion shows that karsticreservoirs were well developed at the 0 to 200m interval beneath the unconformity withcharacteristics of low impedance and lower speed, high porosity.
引文
[1] Barnaby R J, Oetting G C, and Gao G.Strontium isotopic signatures of oil~field waters:applicationsfor reservoir characterization. AAPG Bulletin,2004,88(12):1677~1704
    [2] Bhatia, M.R., Rare Earth Element Geochemistry of Australian Paleozoicgraywacks and Mudrocks:Provence and Tectonic Control [J], Sedimentary Geology, 1985, 45(122): 97~113.
    [3] Chan, M.Y., Dolomization and Dolomite Neomorphism: Trenton and Black River Limestones (MiddleOrdovician) Northern Indiana, U.S.A., Journal of Sedimentary Geology, 2000, 70(1): 265~274.
    [4] Daniels, L.D. and Meyers, W.J., Paleokarstic Features and Their Relationship to Cementation History,Burlington Keokuk limestone, Middle Mississippian, Central Missouri, AAPG Bull, 1986, 70(5):578~579.
    [5] Durocher.S.and Al-Aasm.I.S. Dolomitzation and neomorphism of Mississippran(Visean)upper DeboltFormation.Blucherry Field.NE British Columbia.Canada:geologic.petrologic and chemicalevidence.American Association of Petroleum Geologists Bulletin.1997,v.81.p.954~977.
    [6] Esteban, M.Palaeokarst: Practical Applications, in V. P.Wright, M. Esteban, and P. L. Smart, eds.,Palaeokarsts and Palaeokarstic Reservoirs: Postgraduate Research for Sedimentology, University ofReading,1992, PRIS Contribution 152, p. 89~119.
    [7] Flexer A. and Livnat, A., Evolutionary Importance and Economic Potential of MesozoicUnconformities of Levant [J], AAPGBULL, 1985, 69(2): 255~256.
    [8] Gautam, P., Raj, P.S. and Ando, H,, Mapping of Subsurface Karst Structure with Gamma Ray andElectrical Resistivity Profiles: A Case Study from Pokhara Valley, Central Nepal, Jounal of AppliedGeophysics, 2000, 45(2): 97~110
    [80]Kessinger, W. Extended split-step Fourier depth migration (exp. abs.): International Exposition and62nd Annual Meeting, Technical Program, Society of ExplorationGeophysicists, New Orleans,1992, p.617~620.
    [9] Kovluk, D.R., Coastal Paleokarst near the Ordovician~Silurian Boundary, Manitoulin Island, Ontario[J], Bulletin of Canadian Petroleum Geology, 1984, 32 (4): 398~407.
    [10]Loucks, R. G. Understanding the development of breccias and fractures in Ordovician carbonatereservoirs, in T. J. Hunt and P. H. Lufholm, The Permian Basin: Back to basics:West Texas GeologicalSociety FallSymposium: West Texas Geological Society Publication 2003, 03-112 p. 231~252.
    [11]Loucks, R. G., and P. K. Mescher, 2001, Paleocave facies classification and associated pore types, inSouthwest Section, AAPG Annual Meeting, Dallas, Texas, CD~ROM, p18
    [12]Loucks, R. G., P. K. Mescher, and G. A. McMechan, 2004, Three~dimensional architecture of acoalesced, collapsedpaleocave system in the Lower Ordovician Ellenburger Group, central Texas: AAPGBulletin, v. 88, p. 545~564,
    [13] Loucks, R.G., Paleocave Carbonate Reservoim: Origins, Burial-Depth Modifications, SpatialComplexity,and Reservoir Implications [J], AAPG Bulletin, 1999, 83(11): 1795~1834.
    [14]Loucks, R. G. Paleocave carbonate reservoirs: Origins, burial depth modifications, spatial complexity,and reservoir implications:1999, AAPG Bulletin, v. 83, p. 1795~1834.
    [15] Loucks, R.G. and Handford, C.R.Origin and Recognition of Fractures, Breccias, and Sediment Fillsin Paleocave-Reservoir Networks, in Candelaria, M.P. and Reed, C.L. eds., Paleokarst, Karst RelatedDiagenesis and Reservoir Development: Examples from Ordovician~Devonian Age Strata of West Texasand the Midcontinent: Permian Basin Section,1992,SEPM Publication p. 31~44
    [16] Lucia, F.J. Lower Paleozoic Cavern Development, Collapse,and Dolomitization, Franklin Mountains,El Paso, Texas, in Budd, D.A., Saller, A.H. and Harris, P.M. eds., Unconformities and Porosity inCarbonate Strata:1995, AAPG Memoir 63, p. 279~300.
    [17] McArthur J M,Howarth R J,and Bailey T R.Strontium isotope stratigraphy:lowess vension 3:best fit to the marine Sr isotope curve for 0-509Ma and accompanying look-up table for derivingnumerical age. Journal Geology,2001,109:155~170.
    [18]McDonnell, A., R. G. Loucks, and T. Dooley, Quantifying the origin and geometry of circular sagstructures in northern Fort Worth Basin, Texas: Paleocave collapse, pull~apart fault systems, orhydrothermal alteration, AAPG Bulletin, 2007,v. 91, p. 1295~1318.
    [19] Mahboubi, A., et al., Dia-Genetic History of Late Palaeocene Potential Carbonate Reservoir Rocks,Kopet-Dahg Basin, Ne Iran[J], Journal of Petroleum Geology, 2002, 25(4): 465~484.
    [20] Meredith K.R,Alan R.C,Jeffrey T.P,et al.Strontium isotope record of paleohydrology and continentalweathering,Eocene Green River Formation,Wyoming.Geology,30(2):167~170.
    [21] Morse J. W. , Wang Q. , and Tsio M. Y. Influences of temperature and Mg: Ca ration on CaCO3precipitates from seawater . Geology , 1997, 25: 85~ 87.
    [22]Palmer, A. N.,Cave geology: Dayton, Ohio, Cave Books, 454 p.Sheriff, R. E., 2002, Encyclopedicictionary of applied geophysics,4th ed.: Tulsa, Oklahoma, Society of Exploration Geophysicists, 2007,p.429~436
    [23]Palmer, A. N. Geochemical models for the origin of macroscopic solution porosity in carbonate rocks,in D. A. Budd, A. H. Saller, and P. M. Harris, eds., Unconformities and porosity in carbonate strata:1995,AAPGMemoir 63, p. 77~102.
    [24] Palmer, A.N., Origin and Morphology of Limestone Caves, Geological Society of America Bulletin,1991, 103: 1~21.
    [25] Plummer L. N, Wigley T. M, and Parkhurst D. L. The kinetics of calcite dissolution in CO2-watersystem at 5to 60 and 0. 0 to 1. 0 atm. CO2 [ J] . Amer . J . Sci . 1978, 278: 37~573
    [26] Purdy, E.G. and Waltham, D., Reservoir Implications of Modern Karst Topography, AAPG Bull, 1999,83(11): 1774~1794.
    [27]Suvrrat Kher, Patterns of Meteoric Diagenesis in the Middle and Late Ordovician Carbonates of theSouthern Appalachians. Dissertation,1996 UMI Number 9700270,100~120.
    [28] Wang, B.Q. and Al-Aasm, I.S., Karst-Controlled Diagenesis and Reservoir Development: Examplefrom Ordovician Main Reservoir Carbonate Rocks on the Eastern Margin of Ordos Basin, China, AAPG,2002, 86(9): 1639~1658.
    [29] Zeng, H., Loucks, R. and Janson, X., Three Dimensional Seismic Geomorphology and Analysis ofthe Ordovician Paleokarst Drainage System in the Central Tabei Uplift, Northern Tarim Basin, WesternChina, AAPG Bull, 2011, 95(12): 2061~2085.
    [30]陈鸿汉,邹胜章,刘明柱,等.滨海岩溶地区海咸水入侵动力学系统研究.水文地质工程,2001,v3,4~8.
    [31]陈景山,李忠,王振宇,等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布.沉积学报,2007,25(6):858~868.
    [32]陈克俭.略论我省可溶性碳酸盐岩系沉积与水库岩溶渗漏的处理.江西水利科技,1994,20(2):167~175.
    [33]陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层.海相油气地质,2002,7(4):13~25.
    [34]邓自强,林玉石,张美良,等.略论古岩溶不整合:以广西阳朔白少堡晚白垩世岩溶为例.广西地质,1994,7(2):61~70.
    [35]郭建华.塔北、塔中地区下古生界深埋藏古岩溶.中国岩溶,1996,15(3):207~216.
    [36]韩宝平,刘仁达,罗承建,等.岩溶作用对任丘古潜山碳酸盐岩油藏赋存的控制作用.中国岩溶,1998,17(1):75~80.
    [37]郝蜀民,司建平,许万年.鄂尔多斯盆地北部古生代岩溶及有利油气勘探区块预测.中国岩溶,1994,13(2):176~188.
    [38]何发岐.碳酸盐岩地层中不整合岩溶风化壳油气田.地质论评,2002,48(4):391~397.
    [39]何海泉,康志宏.沙雅~轮台断裂与油气.石油实验地质,1992,14(1):40~45.
    [40]何宇彬.关于“喀斯特水系统”研究.中国岩溶,1997,16(1):67~73.
    [41]黄尚瑜,宋焕荣.油气储层的深岩溶作用.中国岩溶,1997,16(3):189~198.
    [42]黄思静.碳酸盐岩的阴极发光和同位素分析.滇黔桂石油勘探局科技发展部.石油实验室研究的新技术方法汇编.滇黔桂石油勘探局科技发展部,1995,101~108.
    [43]贾疏源.中国岩溶缝洞系统油气储层特征及其勘探前景.特种油气藏.1997,4(4):1~9.
    [44]贾振远,蔡忠贤,肖玉茹.古风化壳是碳酸盐岩一个重要的储集层(体)类型.地球科学—中国地质大学学报,1995,20(3):283~289.
    [45]焦方正,翟晓先.海相碳酸盐岩非常规大油气田——塔河油田勘探研究与实践.北京:石油工业出版社,2008:140~152.
    [46]金振奎,邹元荣,蒋春雷,等.大港探区奥陶系岩溶储层发育分布控制因素.沉积学报,2001,19(4):530~535.
    [47]康玉柱.塔里木盆地寒武奥陶系古岩溶特征与油气分布(为庆祝克拉玛依油田勘探开发5O周年而作).新疆石油地质,2005,26(5):475~478.
    [48]兰光志,江同文,张延山,等.碳酸盐岩古岩溶储层模式及其特征.天然气工业,1996,16(6):13~17.
    [49]李彬,Lauritzen, S.E.挪威极地岩溶及其形成机制.中国岩溶,1997,16(2):177~185.
    [50]李彬,袁道先,林玉石,等.洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义.中国岩溶,2000,19(2):115~122.
    [51]李定龙.古岩溶和古岩溶地球化学慨念与研究展望.高校地质学报,1999,5(2):232~240.
    [52]李定龙,贾疏源.威远构造阳新灰岩岩溶隙洞系统发育演化特征.石油与天然气地质,1994,15(2):151~157.
    [53]李定龙,周治安,王桂梁.马家沟灰岩(古)岩溶研究中的若干问题探讨.地质科技情报,1997,16(1):23~28.
    [54]梁百和,王英华,朱素琳.中扬子区晚石炭世碳酸盐岩的古岩溶成岩相.中山大学学报(自然科学版),1998,37(2):91~96.
    [55]林忠民.塔河油田奥陶系碳酸盐岩储层特征及成藏条件.石油学报,2002,23(3):23~26.
    [56]刘存革,李国蓉,张一伟,等.锶同位素在古岩溶研究中的应用——以塔河油田奥陶系为例.地质学报,2007,81(10):1398~1404.
    [57]刘存革,李涛,吕海涛,等.阿克库勒凸起中上奥陶统地层划分及加里东中期第1幕古喀斯特特征.成都理工大学学报:自然科学版,2010,37(1):55~62.
    [58]刘再华,袁道先,何师意.岩溶动力系统水化学动态变化规律分折.中国岩溶,1999,18(2):103~108.
    [59]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征.地学前缘,2008,15(1):36~50.
    [60]吕海涛,张达景,杨迎春.塔河油田奥陶系油藏古岩溶表生作用期次划分.地质科技情报,2009,28(6):71~75.
    [61]彭大均,刘效曾,任天培,等.碳酸盐岩储层研究的若干问题.中国石油天然气总公司科技发展部.储层评价研究进展.石油工业出版社,1990:117~125.
    [62]钱一雄,蔡立国,李国蓉,等.碳酸盐岩岩溶作用的元素地球化学表征:以塔河l号的S60井为例.沉积学报,20(1):70~74.
    [63]宋志敏.阴极发光地质学基础.武汉:中国地质大学出版社,1993:150~170.
    [64]苏瑞侠,孙东怀,冯翠容.广东碳酸盐溶洞发育的控制因子.热带地理,2002,22(1):80~84.
    [65]孙承兴,王世杰,季宏兵.碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理.地球化学,2002,31(2):119~126.
    [66]唐跃,崔泽宏,王靓靓.塔河地区火山岩类型、分布与主控因素.中国地质2011,38(5):1188~1200.
    [67]王宝清,张金亮.古岩溶的形成条件和特征.西安石油学院学报,1996,11(4):82~101.
    [68]王建峰,靳佩,李新华,等.塔河油田缝洞型油藏不同反射特征技术研究.新疆石油天然气,2011,7(3):1~5.
    [69]王勤聪,李宗杰,孙霁.塔河油田碳酸盐岩储集层地球物理识别模式.新疆石油地质,23(5):400~401.
    [70]王者顺,王尚旭,唐文榜.塔河油田碳酸盐岩溶洞油藏的地震响应及频率差异分析.石油与天然气地质,2004,25(1):932~936.
    [71]吴智勇,郭建华,吴东胜,等.基于测井资料的碳酸盐岩储层评价方法——以辽河西部凹陷曙103块潜山为例.石油与天然气地质,2000,21(2):157~160.
    [72]夏日元.油气田古岩溶与深岩溶研究新进展.中国岩溶,2001,20(1):76~82
    [73]肖玉茹,何峰煜,孙义梅.古洞穴型碳酸盐岩储集体特征研究——以塔河油田奥陶系古洞穴为例.石油与天然气地质,2003,24(1):75~80.
    [74]杨俊杰,黄思静,张文正,等.表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟.沉积学报,1995,13(4):49~54.
    [75]袁志祥.鄂尔多斯盆地塔巴庙地区奥陶系风化壳岩溶地震相特征与天然气勘探.天然气工业,2001,21(3):125.
    [76]詹姆斯,肖凯著.胡文海,胡征钦等译.古岩溶.北京:石油工业出版社,1992:223.
    [77]张达景,吕海涛,张涛,等.塔河油田加里东期岩溶储层特征及分布预测.沉积学报,2007,25(2):215~220.
    [78]张抗.塔河油田性质和塔里木碳酸盐岩油气勘探方向.石油学报,2001,22(4):1~6.
    [79]张美良,林玉石,邓自强.岩溶沉积——堆积建造类型及其特征.中国岩溶,1998,17(2),168~178.
    [80]张任.岩溶洞穴分类新思考.中国岩溶,1994,13(3):229~236.
    [81]张涛,蔡希源.塔河地区加里东中期古岩溶作用及分布模式.地质学报,2007,81(8):1126~1130.
    [82]张希明.新疆塔河油田奥陶系缝洞型油藏特征.石油勘探与开发,2001,28(5):32~36.
    [83]张旭光.利用地震信息检测碳酸盐岩溶洞.石油物探,2002,41(3):349~362.
    [84]郑聪斌,冀小林,贾疏源.陕甘宁盆地中部奥陶系风化壳古岩溶发育特征.中国岩溶,1995,14(3):280~288.
    [85]郑聪斌,章贵松,王飞雁.鄂尔多斯盆地奥陶系热水岩溶特征.沉积学报,2001,19(4):524~535.
    [86]郑荣才,陈洪德.川东黄龙组古岩溶储层微量和稀土元素地球化学特征.成都理工学院学报,1997,24(1):127~135.
    [87]郑荣才,陈洪德,张哨楠,等.川东黄龙组古岩溶储层的稳定同位素和流体性质.地球科学,1997,22(4):424~428.
    [88]钟广法,马在田,刘瑞林,等.塔里木盆地奥陶系萤石脉-油气叠合成藏作用-高分辨率成像测井资料提供的证据.高校地质学报,2000,6(4):576~582.
    [89]周路,白玉雷,李洪辉.应用地震低速异常带特征研究轮南地区奥陶系古岩溶.石油勘探与开发,1998,25(1):29~31.
    [90]朱东亚,金之钧,胡文蠡.塔中地区热液改造型白云岩储层.石油学报,2009,30(5):698~704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700