用户名: 密码: 验证码:
利用前期肿瘤分子生物学技术平台进行卵巢衰老过程差异表达基因的筛选及其所选靶点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     随着老龄化社会的出现,器官衰老日益受到重视。卵巢衰老所引发的围绝经期症状和诸多老年性疾病严重影响女性的健康。前期探索c-FLIP在宫颈腺癌中的作用中成功建立了一系列分子生物学技术平台。应用已有的肿瘤分子生物学技术平台探索卵巢衰老的内在机制,筛选卵巢衰老过程中的差异表达基因,并分析靶基因在卵泡发育、卵巢功能中的作用。
     方法
     激光捕获显微切割技术(Laser Capture Microdissection, LCM)获取卵巢组织中的单个卵泡;提取微量RNA并进行线性扩增;所获得的RNA与Affymetrix GeneChip Mouse Genome 430 2.0 Array杂交并扫描。采用免疫组织化学方法、实时定量聚合酶链反应(Real Time Polymerase Chain Reaction, Real Time PCR)及Weston Blot检测靶基因的表达定位及丰度。应用RNA干扰技术、单克隆抗体特异性封闭靶基因,下调其在组织、细胞中的表达。MTT比色法、流式细胞技术FCS分析下调靶基因对细胞增殖、凋亡的影响;激光共聚焦显微镜、电镜分别观察细胞的大小、形态学及超微结构变化。酶联荧光分析(Enzyme Linked Fluorescence Analysis, ELFA)检测激素表达水平改变。Real Time-PCR及Weston Blot检测相关基因的表达水平改变,探讨基因的相互调节。
     结果
     (1)下调cFLIP影响caspase-8蛋白的表达,从而阻抑宫颈腺癌Hela细胞增殖并诱导其凋亡;并且能有效提高Hela细胞对放、化疗的敏感性。
     (2)LCM获取的卵泡提取RNA经线性扩增后获得的aRNA与表达谱芯片杂交,筛选得到卵巢衰老差异表达基因共334条。
     (3)其中898-a基因在卵泡中特异性表达,其表达水平随小鼠的发育而降低。下调898-a基因表达,卵泡生长直径变小,卵巢激素分泌水平升高,颗粒细胞体外培养其增殖与激素分泌无明显改变;卵母细胞形态异常,超微结构显著破坏,颗粒细胞无显著改变,透明带呈致密板状,其上突触破坏消失。898-a表达下调,卵母细胞特异性表达基因表达水平升高;甾体激素合成酶类基因及LHR表达显著升高,卵母-颗粒细胞缝隙连接表达下降,颗粒-颗粒细胞缝隙连接表达升高。
     (4) PRLR表达水平随小鼠不断发育而显著性升高,卵泡募集选择过程中PRLR表达水平上升,排卵过程中表达水平有所下降,但仍高于对照组,黄体形成时期其表达水平再次升高。
     结论
     (1)cFLIP对宫颈腺癌生物学行为有重要影响,可能成为宫颈腺癌新的治疗靶点。
     (2)利用肿瘤分子生物学技术平台成功获得卵巢衰老关键基因并分析其作用机制。
     (3)LCM联合表达谱芯片是一条可行有效的筛选差异表达基因的技术路线。
     (4)下调898-a基因抑制卵母细胞的功能,致使颗粒细胞异常分化成熟,可能与卵巢衰老过程卵泡消耗加速相关。
     (5) PRLR通过调节卵泡细胞的增殖影响小鼠卵泡的募集与发育,并且与黄体的形成和功能维持可能有关。
We have payed more attention to the organ aging with the occurrence of the aging society. Perimenopausal symptom and several senium disease resulted from ovarian aging have affected women's healthy seriously. A series of molecular biotechnology platform were established during the exploration of the c-FLIP function in cervical adenocarcinoma. To screen the functional geens in the process of ovarian aging and analyse the mechanisim of the target gene in the follicular development which help to further investigate the molecular mechanism of ovarian aging by using the molecular biotechnology platform had been established.
     Methods
     Laser capture microdissection was used to obtain the single follicle from the ovary. The amplified RNA which was extracted from the LCM cells was hybridized to the Affymetrix GeneChip Mouse Genome 430 2.0 Array and the signal was scanned. Immunohistochemistry, real time-PCR and Weston blot were used to test the location and expression level of target gene. RNA interference technology and monoclony antibody were used to downregulate the expression level of target genes. MTT and flow cellsorting were taken to test the proliferation and apoptosis ratio of the cells respectively. The size and morphology and its ulturestructure of the cells was observed with confocal microscop and electron microscop. Enzyme Linked Fluorescence Analysis was used to test the hormone level.
     Results
     (1) The proliferation of cervical adenocarcinoma cell Hela was inhibited and its apoptosis was induced as the result of cFLIP downregulated with the change of caspase-8 protein level. cFLIP downregulation sensitized the Hela cell to radiotherapy and chemotherapy.
     (2) 334 functional genes of ovarian aging were abtained by combinging LCM with cDNA array.
     (3) One of the 334 genes 898-a specifically expressed in ovarian follicle and its expression level reduced with the mouse development. The diameter of follicles cultured was smaller and hormone levels were higher in the proup of 898-a down-regulated compared with that of the control, while the proliferation and hormone secretion level of the granulose cells both were no significantly different between the two groups. The morphology of oocyte was abnormal and its ultrastructure was destroyed and the density of zona pellucida was much thicker and its projections were disappearance with 898-a down-regulated, while there was no change in granulose cells. The expression levels of oocyte specific genes were increased with 898-a downregulated, while that of the steroidogenesis enzyme and LHR were reverse. The gene expression level of the gap junctions between oocyte and granulose cell was decreased while the gene expression level of gap junctions between granulose cells was reverse.
     (4) PRLR expression level was increased significantly with the mouse development. The expression level of PRLR was increased during the process of follicular recruitment and selection while it was a little lower at the time of ovulation but still much higher than the control, than it increased again during the formation of corpus luteum.
     Conclusion
     (1) cFLIP plays an important effection on the biology behaviour and it may become a new target for the cervical adenocarcinoma therapy.
     (2) It is successful to obtain the key genes of ovarian aging with the tumor molecular biotechnology platform.
     (3) It is an effectively and feasible technique that combining LCM with cDNA array applied in the screening functional genes.
     (4) Granulose cells were differentiation to mature abnormally as the result of inhibition of oocyte function with 898-a downregulated which may be associated with the accelerated exhaustion of follicles during the ovarian aging.
     (5) PRLR may be involved in folliculogenesis through regulating the proliferation of follicular cells and may be associated with the formation and maintenance of corpus luteum in the mouse ovary.
引文
1. US Bureau of the Census. Current population reports:Projections of the population of the United States 1997 to 2050. Washington, DC:US Government Printing Office,1993.
    2. Jerome F. Strauss Ⅲ, Robert L. Barbieri. Yen and Jaffe's Reproductive Endocrinology. US: Elsvier Inc.,5th Ed,2004.421
    3. Barrett-Connor E, Grady D. Hormone replacement therapy, heart disease, and other considerations. Annu Rev Public Health,1998,19(1):55-72.
    4. 周建烈,周琦,刘文婷。美国医事总署《骨骼保健与骨质疏松症报告》简介。中国骨质疏松杂志,2006,12(1):97-106.
    5. Dhandapani KM, Brann DW. Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod,2002,67(5):1379-1385.
    6. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol, 1986,67:604-606.
    7. Aiman J, Smentek C. Premature ovarian failure. J Reprod Med,1986,31:699-708.
    8. Shelley L. Cargill, James R. Carey, Hans-Georg Muller and Gary Anderson. Age of ovary determines remaining life expectancy in old ovariectomized mice. Aging Cell,2003,2:185-190.
    9. Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod,2002,17(6):1649-1656.
    10. Ashok Agarwal, Sajal Gupta and Rakesh K Sharma. Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology,2005,28(3):1-21.
    11. C.Tatonel, M.C.Carbone, S.Falone et al. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Molecular Human Reproduction,2006, (12):655-660.
    12. Elizabeth A. Mcgee and Aaron J. W. Hsueh. Initial and Cyclic Recruitment of Ovarian Follicles. Endocrine Reviews,2000,21(2):200-214.
    13. D. Monniaux. Apoptose ovocytaire et evolution de la reserve ovarienne Oocyte apoptosis and ovarian reserve. Gynecologie Obstetrique & Fertility,2002,30:822-826.
    14. Misung Jo, Mary C. Gieske, Charles E. Payneet al. Development and application of a rat ovarian gene expression database. Endocrinology,2006,145(11):5384-5396.
    15. Phillip R. Kezele, Jacquelyn M. Ague, Eric Nilsson, and Michael K. Skinner. Alterations in the Ovarian Transcriptome During Primordial Follicle Assembly and Development. Bio Rep 2005,72: 241-255.
    16. A. R. Caetano, J. B. Edeal, K. Burns et al. Physical mapping of genes in the porcine ovarian transcriptome. Ani Gen 2005,36 (4):322-330.
    1. Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice:Potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci USA.1983;80:6076-6080
    2. Hurwitz JM, Jindal S, Greenseid K, Berger D, Brooks A, Santoro N, Pal L. Reproductive aging is associated with altered gene expression in human luteinized granulosa cells. Reprod Sci. 2010;17:56-67
    3. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA. Laser capture microdissection. Science.1996;274:998-1001
    4. Alldred MJ, Che S, Ginsberg SD. Terminal continuation (tc) rna amplification without second strand synthesis. J Neurosci Methods.2009,177:381-385
    5. Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES. Laser capture microdissection and cdna microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta.2007;226:1475-1490
    6. 孙敬芳,主编.动物实验方法学.北京:人卫出版社,第一版.2001:20-21.
    7. Betsuyaku T, Senior RM. Laser capture microdissection and mrna characterization of mouse airway epithelium:Methodological considerations. Micron.2004;35:229-234
    8. Dafna B, Rina S, Irena S. Laser capture microdissection and laser pressure catapulting as tools to study gene expression in individual cells of a complex tissue. Methods Cell Biol. 2007;82:675-687
    9. Caretti E, Devarajan K, Coudry R, Ross E, Clapper ML, Cooper HS, Bellacosa A. Comparison of ma amplification methods and chip platforms for microarray analysis of samples processed by laser capture microdissection. J Cell Biochem.2008;103:556-563
    10. Batorfi J, Ye B, Mok SC, Cseh I, Berkowitz RS, Fulop V. Protein profiling of complete mole and normal placenta using proteinchip analysis on laser capture microdissected cells. Gynecol Oncol.2003;88:424-428
    11. Kunz GM, Jr., Chan DW. The use of laser capture microscopy in proteomics research-a review. Dis Markers.2004;20:155-160
    12. Matsuzaki S, Canis M, Mage G. Use of laser capture microdissection in studying hormone-dependent diseases:Endometriosis. Methods Mol Biol.2009;590:295-306
    13. Buckanovich RJ, Sasaroli D, O'Brien-Jenkins A, Botbyl J, Conejo-Garcia JR, Benencia F, Liotta LA, Gimotty PA, Coukos G Use of immuno-lcm to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther.2006;5:635-642
    14. Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall RL, Stack R, Becker JW, Montgomery JR, Vainer M, Johnston R. An evaluation of the performance of cdna microarrays for detecting changes in global mrna expression. Nucleic Acids Res.2001;29:E41-41
    15. Li Y, Li T, Liu S, Qiu M, Han Z, Jiang Z, Li R, Ying K, Xie Y, Mao Y. Systematic comparison of the fidelity of arna, mrna and t-rna on gene expression profiling using cdna microarray. J Biotechnol.2004; 107:19-28
    16. Ahmed FE. Molecular techniques for studying gene expression in carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev.2002;20:77-116
    17. Ireland JL, Scheetz D, Jimenez-Krassel F, Themmen AP, Ward F, Lonergan P, Smith GW, Perez GI, Evans AC, Ireland JJ. Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol Reprod.2008;79:1219-1225
    18. Grynberg M, Feyereisen E, Scheffer JB, Koutroubis P, Frydman R, Fanchin R. Early follicle development alters the relationship between antral follicle counts and inhibin b and follicle-stimulating hormone levels on cycle day 3. Fertil Steril.2010;93:894-899
    19. Sowers MR, Eyvazzadeh AD, McConnell D, Yosef M, Jannausch ML, Zhang D, Harlow S, Randolph JF, Jr. Anti-mullerian hormone and inhibin b in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab.2008;93:3478-3483
    20. van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, Fauser BJ, Themmen AP, te Velde ER. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility:A longitudinal study. Fertil Steril. 2005;83:979-987
    21. Kang B, Guo JR, Yang HM, Zhou RJ, Liu JX, Li SZ, Dong CY. Differential expression profiling of ovarian genes in prelaying and laying geese. Poult Sci.2009;88:1975-1983
    22. Clarke DL, Arey BJ, Linzer DI. Prolactin receptor messenger ribonucleic acid expression in the ovary during the rat estrous cycle. Endocrinology.1993; 133:2594-2603
    1. Alviggi C, Humaidan P, Howles CM, Tredway D, Hillier SG. Biological versus chronological ovarian age:Implications for assisted reproductive technology. Reprod Biol Endocrinol. 2009;7:101
    2. te Velde ER, Scheffer GJ, Dorland M, Broekmans FJ, Fauser BC. Developmental and endocrine aspects of normal ovarian aging. Mol Cell Endocrinol.1998; 145:67-73
    3. Sowers MR, Eyvazzadeh AD, McConnell D, Yosef M, Jannausch ML, Zhang D, Harlow S, Randolph JF, Jr. Anti-mullerian hormone and inhibin b in the definition of ovarian aging and the menopause transition.J Clin Endocrinol Metab.2008;93:3478-3483
    4. van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, Fauser BJ, Themmen AP, te Velde ER. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility:A longitudinal study. Fertil Steril. 2005;83:979-987
    5. Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS. Mapk3/1 (erkl/2) in ovarian granulosa cells are essential for female fertility. Science.2009;324:938-941
    6. 彭南妮 钱,邱耀芳等.小鼠腔前卵泡的分离与培养.中国现代医学杂志.1999;9:30-31
    7. Aerts JLE, Vandekerckhove P. Quantification of mrna expression for human tgf-β1, tnf-α, tnfr 1, tnfr 2 and fas using real-time quantitative reverse transcriptase pcr. Biotechnology Letters. 2004;24:47-52
    8. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8:141-154
    9. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131-142
    10. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging:Mechanisms and clinical consequences. Endocr Rev.2009;30:465-493
    11. Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging:Cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update.2009;15:573-585
    12. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol.2000; 163:43-48
    13. Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461-471
    14. Elvin JA, Matzuk MM. Mouse models of ovarian failure. Rev Reprod.1998;3:183-195
    15. Johnson AL, Woods DC. Dynamics of avian ovarian follicle development:Cellular mechanisms of granulosa cell differentiation. Gen Comp Endocrinol.2009; 163:12-17
    16. Gershon E, Plaks V, Dekel N. Gap junctions in the ovary:Expression, localization and function. Mol Cell Endocrinol.2008;282:18-25
    17. Cepni I, Kahraman N, Ocal P, Idil M, Uludag S. Expression and comparison of gap junction protein connexin 37 in granulosa cells aspirates from follicles of poor responder and nonpoor responder patients. Fertil Steril.2008;89:417-420
    18. Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ. Fsh-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol.1990; 138:16-25
    19. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature.1996;383:531-535
    20. Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology.2005;146:2798-2806
    21. Horikawa M, Kirkman NJ, Mayo KE, Mulders SM, Zhou J, Bondy CA, Hsu SY, King GJ, Adashi EY. The mouse germ-cell-specific leucine-rich repeat protein nalp14:A member of the nacht nucleoside triphosphatase family. Biol Reprod.2005;72:879-889
    22. Pennetier S, Perreau C, Uzbekova S, Thelie A, Delaleu B, Mermillod P, Dalbies-Tran R. Mater protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev Biol.2006;6:26
    23. Hutt KJ, McLaughlin EA, Holland MK. Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell Tissue Res.2006;326:809-822
    24. Vitt UA, Hayashi M, Klein C, Hsueh AJ. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod.2000;62:370-377
    25. Drummond AE. The role of steroids in follicular growth. Reprod Biol Endocrinol.2006;4:16
    26. Hillier S. [the respective roles of gonadotrophins on follicular growth and oocyte maturation]. J Gynecol Obstet Biol Reprod (Paris).2004;33:3S11-14
    27. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol.1999;13:1035-1048
    28. Nikolaou D, Templeton A. Early ovarian ageing:A hypothesis. Detection and clinical relevance. Hum Reprod.2003;18:1137-1139
    29. Beemsterboer SN, Homburg R, Gorter NA, Schats R, Hompes PG, Lambalk CB. The paradox of declining fertility but increasing twinning rates with advancing maternal age. Hum Reprod. 2006;21:1531-1532
    30. Cook JE, Becker DL. Gap-junction proteins in retinal development:New roles for the "Nexus". Physiology (Bethesda).2009;24:219-230
    31. Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H. Gap junction development in the human fetal hair follicle and bulge region. Br JDermatol.2004; 150:429-434
    32. Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H. Changes in gap junction distribution and connexin expression pattern during human fetal skin development. J Histochem Cytochem.2002;50:1493-1500
    33. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction.2002; 123: 613-620
    34. Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N. Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology.2006; 147: 2280-2286
    35. Oyamada M, Oyamada Y, Takamatsu T. Regulation of connexin expression. Biochim Biophys Acta.2005;1719:6-23
    36. Veitch GI, Gittens JE, Shao Q, Laird DW, Kidder GM. Selective assembly of connexin37 into heterocellular gap junctions at the oocyte/granulosa cell interface. J Cell Sci.2004; 117: 2699-2707
    37. Mitchell PA, Burghardt RC. The ontogeny of nexuses (gap junctions) in the ovary of the fetal mouse. Anat Rec.1986;214:283-288
    38. Ke FC, Fang SH, Lee MT, Sheu SY, Lai SY, Chen YJ, Huang FL, Wang PS, Stocco DM, Hwang JJ. Lindane, a gap junction blocker, suppresses fsh and transforming growth factor beta 1-induced connexin43 gap junction formation and steroidogenesis in rat granulosa cells. J Endocrinol.2005;184:555-566
    39. Eppig JJ, O'Brien M, Wigglesworth K. Mammalian oocyte growth and development in vitro. Mol Reprod Dev.1996;44:260-273
    40. Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature.1997;385:525-529
    41. Ackert CL, Gittens JE, O'Brien MJ, Eppig JJ, Kidder GM. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev Biol. 2001;233:258-270
    [1]Walker A M. Prolactin receptor antagonists [J]. Curr Opin Investig Drugs,2005,6:378-385
    [2]Garcia-Martinez JM, Calcabrini A, Gonzalez L, et al. A non-catalytic function of the Src family tyrosine kinases controls prolactin-induced Jak2 signaling [J]. Cell Signal,2010,22(3):415-26
    [3]Bratthauer GL, Stamatakos MD, Vinh TN. Cells with Minimal Expression of the JAK/STAT Pathway Related Proteins STAT5a and the Prolactin Receptor:Evidence of an Alternate Prolactin Receptor Isoform in Breast Disease [J]. Protein Pept Lett,2010,17(1):104-108
    [4]Simon-Holtorf J, Monig H, Klomp HJ, et al. Expression and distribution of prolactin receptor in normal, fibrotic, and cirrhotic human liver [J]. Exp Clin Endocrinol Diabetes,2006,114:584-589
    [5]Clarke DL, Arey BJ, Linzer DI. Prolactin receptor messenger ribonucleic acid expression in the ovary during the rat estrous cycle [J]. Endocrinology,1993,133:2594-2603
    [6]Liu W, Wang J, Li Q, et al. Correlation analysis between three novel SNPs of the Src gene in bovine and milk production traits [J]. Mol Biol Rep,2010 Mar 9. [Epub ahead of print]
    [7]Kang B, Guo JR, Yang HM, et al. Differential expression profiling of ovarian genes in prelaying and laying geese [J]. Poult Sci,2009,88(9):1975-1983
    [8]Shao R, Nutu M, Weijdegard B, et al. Differences in prolactin receptor (PRLR) in mouse and human fallopian tubes:evidence for multiple regulatory mechanisms controlling PRLR isoform expression in mice [J]. Biol Reprod,2008,79(4):748-757
    [9]Halperin J, Devi SY, Elizur S, et al. Prolactin signaling through the short form of its receptor represses forkhead transcription factor FOXO3 and its target gene galt causing a severe ovarian defect [J]. Mol Endocrinol,2008,22(2):513-522
    [10]Aerts JLE, Vandekerckhove P. Quantification of mRNA expression for human TGF-p1, TNF-a, TNFR1, TNFR2 and fas using real-time quantitative reverse transcriptase PCR [J]. Biotechnol Lett,2002,24:47-52
    [11]Kelly PA, Binart N, Lucas B, et al. Implications of multiple phenotypes observed in prolactin receptor knockout mice [J]. Front Neuroendocrinol,2001,22:140-145
    [12]Binart N, Bachelot A, Bouilly J. Impact of prolactin receptor isoforms on reproduction [J]. Trends Endocrinol Metab,2010 Feb 8. [Epub ahead of print]
    [13]Bachelot A, Beaufaron J, Servel N, et al. Prolactin independent rescue of mouse corpus luteum life span:identification of prolactin and luteinizing hormone target genes [J]. Am J Physiol Endocrinol Metab,2009,297:E676-684
    1. H.O. Smith, M.F. Tiffany, C.R. Qualls, and C.R. Key, The rising incidence of adenocarcinoma relative to squamous cell carcinoma of the uterine cervix in the United States-a 24-year population-based study. Gynecol Oncol 78 (2000) 97-105.
    2. A.P. Vizcaino, V. Moreno, F.X. Bosch, N. Munoz, X.M. Barros-Dios, and D.M. Parkin, International trends in the incidence of cervical cancer:Ⅰ. Adenocarcinoma and adenosquamous cell carcinomas. Int J Cancer 75 (1998) 536-45.
    3. C. Scaffidi, I. Schmitz, P.H. Krammer, and M.E. Peter, The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274 (1999) 1541-8.
    4. M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann, V. Steiner, J.L. Bodmer, M. Schroter, K. Burns, C. Mattmann, D. Rimoldi, L.E. French, and J. Tschopp, Inhibition of death receptor signals by cellular FLIP. Nature 388 (1997) 190-5.
    5. R.R. Bullani, B. Huard, I. Viard-Leveugle, H.R. Byers, M. Irmler, J.H. Saurat, J. Tschopp, and L.E. French, Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 117 (2001) 360-4.
    6. R.K. Thomas, A. Kallenborn, C. Wickenhauser, J.L. Schultze, A. Draube, M. Vockerodt, D. Re, V. Diehl, and J. Wolf, Constitutive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Am J Pathol 160 (2002) 1521-8.
    7. X.D. Zhou, J.P. Yu, J. Liu, H.S. Luo, H.X. Chen, and H.G. Yu, Overexpression of cellular FLICE-inhibitory protein (FLIP) in gastric adenocarcinoma. Clin Sci (Lond) 106 (2004) 397-405.
    8. B.K. Ryu, M.G. Lee, S.G. Chi, Y.W. Kim, and J.H. Park, Increased expression of cFLIP(L) in colonic adenocarcinoma. J Pathol 194 (2001) 15-9.
    9. M. Sturzl, C. Hohenadl, C. Zietz, E. Castanos-Velez, A. Wunderlich, G. Ascherl, P. Biberfeld, P. Monini, P.J. Browning, and B. Ensoli, Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi's sarcoma spindle cells. J Natl Cancer Inst 91 (1999) 1725-33.
    10. S. Mathas, A. Lietz, I. Anagnostopoulos, F. Hummel, B. Wiesner, M. Janz, F. Jundt, B. Hirsch, K. Johrens-Leder, H.P. Vornlocher, K. Bommert, H. Stein, and B. Dorken, c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med 199 (2004) 1041-52.
    11. T. Tuschl, Expanding small RNA interference. Nat Biotechnol 20 (2002) 446-8.
    12. Qian Xu, Shixuan Wang, Ling Xi, Sufang Wu, Gang Chen, Yun Zhao, Ying Wu and Ding Ma, Effects of human papillomavirus type 16 E7 protein on the growth of cervical carcinoma cells and immuno-escape through the TGF-β1 signaling pathway. Gynecol Oncol 101 (2006) 132-139.
    13. J.Y. Yu, S.L. DeRuiter, and D.L. Turner, RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99 (2002) 6047-52.
    14. G. Sui, C. Soohoo, B. Affar el, F. Gay, Y. Shi, W.C. Forrester, and Y. Shi, A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99 (2002) 5515-20.
    15. T.R. Brummelkamp, R. Bernards, and R. Agami, Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2 (2002) 243-7.
    16. Cioca DP, Aoki Y, and K. K., RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 10 (2003 Feb;) 125-3.
    17. C. Nieth, A. Priebsch, A. Stege, and H. Lage, Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 545 (2003) 144-50.
    18. H. Wu, W.N. Hait, and J.M. Yang, Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63 (2003) 1515-9.
    19. Wang W, Wang S, Song X, Sima N, Xu X, Luo A, Chen G, Deng D, Xu Q, Meng L, Lu Y, and M. D, The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis. Gynecol Oncol 105 (2007 Jun) 571-7. Epub 2007 Apr 12.
    20. D. Gilot, A.L. Serandour, G.P. Ilyin, D. Lagadic-Gossmann, P. Loyer, A. Corlu, A. Coutant, G. Baffet, M.E. Peter, O. Fardel, and C. Guguen-Guillouzo, A role for caspase-8 and c-FLIPL in proliferation and cell-cycle progression of primary hepatocytes. Carcinogenesis 26 (2005) 2086-94.
    21. B. Santiago, M. Galindo, G. Palao, and J.L. Pablos, Intracellular regulation of Fas-induced apoptosis in human fibroblasts by extracellular factors and cycloheximide. J Immunol 172 (2004) 560-6.
    22. C.J. Norbury, and B. Zhivotovsky, DNA damage-induced apoptosis. Oncogene 23 (2004) 2797-808.
    23. Y. Pommier, O. Sordet, S. Antony, R.L. Hayward, and K.W. Kohn, Apoptosis defects and chemotherapy resistance:molecular interaction maps and networks. Oncogene 23 (2004) 2934-49.
    24. J.R. Liu, A.W. Opipari, L. Tan, Y. Jiang, Y. Zhang, H. Tang, and G. Nunez, Dysfunctional apoptosome activation in ovarian cancer:implications for chemoresistance. Cancer Res 62 (2002) 924-31.
    25. M.S. Soengas, P. Capodieci, D. Polsky, J. Mora, M. Esteller, X. Opitz-Araya, R. McCombie, J.G. Herman, W.L. Gerald, Y.A. Lazebnik, C. Cordon-Cardo, and S.W. Lowe, Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409 (2001) 207-11.
    26. C.G. Ferreira, S.W. Span, G.J. Peters, F.A. Kruyt, and G. Giaccone, Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 60 (2000) 7133-41.
    27. Galligan L, Longley DB, McEwan M, Wilson TR, McLaughlin K, and J. PG., Chemotherapy and TRAIL-mediated colon cancer cell death:the roles of p53, TRAIL receptors, and c-FLIP. Mol Cancer Ther 4 (2005 Dec) 2026-36.
    28. H. Kinoshita, H. Yoshikawa, K. Shiiki, Y. Hamada, Y. Nakajima, and K. Tasaka, Cisplatin (CDDP) sensitizes human osteosarcoma cell to Fas/CD95-mediated apoptosis by down-regulating FLIP-L expression. Int J Cancer 88 (2000) 986-91.
    29. M. Horinaka, T. Yoshida, T. Shiraishi, S. Nakata, M. Wakada, R. Nakanishi, H. Nishino, and T. Sakai, The combination of TRAIL and luteolin enhances apoptosis in human cervical cancer HeLa cells. Biochem Biophys Res Commun 333 (2005) 833-8.
    30. K.H. Lee, E.K. Yim, C.J. Kim, S.E. Namkoong, S.J. Um, and J.S. Park, Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol Oncol 98 (2005) 45-53.
    31. J. Wendt, C. von Haefen, P. Hemmati, C. Belka, B. Dorken, and P.T. Daniel, TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 24 (2005) 4052-64.
    1. Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice:Potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci USA.1983;80:6076-6080
    2. Hurwitz JM, Jindal S, Greenseid K, Berger D, Brooks A, Santoro N, Pal L. Reproductive aging is associated with altered gene expression in human luteinized granulosa cells. Reprod Sci. 2010;17:56-67
    3. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA. Laser capture microdissection. Science.1996;274:998-1001
    4. Alldred MJ, Che S, Ginsberg SD. Terminal continuation (tc) rna amplification without second strand synthesis. JNeurosci Methods.2009;177:381-385
    5. Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES. Laser capture microdissection and cdna microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta.2007;226:1475-1490
    6. 孙敬芳,主编.动物实验方法学.北京:人卫出版社,第一版.2001:20-21.
    7. Betsuyaku T, Senior RM. Laser capture microdissection and mrna characterization of mouse airway epithelium:Methodological considerations. Micron.2004;35:229-234
    8. Dafna B, Rina S, Irena S. Laser capture microdissection and laser pressure catapulting as tools to study gene expression in individual cells of a complex tissue. Methods Cell Biol. 2007;82:675-687
    9. Caretti E, Devarajan K, Coudry R, Ross E, Clapper ML, Cooper HS, Bellacosa A. Comparison of rna amplification methods and chip platforms for microarray analysis of samples processed by laser capture microdissection. J Cell Biochem.2008;103:556-563
    10. Batorfi J, Ye B, Mok SC, Cseh I, Berkowitz RS, Fulop V. Protein profiling of complete mole and normal placenta using proteinchip analysis on laser capture microdissected cells. Gynecol Oncol.2003;88:424-428
    11. Kunz GM, Jr., Chan DW. The use of laser capture microscopy in proteomics research-a review. Dis Markers.2004;20:155-160
    12. Matsuzaki S, Canis M, Mage G. Use of laser capture microdissection in studying hormone-dependent diseases:Endometriosis. Methods Mol Biol.2009;590:295-306
    13. Buckanovich RJ, Sasaroli D, O'Brien-Jenkins A, Botbyl J, Conejo-Garcia JR, Benencia F, Liotta LA, Gimotty PA, Coukos G. Use of immuno-lcm to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther.2006;5:635-642
    14. Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall RL, Stack R, Becker JW, Montgomery JR, Vainer M, Johnston R. An evaluation of the performance of cdna microarrays for detecting changes in global mrna expression. Nucleic Acids Res.2001;29:E41-41
    15. Li Y, Li T, Liu S, Qiu M, Han Z, Jiang Z, Li R, Ying K, Xie Y, Mao Y. Systematic comparison of the fidelity of arna, mrna and t-rna on gene expression profiling using cdna microarray. J Biotechnol.2004; 107:19-28
    16. Ahmed FE. Molecular techniques for studying gene expression in carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev.2002;20:77-116
    17. Ireland JL, Scheetz D, Jimenez-Krassel F, Themmen AP, Ward F, Lonergan P, Smith GW, Perez GI, Evans AC, Ireland JJ. Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol Reprod. 2008;79:1219-1225
    18. Grynberg M, Feyereisen E, Scheffer JB, Koutroubis P, Frydman R, Fanchin R. Early follicle development alters the relationship between antral follicle counts and inhibin b and follicle-stimulating hormone levels on cycle day 3. Fertil Steril.2010;93:894-899
    19. Sowers MR, Eyvazzadeh AD, McConnell D, Yosef M, Jannausch ML, Zhang D, Harlow S, Randolph JF, Jr. Anti-mullerian hormone and inhibin b in the definition of ovarian aging and the menopause transition. JClin Endocrinol Metab.2008;93:3478-3483
    20. van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, Fauser BJ, Themmen AP, te Velde ER. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility:A longitudinal study. Fertil Steril. 2005;83:979-987
    21. Kang B, Guo JR, Yang HM, Zhou RJ, Liu JX, Li SZ, Dong CY. Differential expression profiling of ovarian genes in prelaying and laying geese. Poult Sci.2009;88:1975-1983
    22. Clarke DL, Arey BJ, Linzer DI. Prolactin receptor messenger ribonucleic acid expression in the ovary during the rat estrous cycle. Endocrinology.1993; 133:2594-2603
    23. Alviggi C, Humaidan P, Howles CM, Tredway D, Hillier SG. Biological versus chronological ovarian age:Implications for assisted reproductive technology. Reprod Biol Endocrinol. 2009;7:101
    24. te Velde ER, Scheffer GJ, Dorland M, Broekmans FJ, Fauser BC. Developmental and endocrine aspects of normal ovarian aging. Mol Cell Endocrinol.1998;145:67-73
    25. Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS. Mapk3/1 (erkl/2) in ovarian granulosa cells are essential for female fertility. Science.2009;324:938-941
    26. 彭南妮 钱,邱耀芳等.小鼠腔前卵泡的分离与培养.中国现代医学杂志.1999;9:30-31
    27. Aerts JLE, Vandekerckhove P. Quantification of mrna expression for human tgf-β1, tnf-α, tnfr 1, tnfr 2 and fas using real-time quantitative reverse transcriptase pcr. Biotechnology Letters. 2004;24:47-52
    28. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8:141-154
    29. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131-142
    30. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging:Mechanisms and clinical consequences. Endocr Rev.2009;30:465-493
    31. Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging:Cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update.2009;15:573-585
    32. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol.2000; 163:43-48
    33. Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461-471
    34. Elvin JA, Matzuk MM. Mouse models of ovarian failure. Rev Reprod.1998;3:183-195
    35. Johnson AL, Woods DC. Dynamics of avian ovarian follicle development:Cellular mechanisms of granulosa cell differentiation. Gen Comp Endocrinol.2009; 163:12-17
    36. Gershon E, Plaks V, Dekel N. Gap junctions in the ovary:Expression, localization and function. Mol Cell Endocrinol.2008;282:18-25
    37. Cepni I, Kahraman N, Ocal P, Idil M, Uludag S. Expression and comparison of gap junction protein connexin 37 in granulosa cells aspirates from follicles of poor responder and nonpoor responder patients. Fertil Steril.2008;89:417-420
    38. Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ. Fsh-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol.1990; 138:16-25
    39. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature.1996;383:531-535
    40. Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology.2005; 146:2798-2806
    41. Horikawa M, Kirkman NJ, Mayo KE, Mulders SM, Zhou J, Bondy CA, Hsu SY, King GJ, Adashi EY. The mouse germ-cell-specific leucine-rich repeat protein nalp14:A member of the nacht nucleoside triphosphatase family. Biol Reprod.2005;72:879-889
    42. Pennetier S, Perreau C, Uzbekova S, Thelie A, Delaleu B, Mermillod P, Dalbies-Tran R. Mater protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev Biol.2006;6:26
    43. Hutt KJ, McLaughlin EA, Holland MK. Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell Tissue Res.2006;326:809-822
    44. Vitt UA, Hayashi M, Klein C, Hsueh AJ. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod.2000;62:370-377
    45. Drummond AE. The role of steroids in follicular growth. Reprod Biol Endocrinol.2006;4:16
    46. Hillier S. [the respective roles of gonadotrophins on follicular growth and oocyte maturation]. J Gynecol Obstet Biol Reprod (Paris).2004;33:3S11-14
    47. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol.1999;13:1035-1048
    48. Nikolaou D, Templeton A. Early ovarian ageing:A hypothesis. Detection and clinical relevance. Hum Reprod.2003;18:1137-1139
    49. Beemsterboer SN, Homburg R, Gorter NA, Schats R, Hompes PG, Lambalk CB. The paradox of declining fertility but increasing twinning rates with advancing maternal age. Hum Reprod. 2006;21:1531-1532
    50. Cook JE, Becker DL. Gap-junction proteins in retinal development:New roles for the "Nexus". Physiology (Bethesda).2009;24:219-230
    51. Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H. Gap junction development in the human fetal hair follicle and bulge region. Br JDermatol.2004; 150:429-434
    52. Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H. Changes in gap junction distribution and connexin expression pattern during human fetal skin development. J Histochem Cytochem.2002;50:1493-1500
    53. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002; 123:613-620
    54. Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N. Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology.2006;147: 2280-2286
    55. Oyamada M, Oyamada Y, Takamatsu T. Regulation of connexin expression. Biochim Biophys Acta.2005;1719:6-23
    56. Veitch GI, Gittens JE, Shao Q, Laird DW, Kidder GM. Selective assembly of connexin37 into heterocellular gap junctions at the oocyte/granulosa cell interface. J Cell Sci.2004; 117: 2699-2707
    57. Mitchell PA, Burghardt RC. The ontogeny of nexuses (gap junctions) in the ovary of the fetal mouse. Anat Rec.1986;214:283-288
    58. Ke FC, Fang SH, Lee MT, Sheu SY, Lai SY, Chen YJ, Huang FL, Wang PS, Stocco DM, Hwang JJ. Lindane, a gap junction blocker, suppresses fsh and transforming growth factor beta 1-induced connexin43 gap junction formation and steroidogenesis in rat granulosa cells. J Endocrinol.2005;184:555-566
    59. Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fauser BC. Female reproductive ageing: Current knowledge and future trends. Trends Endocrinol Metab.2007;18:58-65
    60. Menken J LU. Fertility rates and aging. In Aging, Reproduction and the Climacteric Edited by: Mastronianni L, Paulsen A New York:Plenum Press.1986:147-166
    61. Sauer MV PR, Lobo RA. A preliminary report on oocyte donation extending reproductive potential to women over 40. NEngl JMed.1990;323:1157-1160
    62. Kuang H, Zhang L, Peng J, Chen Q. Premature ovarian failure, menopause and ovarian cancer, three nodes on the same string:Pten and other potential genes on the go. Med Hypotheses. 2009;73:961-962
    63. Djahanbakhch O, Ezzati M, Zosmer A. Reproductive ageing in women. J Pathol.2007;211: 219-231
    64. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature.2004;428:145-150
    65. Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL, Liu L. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol.2007;306:112-120
    66. De Felici M. Germ stem cells in the mammalian adult ovary:Considerations by a fan of the primordial germ cells. Mol Hum Reprod.
    67. Oktem O, Oktay K. Stem cells and reproductive medicine. Minerva Ginecol.2009;61:247-252
    68. Broekmans FJ, Faddy MJ, Scheffer G, te Velde ER. Antral follicle counts are related to age at natural fertility loss and age at menopause. Menopause.2004; 11:607-614
    69. Nikolaou D, Lavery S, Turner C, Margara R, Trew G. Is there a link between an extremely poor response to ovarian hyperstimulation and early ovarian failure? Hum Reprod.2002; 17: 1106-1111
    70. De Sutter P, Dhont M. Poor response after hormonal stimulation for in vitro fertilization is not related to ovarian aging. Fertil Steril.2003;79:1294-1298
    71. Lawson R ETT, Kassab, Taylor A, Braude P, Parsons J, Seed P. Poor response to ovulation induction is a stronger predictor of early menopause than elevated basal fsh:A life table analysis. Hum Reprod.2003; 18
    72. van Noord PA, Dubas JS, Dorland M, Boersma H, te Velde E. Age at natural menopause in a population-based screening cohort:The role of menarche, fecundity, and lifestyle factors. Fertil Steril.1997;68:95-102
    73. Treloar AE. Menstrual cyclicity and the pre-menopause. Maturitas.1981;3:249-264
    74. den Tonkelaar I, te Velde ER, Looman CW. Menstrual cycle length preceding menopause in relation to age at menopause. Maturitas.1998;29:115-123
    75. Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian follicles:Increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod.1994;50:653-663
    76. van Zonneveld P, Scheffer GJ, Broekmans FJ, Blankenstein MA, de Jong FH, Looman CW, Habbema JD, te Velde ER. Do cycle disturbances explain the age-related decline of female fertility? Cycle characteristics of women aged over 40 years compared with a reference population of young women. Hum Reprod.2003; 18:495-501
    77. Santoro N, Isaac B, Neal-Perry G, Adel T, Weingart L, Nussbaum A, Thakur S, Jinnai H, Khosla N, Barad D. Impaired folliculogenesis and ovulation in older reproductive aged women. J Clin Endocrinol Metab.2003;88:5502-5509
    78. Treloar AEea. Variation of the human menstrual cycle through reproductive life. Int J Fertil 1967;12:77-126
    79. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol.2005;3:28
    80. Suzuki T, Sugino N, Fukaya T, Sugiyama S, Uda T, Takaya R, Yajima A, Sasano H. Superoxide dismutase in normal cycling human ovaries:Immunohistochemical localization and characterization. Fertil Steril.1999;72:720-726
    81. Behrman HR, Kodaman PH, Preston SL, Gao S. Oxidative stress and the ovary. J Soc Gynecol Investig.2001;8:S40-42
    82. Arteaga E, Villaseca P, Rojas A, Arteaga A, Bianchi M. [comparison of the antioxidant effect of estriol and estradiol on low density lipoproteins in post-menopausal women]. Rev Med Chil. 1998; 126:481-487
    83. Baynes JW. The role of ages in aging:Causation or correlation. Exp Gerontol.2001;36: 1527-1537
    84. Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, Papavassiliou AG, Duleba AJ. Immunohistochemical localization of advanced glycation end-products (ages) and their receptor (rage) in polycystic and normal ovaries. Histochem Cell Biol.2007;127:581-589
    85. Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol.2007;77:21-49
    86. Chan CC, Liu VW, Lau EY, Yeung WS, Ng EH, Ho PC. Mitochondrial DNA deletion in granulosa and cumulus oophorus cells. Fertil Steril.2006;85:780-782
    87. Kitagawa T, Suganuma N, Nawa A, Kikkawa F, Tanaka M, Ozawa T, Tomoda Y. Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol Reprod.1993;49:730-736
    88. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis.2010;31:9-18
    89. von Figura G, Hartmann D, Song Z, Rudolph KL. Role of telomere dysfunction in aging and its detection by biomarkers. J Mol Med.2009;87:1165-1171
    90. O'Sullivan RJ, Karlseder J. Telomeres:Protecting chromosomes against genome instability. Nat Rev Mol Cell Biol.2010;11:171-181
    91. Chang JT, Chen YL, Yang HT, Chen CY, Cheng AJ. Differential regulation of telomerase activity by six telomerase subunits. Eur J Biochem.2002;269:3442-3450
    92. Calado RT, Young NS. Telomere diseases. NEngl JMed.2009;361:2353-2365
    93. Kinugawa C, Murakami T, Okamura K, Yajima A. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J Exp Med.2000 190:231-238
    94. Hanna CW, Bretherick KL, Gair JL, Fluker MR, Stephenson MD, Robinson WP. Telomere length and reproductive aging. Hum Reprod.2009;24:1206-1211
    95. S. B, H. R, S. R, A. S, C. C, K. B. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab.2009;94:4835-4843
    96. Kawagoe J, Ohmichi M, Takahashi T, Ohshima C, Mabuchi S, Takahashi K, Igarashi H, Mori-Abe A, Saitoh M, Du B. Raloxifene inhibits estrogen-induced up-regulation of telomerase activity in a human breast cancer cell line. The Journal of Biological Chemistry. 2003;278:43363-43372
    97. Wang Z, Kyo S, Takakura M, Tanaka M, Yatabe N, Maida Y, Fujiwara M, Hayakawa J, Ohmichi M, Koike K, Inoue M. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Research.2000;60:5376-5381
    98. Hall JE, Lavoie HB, Marsh EE, Martin KA. Decrease in gonadotropin-releasing hormone (gnrh) pulse frequency with aging in postmenopausal women. J Clin Endocrinol Metab.2000;85: 1794-1800
    99. Zheng W, Jimenez-Linan M, Rubin BS, Halvorson LM. Anterior pituitary gene expression with reproductive aging in the female rat. Biol Reprod.2007;76:1091-1102
    100. Hall JE. Neuroendocrine changes with reproductive aging in women. Semin Reprod Med. 2007;25:344-351
    101. Rubin BS. Hypothalamic alterations and reproductive aging in female rats:Evidence of altered luteinizing hormone-releasing hormone neuronal function. Biol Reprod.2000;63:968-976
    102. Brann DW, Mahesh VB. The aging reproductive neuroendocrine axis. Steroids.2005;70: 273-283
    103. Huey S, Abuhamad A, Barroso G, Hsu MI, Kolm P, Mayer J, Oehninger S. Perifollicular blood flow doppler indices, but not follicular po2, pco2, or ph, predict oocyte developmental competence in in vitro fertilization. Fertil Steril.1999;72:707-712
    104. McLaughlin EA, McIver SC. Awakening the oocyte:Controlling primordial follicle development. Reproduction.2009; 137:1-11
    105. Chandel NS, Budinger GR. The cellular basis for diverse responses to oxygen. Free Radic Biol Med.2007;42:165-174
    106. Islam MN, Islam MM. Biological and behavioural determinants of fertility in bangladesh: 1975-1989. Asia Pac Popul J.1993;8:3-18
    107. DD B, FA T, JJB A. Do vegetarians have earlier menopause? Am J Epidemiol 1998; 1:907-908
    108. Soares SR, Melo MA. Cigarette smoking and reproductive function. Curr Opin Obstet Gynecol. 2008;20:281-291
    109. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update.2001;7:535-543
    110. Endometriosis and infertility. Fertil Steril.2006;86:S156-160
    111. Jacobson TZ, Barlow DH, Koninckx PR, Olive D, Farquhar C. Laparoscopic surgery for subfertility associated with endometriosis. Cochrane Database Syst Rev.2002:CD001398
    112. Lambalk CB, van Disseldorp J, de Koning CH, Broekmans FJ. Testing ovarian reserve to predict age at menopause. Maturitas.2009;63:280-291
    113. Richardson SJ, Nelson JF. Follicular depletion during the menopausal transition. Ann N Y Acad Sci.1990;592:13-20; discussion 44-51
    114. Lass A, Silye R, Abrams DC, Krausz T, Hovatta O, Margara R, Winston RM. Follicular density in ovarian biopsy of infertile women:A novel method to assess ovarian reserve. Hum Reprod. 1997;12:1028-1031
    115. Lass A. Assessment of ovarian reserve-is there a role for ovarian biopsy? Hum Reprod. 2001; 16:1055-1057
    116. Lambalk CB, de Koning CH, Flett A, Van Kasteren Y, Gosden R, Homburg R. Assessment of ovarian reserve. Ovarian biopsy is not a valid method for the prediction of ovarian reserve. Hum Reprod.2004;19:1055-1059
    117. Scheffer GJ, Broekmans FJ, Dorland M, Habbema JD, Looman CW, te Velde ER. Antral follicle counts by transvaginal ultrasonography are related to age in women with proven natural fertility. Fertil Steril.1999;72:845-851
    118. Kline J, Kinney A, Kelly A, Reuss ML, Levin B. Predictors of antral follicle count during the reproductive years. Hum Reprod.2005;20:2179-2189
    119. FJ B, J K, DJ H, BW M, CB L. A systematic review of tests predicting ovarian reserve and ivf outcome. Hum Reprod Update.2006; 12:685-718
    120. Kupesic S, Kurjak A. Predictors of ivf outcome by three-dimensional ultrasound. Hum Reprod. 2002; 17:950-955
    121. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging:The decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod.2008;23:699-708
    122. Elter K, Sismanoglu A, Durmusoglu F. Intercycle variabilities of basal antral follicle count and ovarian volume in subfertile women and their relationship to reproductive aging:A prospective study. Gynecol Endocrinol.2005;20:137-143
    123. Giacobbe M, Pinto-Neto AM, Costa-Paiva LH, Martinez EZ. Ovarian volume, age, and menopausal status. Menopause.2004; 11:180-185
    124. Pavlik EJ, DePriest PD, Gallion HH, Ueland FR, Reedy MB, Kryscio RJ, van Nagell JR, Jr. Ovarian volume related to age. Gynecol Oncol.2000;77:410-412
    125. Munn S. Ovary volume:A reconsideration of "Ovarian volume related to age". Gynecol Oncol. 2008;109:146-147
    126. A L, J S, E M, R M, RM W. Measurement of ovarian volume by transvaginal sonography before ovulation induction with human menopausal gonadotrophin for in-vitro fertilization can predict poor response. Hum Reprod Update.1997; 12:294-297
    127. Kupesic S, Kurjak A, Bjelos D, Vujisic S. Three-dimensional ultrasonographic ovarian measurements and in vitro fertilization outcome are related to age. Fertil Steril.2003;79: 190-197
    128. Younis JS, Haddad S, Matilsky M, Radin O, Ben-Ami M. Undetectable basal ovarian stromal blood flow in infertile women is related to low ovarian reserve. Gynecol Endocrinol. 2007;23:284-289
    129. Sherman BM, West JH, Korenman SG. The menopausal transition:Analysis of 1h, fsh, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab.1976;42:629-636
    130. Rogerio A. Lobo MD. Potential options for preservation of fertility in women. N Engl J Med. 2005;353:64-73
    131. Robertson DM. Anti-mullerian hormone as a marker of ovarian reserve:An update. Womens Health (Lond Engl).2008;4:137-141
    132. Jain T, Soules MR, Collins JA. Comparison of basal follicle-stimulating hormone versus the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril.2004;82:180-185
    133. Hendriks DJ, Mol BW, Bancsi LF, te Velde ER, Broekmans FJ. The clomiphene citrate challenge test for the prediction of poor ovarian response and nonpregnancy in patients undergoing in vitro fertilization:A systematic review. Fertil Steril.2006;86:807-818
    134. Gruijters MJ, Visser JA, Durlinger AL, Themmen AP. Anti-mullerian hormone and its role in ovarian function. Mol Cell Endocrinol.2003;211:85-90
    135. Ficicioglu C, Kutlu T, Baglam E, Bakacak Z. Early follicular antimullerian hormone as an indicator of ovarian reserve. Fertil Steril.2006;85:592-596
    136. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-mullerian hormone:A new marker for ovarian function. Reproduction.2006; 131:1-9
    137. Fanchin R, Taieb J, Lozano DH, Ducot B, Frydman R, Bouyer J. High reproducibility of serum anti-mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod.2005;20:923-927
    138. Sehested A, Juul AA, Andersson AM, Petersen JH, Jensen TK, Muller J, Skakkebaek NE. Serum inhibin a and inhibin b in healthy prepubertal, pubertal, and adolescent girls and adult women:Relation to age, stage of puberty, menstrual cycle, follicle-stimulating hormone, luteinizing hormone, and estradiol levels. J Clin Endocrinol Metab.2000;85:1634-1640
    139. Danforth DR, Arbogast LK, Mroueh J, Kim MH, Kennard EA, Seifer DB, Friedman CI. Dimeric inhibin:A direct marker of ovarian aging. Fertil Steril.1998;70:119-123
    140. Creus M, Penarrubia J, Fabregues F, Vidal E, Carmona F, Casamitjana R, Vanrell JA, Balasch J. Day 3 serum inhibin b and fsh and age as predictors of assisted reproduction treatment outcome. Hum Reprod.2000;15:2341-2346
    141. Hartge P. Genetics of reproductive lifespan. Nat Genet.2009;41:637-638
    142. Kok HS, van Asselt KM, van der Schouw YT, Peeters PH, Wijmenga C. Genetic studies to identify genes underlying menopausal age. Hum Reprod Update.2005; 11:483-493
    143. van Disseldorp J, Broekmans FJ, Peeters PH, Fauser BC, van der Schouw YT. The association between vascular function-related genes and age at natural menopause. Menopause.2008; 15: 511-516
    144. Sowers MR, Jannausch ML, McConnell DS, Kardia SR, Randolph JF, Jr. Menstrual cycle markers of ovarian aging and sex steroid hormone genotypes. Am J Med.2006; 119:S31-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700