用户名: 密码: 验证码:
复方黄芪养心合剂对大鼠再灌注心律失常及心室重构的作用和机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     第一部分:观察复方黄芪养心合剂(compound astragalus mixture nourishing heart, CAMNH)对SD大鼠冠状动脉结扎术后再灌注心律失常(reperfusion arrhythmias, RA)及心肌缝隙连接蛋白43(connexin43,Cx43)分布的改变和表达的影响,并探讨RA与心肌Cx43的关系。
     第二部分:观察CAMNH对SD大鼠冠状动脉结扎术后心脏重构(cardiac remodeling, VR)超声心动图(ultrasonic cardiogram, UCG)的影响,心肌及血管周围胶原纤维化的影响,以及心肌Cx43分布的改变和表达的影响,并探讨胶原纤维化与心肌Cx43的关系。
     方法
     第一部分:应用CAMNH高剂量(CAMNHh)、中剂量(CAMNHm)、低剂量(CAMNH1)分别按28g·14ml-1·1kg-1·d-1、14g·7ml-1·1kg-1·d-1、7g·3.5ml·1kg-1·d-1剂量灌胃,琥珀酸美托洛尔缓释片(metoprolol succinate sustained-release tablets, MSSRT)(9.5mg·7ml-1·1kg-1·d-1)灌胃2周后,对SD大鼠行冠状动脉左前降支结扎30min后再灌注60min造成RA模型,记录心电图,进行室性心律失常(ventricular arrhythmias, VA)评分;免疫组织化学法(immunohistochemistry, IHC)观察心肌Cx43的分布,运用Image Pro Plus6.0图像分析软件计算Cx43的平均光密度(average optical density of Cx43, Cx43-AOD,%)。对VA评分与Cx43-AOD(%)进行相关性分析。
     第二部分:对SD大鼠行冠状动脉左前降支结扎术后观察10天。存活大鼠随机分组后应用CAMNHh、CAMNHm、CAMNH1及MSSRT灌胃8周。术后给药第4周和第8周分别进行UCG测定,并进行前后对比及变化幅度对比。计算全心室重与体重比(Vt/Wt,%)。使用改良Masson染色法观察大鼠心室重构,用Image Pro Plus6.0图像分析系统,计算心肌组织胶原容积分数(collagen volume fraction, CVF,%)和血管周围胶原面积(perivascular collagenvolume area, PVCA,%)。IHC法观察心肌Cx43分布的改变,免疫印迹法(western blot, WB)检测心肌Cx43的表达,应用Quantity One1-D Analysis Software分析计算心肌Cx43比值(the ratio of Cx43, Cx43-T,%)。对CVF(%)、 PCVA(%)与心肌Cx43-T(%)进行相关性分析。
     结果
     第一部分:VA评分(分)CAMNH1组与MSSRT组显著低于I/R组及CAMNHh组(P<0.01)。梗死区和缺血区多位于心肌内膜下,非缺血区多位于心肌中层。心肌内膜下缺血区域Cx43-AOD(%)MSSRT组、CAMNHm组与CAMNH1组均高于I/R组(P<0.05)。VA评分与缺血区心肌Cx43-AOD(%)呈负相关(P<0.05)。
     第二部分:术后第6周UCG:LVEF1(%)及FS1(%) CAMNHm组、CAMNH1组较SO组明显降低(P<0.01);较MSSRT组降低(P<0.05);与VR组相近(P>0.05)。术后第10周UCG:LVDs1(mm)MSSRT组、CAMNHm组较VR组明显减小(P<0.01);CAMNH1组较VR组减小(P<0.05)。LVEF2(%)与FS2(%):CAMNHm组、CAMNH1组、MSSRT组明显高于VR组(P<0.01)。前后对比:LVDs(mm):VR组增大(P<0.05); LVEF(%)及FS(%)在VR组及MSSRT组进一步降低(P<0.01)。变化幅度对比:ΔLVDs(mm):MSSRT组、CAMNHh组、CAMNHm组、CAMNH1组增大幅度均较VR明显减小(P<0.01);ΔLVEF(%)和△FS(%):CAMNHh组、CAMNHm组、CAMNH1组及MSSRT组降低幅度较VR组明显减小(P<0.01)。Vt/Wt (%): MSSRT组小于VR组(P<0.05); CAMNHm组、CAMNH1组明显小于VR组(P<0.01)。CVF(%)与PVCA (%):CAMNHm组、CAMNH1组及MSSRT组与VR组相比明显降低(P<0.01);CAMNHh组与VR组相比降低(P<0.05)。心肌Cx43非梗死区Cx43表达与SO组比较有所减少。心肌Cx43-T(%)CAMNH1组、MSSRT组较VR组明显增加(P <0.01)。CAMNHh组、CAMNHm组较VR组增加(P<0.05)。CVF(%)、PCVA(%)与心肌Cx43-T(%)呈显著负相关(P<0.01)。
     结论
     第一部分:CAMNH1有抗RA作用,与MSSRT相近。CAMNHm、CAMNH1可促进再灌注心肌缺血区Cx43的表达,其作用与MSSRT相近。CAMNH1抗心律失常作用可能与其促进再灌注心肌缺血区Cx43的表达有关。
     第二部分:CAMNHm、CAMNH1能够持续改善VR LVDs(mm)的增大以及LVEF(%)、 FS(%)的降低,减轻Vt/Wt(%),其作用与MSSRT相当。CAMNHh、CAMNHm、CAMNH1能降低VR CVF(%)、PVCA(%),改善VR非梗死区心肌Cx43的表达减少,与MSSRT相当,其作用无剂量依赖性。CAMNH抗VR作用可能与其改善非梗死区心肌Cx43的表达减少有关。
Objective To study the effects of Compound Astragalus Mixture Nourishing Heart (CAMNH) on reperfusion arrhythmia(RA) and myocardial connexin43(Cx43) in male sprague dawley(SD) rats of ischemia/reperfusion injury(I/R) after coronary artery ligation, and to explore the relationship between RA and myocardial Cx43in the first part of this study.
     To study the effects of CAMNH on ultrasonic cardiogram(UCG), myocardial and perivascular collagen fibration, and myocardial Cx43in SD rats of cardiac remodeling(VR) after coronary artery ligation, and to explore the relationship between myocardial and perivascular collagen fibration and myocardial Cx43in the second part of this study.
     Method
     In the first part, the following method were adopted. SD rats were were randomly divided into6groups, as high-dose group of CAMNH(CAMNHh),medial-dose group of CAMNH(CAMNHm), low-dose group of CAMNH(CAMNH1), MSSRT group, I/R group and sham-operated(SO) group. Then the rats were treated for14days with CAMNHh(28g·1kg-1·d-1), CAMNHm(14g·1kg-1·d-1), CAMNH1(7g·1kg-1·d-1) or Metoprolol Succinate Sustained-Release Tablets(MSSRT,9.5mg·1kg-1·d-1) before acute myocardial infarction(AMI). AMI was induced by ligation of Left Anterior Descending(LAD) coronary artery for30mins, followed by reperfusion of60mins. The ventricular arrhythmia(VA) score.The distribution and expression of myocardial Cx43were observed with immunehistochemistry(IHC). Average optical density of myocardial Cx43(myocardial Cx43-AOD) were measured with Image Pro Plus6.0. The correlation between VA score and myocardial Cx43-AOD in the ischemic regions was analyzed.
     In the second part, the following method were adopted. Watched10days after ligation of LAD coronary artery, the survived rats were randomly divided into5groups, as CAMNHh group, CAMNHm group, CAMNH1group, MSSRT group and VR group. The other group was SO group. Then the rats were treated for8weeks with CAMNHh(28g·1kg-1·d-1), CAMNHm (14g·1kg-1·d-1),CAMNH1(7g·1kg-1·d-1) or MSSRT(9.5mg·1kg-1·d-1). On the end of the sixth week and the tenth week after ligation of LAD coronary artery, diameter of left ventricle at end-systole(LVDs, mm), left ventricular eject fractions(LVEF,%) and fraction shortening (FS,%) were measured with UCG. Then to compare the change between the sixth week and the tenth week after ligation, and to compare the amplitude of variation among groups. At the end of the experiment, the ratio of weight(Wt,g) and ventricle weight(Vt,g), Vt/Wt(%) was calculated. The VR of rats were observed with upgrading Masson, then collagen volume fraction(CVF,%) and perivascular collagenvolume area(PVCA,%) were measured with Image Pro Plus6.0. The distribution of myocardial Cx43were observed with IHC, and the ratio of myocardial Cx43(myocardial Cx43-T,%) were detected with western blot(WB). The relative content of myocardial Cx43was measured by Quantity One1-D Analysis Software. CVF(%) and PVCA(%) were used to analyze the correlation with myocardial Cx43-T(%) in the non infarct regions.
     Result
     In the first part, the following results were obtained. The VA score of CAMNH1group and MSSRT group was less than I/R group. Most of the infarction regions and ischemic regions were located in subendocardial myocardium, and the non ischemic regions in midmyocardium. CAMNHm group, CAMNH1and MSSRT group vs I/R group, the change of the distribution of myocardial Cx43was modified, and myocardial Cx43-AOD(%) in ischemic region were inVReased(P<0.05). There were negative correlation between the VA score and myocardial Cx43-AOD(%) in ischemic region(P<0.05).
     In the second part, the following results were obtained. On the end of the sixth week after ligation, the following results were gotten with UCG. CAMNHm group and CAMNH1group vs MSSRT group, LVEF (%) and FS(%) deVReased (P<0.05). CAMNHm group and CAMNH1group vs VR group, LVEF (%) and FS(%) didn't deVRease (P>0.05). Then on the end of the tenth week, LVDs(mm), LVEF (%) and FS(%) were obtained. VR group vs MSSRT group, VR group vs CAMNHm group, LVDs(mm) significantly inVReased (P<0.01). VR group vs CAMNH1group, LVDs(mm) inVReased (P<0.05). VR group vs MSSRT group, CAMNHm group, and CAMNH1group, LVEF (%) and FS(%) significantly reduced (P<0.01). When comparing the change between the sixth week and the tenth week after ligation, it was found that LVDs(mm) inVReased in VR group(P<0.05), LVEF (%) and FS(%) significantly reduced in VR group and MSSRT group (P<0.01). After comparing VR group with the other groups, the inVRescent amplitudes of LVDs(Δ LVDs, mm) significantly inVReased(P<0.01), and the reduced amplitude of LVEF(Δ LVEF,%) and FS(ΔFS,%) significantly inVReased(P<0.01).
     CAMNHm group and CAMNH1group vs VR group, Vt/Wt(%) significantly deVReased(P<0.01). MSSRT group vs VR group, Vt/Wt(%) deVReased(P<0.05). MSSRT group, CAMNHm group and CAMNH1group vs VR group, CVF(%) and PVCA(%) significantly deVReased(P<0.01). The expression of myocardial Cx43in non infarction region slightly reduced. VR group vs MSSRT group and CAMNH1group, myocardial Cx43-T(%) in non infarction region significantly deVReased(P<0.01), and VR group vs CAMNHh group, VR group vs CAMNHm group, deVReased(P<0.05). CVF(%) and PCVA(%)were negatively correlated significantly with myocardial Cx43-T(%) in non ischemic region(P<0.01).
     Conclusion
     In the first part, the following conclusions are reached. CAMNH1induce VA score, the effects are similar to MSSRT. Most of the infarction region and ischemic region locate in subendocardial myocardium, and the non ischemic region in midmyocardium. CAMNHm and CAMNH1can inVReases the expression of myocardial Cx43in ischemic region, and the effects is near to MSSRT. There were negative correlation between the VA score and myocardial Cx43-AOD(%) in ischemic region.
     In the second part, the following conclusions can be gotten. CAMNHm and CAMNH1can persistently ameliorate the acVRetion of LVDs(mm) and the reduction of LVEF(%) and FS(%), and the effects is near to MSSRT. CAMNHm and CAMNH1can reduce Vt/Wt(%), and the effects is near to MSSRT. CAMNHh, CAMNHm and CAMNH1can reduce CVF(%), PVCA(%) and myocardial Cx43-T(%)in non infarction region. The effects are near to MSSRT and no dose-dependent. CVF(%) and PCVA(%) are negatively correlated significantly with myocardial Cx43-T(%) in non ischemic region.
引文
1.叶任高,主编.内科学[M],第五版.北京:人民卫生出版社:2001,149.
    2. Van Veen AA, Van Rijen HV, Opthof T. Cardiac gap junction channels modulation of expression and channel propertie[J]. Cardio vasc Res,2001,51(2):217-229.
    3.陈灼焰,吴黎明.缝隙连接与心肌损伤[J].中国分子心脏病学杂志,2004,4(5):301-304.
    4. Cascio WE, Yang H, Johnson TA, et al. Electrical properties and conduction in reperfused papillary muscle[J].Circ Res,2001,89:807-814.
    5. De Groot JR, Coronel R. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis[J]. Cardio-vasc Res,2004,62:323-334.
    6. 戴闰柱.慢性心力衰竭治疗的现代概念[J].中华心血管病杂志,2000,28(1):75-78.
    7. Jongsma HJ, Wilders RG. apjunctions in cardiovascular disease[J]. Circ Res,2000,86(12): 1193-1197.
    8. Ravingerova T, Tribulova N, Slezak J, et al. Brief, intermediate and prolonged ischemia in the isolated crystalloid perfused rat heart:relationship between susceptibility to arrhythmias and degree of ultrastructural injury. J Mol Cell Cardiol.1995,27(9):1937-1951
    9.郭瑶.人类疾病的动物模型[M].北京:人民卫生出版社,1982.177-182.
    10.张新宁,吕琪,张永亮等.大鼠心肌I/R模型建立方法的改进[J].武警医学院学报,2008,17(11):941-943.
    11.刘艳伟,刘水平,成建定等.大鼠心肌I/R模型的改进及心电图判断指标[J].实用儿科临床杂志,2007,22(7):525-527.
    12.曾玉杰,傅丽英,彭享胜,等.卡维地洛对大鼠I/R心肌超微结构的影响[J].医药导报,2002,21(8):479-481.
    13. Tanka K, Hearse DJ. RePerfusion-induced arrhythmias in the isolated rabbit heart characterization of the influence of the duration of regional ischemia and the extracellular potassum concentration[J]. J Molcel Cardiol,1988,20:21
    14. Zipes DP, Camm AJ, Borggrefe M, et a.1 ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death---executive summary:a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines[J]. Eur Heart J,2006,27(17):2099-2140.
    15.孙蓉,李云霞,段长农,等.参葛胶囊对缺血及再灌性心律失常大鼠的影响[J].中国新医药,2003,2(8):13.
    16.贾钰华,陈育饶,孙学刚,等.定心方对大鼠实验性心律失常的影响[J].中国全科医学杂志,1999,2(2):126.
    17.孙学刚,贾钰华,陈育饶.一氧化氮在定心方防治大鼠缺血再灌注心律失常的作用[J].中国中医基础医学杂志,2000,6(6):16.
    18.贾钰华,张云仙,周玉平,等.定心方氧化苦参碱治疗大鼠缺血再灌注心律失常及对ICAM-1表达的影响[J].辽宁中医杂志,2008,35(1):32-34.
    19.周玉平,贾钰华,杨萍,等.定心方对缺血再灌注心律失常大鼠心肌细胞凋亡的影响[J].中国中医基础医学杂志,2007,13(7):515-516.
    20.贾钰华,周玉平,孙学刚.定心方防治心肌缺血再灌注心律失常大鼠的心肌蛋白质组初步研究[J].辽宁中医杂志,2007,34(9):1212-1214.
    21.王中原,刘红,高彩霞,等.黄松胶囊治疗再灌注性室性心律失常的实验与临床研究[J].山东中医杂志,2001,20(5):359—361.
    22.靳利利,周瑞玲,陈玉兴,等.稳心颗粒对大鼠心肌缺血再灌注损伤的保护作用[J].中西医结合心脑血管病杂志,2006,4(8):698.
    23.赵胜,冯国祥,付润芳,等.地奥心血康对大鼠心肌缺血再灌注损伤的干预作用[J].中国现代应用医学杂志,2005,22(5):364.
    24.姚凝,王晰,刘建鸿,等.复方玫瑰胶囊对家兔心肌缺血再灌注损伤中血清GSH-Px、 H2O2影响的实验研究[J].甘肃中医学院学报,2005,22(4):19.
    25.王黎,于小风,曲绍春.复方刺五加注射液对大鼠心肌缺血再灌注心律失常的影响[J].中国中药杂志,2007,32(20):2174-2177.
    26.王新一,徐长庆,娄建平,等.丹参素防治大白鼠缺血/再灌注心律失常的实验研究.哈尔滨医科大学学报,1998,32(3):163—165.
    27.刘晓健,王欣楠,马岩,等.灯盏花素注射液对大鼠心肌缺血再灌注心律失常的影响[J].中药药理与临床,2008,24(1):33-34.
    28.陈泽斌,江南,刘翠霞,等.三七中人参二醇苷对大鼠心肌缺血再灌注损伤的保护作用[J].湖北中医学院学报,2002,4(3):26.
    29.刘春丽,张凤林,李明凯,等.山楂提取物对心肌缺血/再灌注损伤的保护作用[J].心脏杂志,2006,18(2):121.
    30.王海华,戚仁斌,殷慧群等.黄芪预处理对离体心脏再灌注损伤的保护作用[J].中药药理与临床,2001,17(4):21-23.
    31.赵明,于影,邵慧杰等.黄芪总黄酮对大鼠实验性心律失常的保护作用[J].中国心血管病研究,2007,5(12):918-919.
    32.黄彩云,黄胜英,谢世荣,等.氧化苦参碱抗心律失常作用的实验研究[J].大连医科大学学报,2001,23(4):262.
    33.余志华,冯义柏.氧化苦参碱对心肌I/R损伤MDA变化及超微结构的影响[J].山东医药,2005,45(19):22.
    34.乐小勇,陈春林,马梁等.丹参素对大鼠肥厚离体心脏I/R损伤诱发的心律失常的影响[J].中国天然药物,2008,6(6):461-465.
    35.杨萍,贾钰华,李杰等.丹参酮ⅡA对I/R损伤大鼠心律失常及H-FABP水平的影响[J].中药新药与临床药理,2009,20(6):517-520.
    36. Gutstein DE, Morley GE, Tamaddon H, et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43[J]. Circ. Res,2001,88: 333-339.
    37. Kleber AG. Mechanisms of ventricular arrhythmias:a PersPective [J]. J. Cardiovasc. Pharmacol.,1991,17:S1-S8.
    38. Peter. NS. Coromilas J, Severs NJ, et al. Disturbed Cx43 gap junction distribution correlates with the location of reentrant circuits in the epicardial borderzone of healing canine infarcts that cause ventricular artachycardia[J]. Circulation,1997,95(4):988-996.
    39.曾玉杰,冯义柏,于世龙,等.I/R对心肌细胞Cx43表达的影响[J].中国分子心脏病学杂志.2007,7(1):27-29.
    40. Dhein S. Pharmacology of gap junctions in the cardiovascular system[J]. Cardiovasc Res, 2004,62(2):287-298.
    41. Zeevi-Levin N, Barac YD, Reisner Y, et al. Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes[J]. Cardiovasc Res,2005,66(1):64-73.
    42. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia[J]. CI/Rc. Res.,2000,87(8):656-662.
    43. Turner MS, Haywood GA, Andreka P, et al. Reversible connexin 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels[J]. Circ Res,2004, 95(7):726-733.
    44. Axelsen LN, Stahlhut M, Mohammed S, et al. Identification of ischemia-regulated phosphorylation sites in connexin43:a possible target for the antiarrhythmic peptide analogue rotigaptide(ZP123)[J]. J Mol Cell Cardiol,2006,40(6):790-798.
    45. Matsushita S, Kurihara H, Watanabe M, et al. Alterations of phosphorylation state of connexin43 during hypoxia and reox ygenation are associated with cardiac function[J]. J Histochem Cytochem,2006,54(3):343-353.
    46. Schulz R., Gres P, Skyschally A, et al. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo[J]. FASEB J 2003,17(10): 1355-1357.
    47. Garcia-Dorado D. Myocardial reperfusion injury:a new view[J]. Cardiovasc Res,2004, 61(3):363-364.
    48.刘建勋,韩笑,马晓斌,等.双参通冠方对急性心肌I/R模型核因子一κ3信号途径及细胞GJ通讯的影响[J].中国中西医结合杂志,2005,25(3):228—-231
    49. Yoshida Y, Hirai M, Yamada T, et al. Antiarrhythmic efficacy of dipyridamole in treatmentof reperfusion arrhythmias:evidence for cAMP-mediated triggered ac-tivity as a mechanism responsible for reperfusion arrhythmias[J]. Circulation,2000,101(6):624.
    50. Demiryurek AT, Cakici I, Wainwright CL, et al. Effects of free radical production and scavengers on occlusion-reperfusion induced arrhythmias[J]. Pharmacol Res,1998,36(6): 433-439.
    51. Jeyaraman M, Tanguy S, Fandrich RR, et al. Ischemia-induced dephosphorylation of car-diomyocyte connexin 43 is reduced by okadaie acid and calyculin A but not fostriecin[J]. Mol Cell Biochem,2003,242(1):129-134.
    52.范书英,柯元南,曾玉杰等.不同β受体阻滞剂对大鼠心肌GJ结构作用的对比研究[J].中华心血管病杂志,2007,35(2):182-186
    53. Pap PR, Gonczi M, Kovacs M, et al. Gap junctional uncoupling plays a trigger role in the antiarrhythmic effect of ischaemic preconditioning[J]. Cardiovasc Res.2007 Jun 1;74(3):396-405.
    54. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor(TGF-β) signaling in cardiac remodeling[J]. J Mol Cell Cardiol,2011,51(4):600-6.
    55.宋元彬,邱若峰,邝健,等.阿托伐他汀对大鼠急性心肌梗死后心功能及TGF-β1信号通路的影响[J].南方医科大学学报,2012,32(2):202-206.
    56. Zhang YZ, Xing XW, He B, et a.l Effects of testoster-one oncytokines andleft ventricular remodeling following heart failure[J]. Cell Physiol Biochem,2007(6):847-852.
    57. Iacoviello M, Forleo C, Guida P, et al. Ventricular repolarization dynamicity provides independent prognostic information toward major arrhythmic events in patients with idiopathic dilated cardio myopathy[J]. J Am Coll Cardiol.2007,50(3):225-231
    58. Grandi E, Puglisi JL, Wagner S, et al. Simulation of Ca/Galmodulin- dependent protein kinaseⅡon rabbit ventricular myocyte ion currents and action potentials[J]. Biophys J, 2007,17
    59. Lai YJ, Chen YY, Cheng CP, et al. Changes in ionic currents and reduced conduction velocity in hypertrophied ventricular myocardium of X inadeficientmice-original Investigation[J]. Anadolu Kardiyol Derg,2007,7(Suppl 1):90
    60. Zipes DP, Caorm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidlines form anagement of patients withv entricular arrhythmias and the prevention of sudden cardiac death[J]. J Am Coll Cardiol,2006,48(5):e247-346
    61. Ebinger MW, Krishnan S, Schuger CD, et al. Mechanisms of ventricular arrhythmias in heart failure[J]. Curr Heart Fail Rep,2005,2(3):111-117
    62.卢永听.慢性心力衰竭的临床评估和治疗原则[J].临床心血管杂志,2005,21(11):691-695.
    63.浦介麟.参松养心胶囊对心律失常的整合调节作用.络病学基础与临床研究[M].北京:军事医学出版社,2008:223-226
    64.杨军,伍卫,梁蔚文,等.血管紧张素Ⅱ诱导心肌细胞肥大后缝隙连接蛋白表达的变化[J].中山大学学报(医学科学版),2007,3(28):292-296.
    65.胡婷婷,杨永健.卡维地洛对梗死心脏心肌连接蛋白43的影响[J].岭南心血管病杂志,2008,1(14):59-62.
    66.吴爱明,王硕仁.扶正化瘀胶囊对心肌梗死大鼠心肌缝隙连接蛋白43表达的影响[J]. 中西医结合心脑血管病杂志,2007,11(5):1079
    67.王清,孙雪林,邢启崇,等.倍他乐克防治新西兰兔心肌梗死胶原重构的实验研究[J].山东大学学报(医学版),2006,12(44):1217-1220.
    68.陈洁,王建安,胡新央,等.同种异体移植骨髓间质干细胞治疗大鼠心梗后心室重构[J].中国病理生理杂志,2007,23(7):1267-1271.
    69.刘铭雅,魏盟,姚瑞明,等.非梗死区心肌细胞凋亡促进心室重构的实验研究[J].中国临床医学,2005,6(12):999-1001.
    70.赵明镜,王硕仁,李敏,等.心梗后大鼠左室重构与心肌细胞凋亡时相相关性研究[J].中国病理生理杂志,2000,16(10):1011.
    71. Takemura G, Fujiwara H. Role of apoptosis in remodeling after myocardial infarction[J].Pharmacol Ther,2004,104(1):1-16.
    72.柴松波,王硕仁,姚立芳,等.参松养心胶囊对大鼠心梗后心脏重构及其离体心脏动作电位影响的研究[J].北京中医药,2009,28(12):967-971.
    73.沈祥春,彭佼,喻斌,等.太子参对急性心肌梗死心力衰竭大鼠心肌重构的作用[J].贵阳医学院学报,2008,33(6):600-603.
    74.池一凡,何涛,戴红艳,等.黄芪对尾加压素Ⅱ诱导的心脏成纤维细胞胶原合成及分泌转化生长因子-β1的影响[J].临床合理用药,2010,3(8):1-2
    75.王伟.益气养阴活血解毒中药对大鼠急性心肌梗死后梗死心肌与心室重构的影响[J].中国心血管杂志,2012,17(4):298-300.
    76.李春霞,沈小梅,刘敏.中期因子对大鼠急性心肌梗死后心室重构和基质金属蛋白酶9水平的影响中国心血管杂志,2010,15:466-470
    77.李卫虹,张少衡,李昭屏,等.利用超声心动图评定大鼠心脏功能的可行性研究[J],中国心血管杂志,2003(8):165-167.
    78.朱文浑,张晓红,肖渊茗.超声心动图评价心力衰竭大鼠模型心功能改变[J],中南大学学报(医学版),2009,34(5):453-456.
    79. KangYJ. Cardiac hypertrophy:a risk factor for QT-pro-longation and cardiac sudden death[J]. Toxicol Pathol.2006,34(1):58-66.
    80. Packer M. Do β-blockers prolong survival in heart failure only by inhibiting the β1-receptor? A perspective on the results of the COMET trial[J]. J Card Fail,2003,9: 429-443.
    81. Aronow WS. Epidemiology, pathophysiology, prognosis, and treatment of systolic and diastolic heart failure[J]. Cardiol Rev,2006,14(3):108.
    82.赵淑明,郭秋红,张志良,等.葶苈生脉方对慢性心衰大鼠血清肿瘤坏死因子-α、白细胞介素-6及心肌胶原的影响[J],时珍国医国药,2010,21(1):153-154.
    83.霍明章,于德洁,郝维,等.犬陈旧性心肌梗死时连接蛋白Cx43的分布[J].中国医学科学院院报,2001,23(3):255—257.
    84.杨军,褚春,伍卫,周先令,全智华,刘厂辉.缬沙坦抑制缺氧时肥大心肌细胞凋亡及Cx43表达下调[J].中华全科医学,2010,8(4):445-449.
    85.赵向民,汪家瑞,叶丹,等.美托洛尔对缺血再灌注心肌的保护作用及其机制探讨[J].心肺血管病杂志,2001,20(3):179-180.
    1.叶任高,主编.内科学[M],第五版.北京:人民卫生出版社:2001,149.
    2.陈新,主编.临床心律失常学[M],第一版.北京:人民卫生出版社:2000,6.
    3.张宁仔,杜日映,主编.心血管科医师必读[M],北京:人民军医出版社,1996,24.
    4. 田文清,窦桂忠.致心律失常的机理与处置[J].心脏杂志,2000,12(2):157.
    5.吴宁,孙瑞龙,刘霞,等.我国心律失常学研究的主要成就[J].中华心血管病杂志,1999,27(4):255—257.
    6.黄震华.抗心律失常目前的观点[J].临床心电图杂志,2000,9(1):44—46.
    7.程小床,詹青,赵缬华,等.中医药治疗治疗缓慢性心律失常的临床研究进展与展望[J].云南中医中药杂志,1999,20(6):30—33.
    8.彭源贵.抗心律失常植物药研究进展[J].中草药,1988,19(7):339.
    9.卢贵萍.中医药治疗快速性心律失常进展[J].中医文献杂志,1999,(1):43.
    10. Sohl G, Willecke K. Gap junctions and the connexins protein family[J]. Cardio vase Res, 2004,62(2):228-232.
    11. Van Kempen MJ, Jonasma HJ. Distribution of connexin 37, connexin 40 and connexin 43 in the aorta and coronary artery of several mammals[J]. Histochem Cell Biol,1999, 112(6):479-86.
    12. Hong T, Hill CE. Restricted expression of the gap functional protein connexin43 in the arterial system of the rat[J].J Anat,1998,192 (Pt 4):583-93.
    13. Li X, Simard JM. Increase in Cx45 gap junction channels in cerebral smooth muscle cells from SHR[J].Hypertension,2002,40(6):940-46.
    14. Kwak BR, Jongsma HJ. Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions[J]. Mol Cel Biochem,1996; 157(1-2): 93-9.
    15. Sigiura H, Toyama J,Tsuboi N, et al. ATP directed affects junctional conductance between paried ventricular myocyte isolated from guinea pig heart[J]. Circ Res.1990:66: 1095-1102.
    16. Dekkler LRC, Fiolet JWT, Vanbaval ED, et al. Intracellular Ca2+, intercellular electrical coupling, and mechanical activity in ischemic rabbit papillary muscle:effects of precondition and metabolic blockade[J]. Circ Res,1996; 431:519-526.
    17. Callans DJ, Moore EN, Spear JF. Effect of coronary perfusion of heptanol on conduction and ventricular arrhythmias in infarcted canine myocardium[J]. J Cardiovasc Electrophysiol,1996; 7(12):1159-71.
    18. Keevil VL, Huang CL, Chau PL, et al. The effect of heptanol on the electrical and contractile function of the isolated perfused rabbit heart[J]. Pflugers Arch,2000; 440(2):275-82
    19. Nassif G, Dillon SM. Rayhill S, el al:Reentrant circuits and the effects of heptanol in a rabbit model of infarction with a uniform anisotropic epicardial border zone[J]. J Cardiovasc Electrophysiol,1993; 4(2):112-33.
    20. Yancey SB, John SA, Lal R, et al. The 43-ku polypeptide of heart gap junctions: immunolocalization, topology, and functional domains[J]. J Cell Biol,1989, 108(6):2241-2254.
    21. Beyer EC, Kisler J, Paul DL, et al. Antisera directed against connexin43 peptides react with a 43-ku protein localized to gap junctions in myocardium and other tissues[J]. J Cell, 1989,108(2):595-605.
    22. Saez JC, Berthoud VM, Branes MC, et al. Plasma membrane channels formed by connexins:The I/R Regulation and Functions[J].Physiol Rev,2003,83(4):1359-1400.
    23. Cooper CD, Lampe PD. Casein kinasel regulates connexin-43 gap junction assembly[J]. J Biol Chem,2002,277(47):44962-44968.
    24. Yoshida Y, Hirai M, Yamada T, et al. Antiarrhythmic efficacy of dipyridamole in treatment of reperfusion arrhythmias:evidence for cAMP-mediated triggered activity as a mechanism responsible for reperfusion arrhythmias[J]. Circulation,2000,101(6):624.
    25. Demiryurek AT, Cakici I, Wainwright CL, et al. Effects of free radical production and scavengers on occlusion-reperfusion induced arrhythmias[J]. Pharmacol Res,1998,36(6): 433-439.
    26.陈灼焰,吴黎明.缝隙连接与心肌损伤[J].中国分子心脏病学杂志,2004,4(5):301-304.
    27. Cascio WE, Yang H, Johnson TA, et al. Electrical properties and conduction in reperfused papillary muscle[J].Circ Res,2001,89:807-814.
    28. De Groot JR, Coronel R. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis[J]. Cardio-vasc Res,2004,62:323-334.
    29. Jeyaraman M, Tanguy S, Fandrich RR, et al. Ischemia-induced dephosphorylation of car-diomyocyte connexin 43 is reduced by okadaie acid and calyculin A but not fostriecin[J]. Mol Cell Biochem,2003,242(1):129-134.
    30. Goubaeva F, Mikami M, Giardina S, et al. Cardiac mitochondrial connexin 43 regulates a-poptosis[J]. Biochem Biophy Res Commun,2007,352(1):97-103.
    31. Gutstein DE, Morley GE, Tamaddon H, et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43[J]. Circ Res.2001;88(3): 333-339.
    32. Dhein S. Pharmacology of gap junctions in the cardiovascular system[J]. Cardiovasc Res, 2004,62(2):287-298.
    33. Zeevi-Levin N, Barac YD, Reisner Y, et al. Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes[J]. Cardiovasc Res,2005,66(1):64-73.
    34. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia[J]. Circ. Res.,2000,87(8):656-662.
    35. Turner MS, Haywood GA, Andreka P, et al. Reversible connexin 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels[J]. Circ Res,2004, 95(7):726-733.
    36. Axelsen LN, Stahlhut M, Mohammed S, et al. Identification of ischemia-regulated phosphorylation sites in connexin43:a possible target for the antiarrhythmic peptide analogue rotigaptide(ZP123)[J]. J Mol Cell Cardiol,2006,40(6):790-798.
    37. Matsushita S, Kurihara H, Watanabe M, et al. Alterations of phosphorylation state of connexin43 during hypoxia and reox ygenation are associated with cardiac function[J]. J Histochem Cytochem,2006,54(3):343-353.
    38. Schulz R., Gres P, Skyschally A, et al. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo[J]. FASEB J 2003,17(10): 1355-1357.
    39. Garcia-Dorado D. Myocardial reperfusion injury:a new view[J]. Cardiovasc Res,2004, 61(3):363-364.
    40. Li W, Hertzberg EL, Spray DC. Regulation of connexin43-protein binding in astrocytes in response to chemical ische-miahypoxia[J]. J Biol Chem,2005,280(9):7941-7948.
    41. Lampe PD, Kurataw E, Warn-Cramer BJ, et al. Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34cdc2 kinase[J]. J Cell Sci,1998, 111:833-841.
    42. Cottrell GT, Lin R, Warn-Cramer BJ, et al. Mechanism of v-Src and mitogen-activated protein kinase-in-duce dreduction of gap junction communication[J]. American Journal of Physiology,2003,284:C511-C520.
    43. Schulz R, Heusch G. Connexin43 and ischemic preconditioning[J]. Cardiovasc Res,2004, 62(2):335-344.
    44. Lampe PD, Lau AF. The effects of connexin phosphoryla-tion on gap junctional communication[J]. Int J Biochem Cel Biol,2004,36(7):1171-1186.
    45. Huang YS, Tseng YZ, Wu JC, et al. Mechanism of oleic acid-induced gap junctional disassembly in rat cardiomyocytes[J]. J Mol Cell Cardiol,2004,37(3):755-766.
    46.戴闰柱.慢性心力衰竭治疗的现代概念[J].中华心血管病杂志,2000,28(1):75-78.
    47. Jongsma HJ, Wilders RG. apjunctions in cardiovascular disease[J]. Circ Res,2000,86(12): 1193-1197.
    48. Peter. NS. New insights into myocardial rhythm ogenesis:distribution of gap junctional coupling in normal, is chemicand hypertrophied hearts[J]. Clin Sci Colh,1996,90(5):447-452.
    49. Peter. NS. Coromilas J, Severs NJ, et al. Disturbed Cx43 gap junction distribution correlates with the location of reentrant circuits in the epicardial borderzone of healing canine infarcts that cause ventricular artachycardia[J]. Circulation,1997,95(4):988-996.
    50.卢永昕.慢性心力衰竭的临床评估和治疗原则[J].临床心血管杂志,2005,21(11):691-695.
    51.浦介麟.参松养心胶囊对心律失常的整合调节作用.络病学基础与临床研究[M].北京:军事医学出版社,2008:223-226
    52.杨军,伍卫,梁蔚文,等.血管紧张素Ⅱ诱导心肌细胞肥大后缝隙连接蛋白表达的变化[J].中山大学学报(医学科学版),2007,3(28):292-296.
    53.胡婷婷,杨永健.卡维地洛对梗死心脏心肌连接蛋白43的影响[J].岭南心血管病杂志,2008,1(14):59-62.
    54.吴爱明,王硕仁.扶正化瘀胶囊对心肌梗死大鼠心肌缝隙连接蛋白43表达的影响[J].中西医结合心脑血管病杂志,2007,11(5):1079
    55.王清,孙雪林,邢启崇,等.倍他乐克防治新西兰兔心肌梗死胶原重构的实验研究[J].山东大学学报(医学版),2006,12(44):1217-1220.
    56.陈洁,王建安,胡新央,等.同种异体移植骨髓间质干细胞治疗大鼠心梗后心室重构[J].中国病理生理杂志,2007,23(7):1267-1271.
    57.刘铭雅,魏盟,姚瑞明,等.非梗死区心肌细胞凋亡促进心室重构的实验研究[J].中国临床医学,2005,6(12):999-1001.
    58.霍明章,于德洁,郝维,等.犬陈旧性心肌梗死时连接蛋白Cx43的分布[J].中国医学科学院院报,2001,23(3):255—257.
    59. Tenbroek EM, Lampe PD, Solan JL, et al. Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP[J]. J Cell Biol,2001,155(7):1307-1318.
    60.王云胜,林吉进,谭学瑞.连接蛋白43磷酸化状态与心脏缝隙连接通道功能的关系[J].国际心血管病杂志,2007,(4):270-273.
    61. Yogo K, Ogawa T, Akiyama M, et al. Identification and functional analysis of novel phosphorylation sites in Cx43in rat primary granulosa cells[J]. FEBS Lett,2002,531(2): 132-136.
    62. Lampe PD, Tenbroek EM, Burt JM, et al. Phosphorylation of connexin43 on serine 368 by protein kinase C regulates gap junctional communication[J]. J Cell Biol,2000,149(7): 1503-1512.
    63. Doble BW, Dang X, Ping P, et al. Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell contact forming cardiomyocytes[J]. J Cell Sci,2004,117(Pt3):507-514.
    64.杨军,褚春,伍卫,等.缬沙坦抑制缺氧时肥大心肌细胞凋亡及Cx43表达下调[J].中华全科医学,2010,8(4):445-449.
    65.范书英,柯元南,曾玉杰等.不同β受体阻滞剂对大鼠心肌GJ结构作用的对比研究[J].中华心血管病杂志,2007,35(2):182-186.
    66.赵向民,汪家瑞,叶丹,等.美托洛尔对缺血再灌注心肌的保护作用及其机制探讨[J].心肺血管病杂志,2001,20(3):179-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700