用户名: 密码: 验证码:
粉末冶金压坯残余应力与裂纹损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末冶金作为一种近净成形制造技术,具有高效、省材、节能、环保等诸多优点,故备受工业界的重视。对于粉末冶金机械零件行业来说,生产过程中零件压坯中产生裂纹是一个长期没有解决的课题。实际上,粉末压坯的裂纹可能出现在压制成形和运送阶段的各个环节。为了避免和防止裂纹产生,除了传统的经验方法,将计算机仿真技术引入粉末冶金模具和工艺设计,对粉末冶金零件生产过程中的工艺过程与裂纹缺陷进行分析预测,进而制定合理的工艺方案及参数,是目前最为有效的科学手段。
     由于粉末成形机理与过程复杂,尚没有一个公认的数学模型,对于粉末压坯裂纹形成的定量分析则更少。为此,本文基于更具应用前景的广义塑性力学模型研究金属粉末压制致密化过程以及压坯脱模后残余应力分布规律,并在此基础之上对不同生产阶段的压坯裂纹损伤进行研究和预测分析,为优化模具和工艺参数,提高粉末冶金产品的质量,提供科学有效的依据。论文主要研究内容和成果如下:
     1、建立了适用于本文所用金属材料成形的密度相关的广义塑性力学屈服模型,即修正的Drucker-Prager Cap屈服模型。结合粉末闭模压制成形实验和压坯强度实验推导了模型待定参数的求解公式,以Distaloy AE扩散预合金铁粉为实验材料,确定了模型各参数与相对密度的函数关系。
     2、基于所建立的金属粉末广义塑性力学模型,利用Abaqus二次开发技术,实现了金属粉末成形过程的弹塑性有限元模拟;对比了压制力曲线和相对密度分布的有限元分析与实验结果,二者吻合良好,验证了金属粉末广义塑性力学模型的正确性。
     3、采用X射线衍射技术,对不同压制压力(450MPa和600MPa)以及润滑条件下,ASC100.29和Distaloy AE两种金属粉末压坯表层的残余应力进行测试,获得了金属粉末压坯残余应力分布规律。
     4、采用所建立的金属粉末广义塑性力学模型,对粉末压坯脱模后残余应力分布进行了有限元数值模拟。讨论了粉末压制与脱模过程粉体单元的网格参数和阴模材料类型对压坯残余应力计算结果的影响,并根据实验数据对有限元模型进行了合理的修正,保证了残余应力的分析精度,为粉末压坯裂纹损伤研究奠定了基础。
     5、分析了金属粉末压制与脱模过程中的裂纹成形机理,结合该环节的裂纹损伤特点,基于金属粉末广义塑性力学模型导出了粉末压坯韧性损伤模型,并确定了裂纹损伤阈值。
     6、基于上述韧性损伤模型,利用Abaqus二次开发技术,实现了粉末压制以及压坯脱模过程裂纹损伤的有限元模拟分析,讨论了压坯几何形状、模腔润滑条件、以及阴模出口脱模角度三种因素对压坯损伤的影响。
     7、采用圆弧型加载方式的巴西圆盘实验方法,结合理论分析、有限元数值模拟,获得了ASC100.29和Distaloy AE两种金属粉末压坯的力学性能和损伤断裂参数,包括压坯抗拉强度t、弹性模量E、断裂韧度KI和断裂能量Gf与相对密度的函数关系,为压坯损伤与断裂模拟提供了可靠的数据。
     8、建立了适用于夹持损伤分析的基于断裂能量的双线性和指数型两种金属粉末压坯内聚力损伤模型,通过粉末压坯巴西圆盘实验及其有限元数值模拟,对两种内聚力损伤模型的有效性和精确性进行了分析;计及压坯脱模后残余应力,采用精度更高的指数型内聚力模型,对环形零件粉末冶金压坯运送过程中夹持裂纹损伤进行了有限元预测分析,进而结合零件技术要求对夹持工况参数进行了研究,得到了环形零件族粉末冶金压坯的极限夹持工况参数。
Powder metallurgy is an effective process of manufacturing near net shapeproducts. It offers many advantages, including high productivity, low production costs,less energy consumption and environmental friendship, which is widely concern inpowder metallurgy industry. Cracking in green compact has always been theimportant issue for a long time in powder metallurgy part industry. In fact, cracks ingreen compacts may occur in all phases of consolidation and handling process.Besides the traditional experience method, numerical simulation technology whichcombined with die and process design, is today a powerful tool in prediction of crackin powder metallurgy process in order to prevent the defect.
     There is not a uniform mathematical model as the complex mechanism ofpowder compaction. So, little has been published about quantitative analysis of thecrack in green compacts. Thus, a generalized plastic mechanics model has beendeveloped to research the metal powder densification process in this work. And cracksand damage in metal powder compacts have been studied in different phases ofprocess. These provide an effective scientific method to improve the quality ofpowder metallurgy products and optimize the tool and process parameters. Specificareas of development described in this dissertation include:
     1. A density-dependent generalized plastic mechanics model named modifiedDrucker-Prager Cap model was developed, which parameters were identified throughderivation by powder compaction experiment and strength tests of green compacts.And the model parameters of diffusion prealloyed iron powder Distaloy AE weredetermined as functions of relative density.
     2. The constitutive model was implemented in Abaqus by writing a usersubroutine to three dimensional simulate the compaction process of metal powder.The simulation results agree well with the experiment data including the curve ofpressing force and relative density distribution.
     3. The residual stresses were investigated by X-ray diffraction measurement.Two kinds of metal powder compacts (ASC100.29and Distaloy AE) have beenmeasured the residual stresses in different directions on surfaces based on differentpressing forces (450MPa and600MPa) and lubrication conditions. The test results were ananlyzed to obtain the residual stress distribution law of green compacts, whichhave been the validation criteria of residual stress finite element simulation.
     4. The ejection process of green compact was simulated to predict the residualstress based on the calibrated constitutive model. The influence of model parameterson residual stress of green compact has been discussed. And the suitable parameterswere determined according to the experimental results. The finite element model wasfurther modified on the aspect of the stress calculation, which was the basis ofresearch on the crack and damage of green compact.
     5. The ductile damage model was derived based on the modified Drucker-PragerCap model considering the mechanism of cracks on the powder compaction process.Meanwhile, the damage threshold of crack was identified.
     6. The ductile damage model was implemented in Abaqus by writing a usersubroutine to predict the crack and damage in green compact during the pressing andejection process. Furthermore, the impact of factors including the geometric shape ofthe compacts, the lubrication of die and the taper of the die wall on the damge ofgreen compact was discussed.
     7. The mechanical properties and fracture process of two kinds of greencompacts (ASC100.29and Distaloy AE) were investigated by the Brazilian disc testof circular loading. The paramenters including tensile strengtht, elastic modulus E,fracture toughness KIand fracture energy Gfas functions of relative density weredetermined according to the theoretical and numerical analysis and experimental data,which provided the reliable data for the damage and fracture simulation of greencompact.
     8. Two kinds of fracture energy based cohesive zone models for metal powdercompacts were established. These models were analyzed combined with the Braziliandisc experiment results. The cracks and damage of the annular compact in handlingprocess was predict considering the residual stress after ejection by the exponent typecohesive zone model with higer simulation precision.
引文
[1]黄培云.粉末冶金原理(第二版)[M].冶金工业出版社.北京:冶金工业出版社,2011:1–10
    [2]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(一)[J].上海金属,2007,29(3):1–7
    [3]勇拥军,李溪滨,赵福安.钢结硬质合金材料的研究进展[J].硬质合金,2005,22(2):121–124
    [4] I. Konyashin, F. Schaefer, R. Cooper, et al. Novel ultracoarse harcimental gradeswith reinforced binder mining and construction [J]. RM&HM,2002,23(1):225–232
    [5] C. Collin, L. Durant, N. Favrot et al. Processing of functional gradient WC-Cocements by powder metallurgy [J]. RM&HM,1994,12(1):145–152
    [6]钱宝光,耿浩然,郭忠全.电触头材料的研究进展与应用[J].机械工程材料,2004,28(3):7–9
    [7]芦晶,雒克家.烧结软磁材料的性能及在电动机上的应用[J].机械工程材料,2004,28(11):52–54
    [8]王震西,胡伯平.稀土永磁的产业现状及应用[C].2004年中国稀土永磁材料论坛,北京:2004,11:1–7
    [9]林河成.我国稀土永磁材料的新进展[J].粉末冶金工业,2001,11(2):35–39
    [10]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社,2005:188
    [11]王零森,方寅初,吴芳等.碳化硼在吸收材料中的地位及其与核应用有关的基本性能[J].粉末冶金材料科学与工程,2000,5(2):113–120
    [12]王零森.碳化硼屏蔽吸收芯块的研制及其在快堆中的性能考核[J].中国有色金属学报,2006,16(9):1482–1285
    [13]魏先斗.陶瓷材料的结构功能及其发展前景[J].机械工程师,2006,5(4):122
    [14]韩凤麟.世界粉末冶金零件工业动态[J].粉末冶金技术,2001,19(4):225–232
    [15]曹阳,童郁彬.中国大陆粉末冶金结构零件行业现状及发展[C].2011年全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会论文集,广州:20–25
    [16]郑学萍,李平,曲选辉.世界粉末冶金行业的发展现状[J].稀有金属快报,2005,24(3):6–9
    [17]韩凤麟.中国(大陆)粉末冶金零件行业2004年进展[J].粉末冶金技术,2006,24(1):56–69
    [18]菜韵,吴菊清.我国汽车粉末冶金零件发展动向趋势分析[J].新材料产业,2005,24(1):60–62
    [19]黄培云.粉末冶金原理[M].冶金工业出版社.北京:冶金工业出版社,2000
    [20]D. C. Zenger. Compaction and green body cracks [C]. Advanced PowderMetallurgy Short Course. Westin Hotel Indianapolis Indiana. Sponsored by MPIFand AMPI. September12–13,1995
    [21]C. J. Kasouf, D. C. Zenger, P. U. Gummeson, et al. The P/M industry study: AFinal Report [C]. Metal Powder Industries Federation, Princeton, N.J.,1994:1–20
    [22]J.D. Reid. Avoiding Cracks in the Production of P/M Components [J]. MetalPowder Report,1986,11:845–849
    [23]O Donald Thompson and D E. Chimenti. Review of progress in quantitativenondestructive evaluation [M]. New York: Plenum,1997
    [24]M. I. Jaffe. Guidelines for designing powder metallurgy parts[R].Basic P/M ShortCourse, Worcester Polyechnic Institute, MA01609, July20–22,1994
    [25]G.F. Bocchini, H. Schaidl. Powder and Mix Properties [J]. Advances in powderMetallurgy,1991,1:59–87,1991
    [26]D. C. Zenger, Haimian Cai. Common causes of cracks in P/M compacts [J].International Journal of Powder Metallurgy,1998,34(4):33–52
    [27]韩凤麟.粉末冶金零件压制成形中裂纹的成因与对策[J].粉末冶金技术,1999,17(3):209–215
    [28]韩凤麟.粉末冶金零件压制成形中裂纹的成因与对策(续)[J].粉末冶金技术,1999,17(4):277–286
    [29]董林峰,李从心.粉末冶金零件成形脱模过程中成形的裂纹[J].汽车工艺与材料,2000,3:38–40
    [30]董林峰,李从心.金属粉末成形过程中出现分层裂纹的原因分析[J].模具技术,2000,4:49–53
    [31]董林峰,李从心.金属粉末成形过程中出现裂纹的分类研究[J].金属成形工艺,2000,18(4):30–35
    [32]刘咏,黄伯云等.从PM2004看世界粉末冶金的发展现状[J].粉末冶金材料科学与工程,2005,10(1):10–21
    [33]黄重国,任学平.金属塑性成形力学原理[M].冶金工业出版社.北京:冶金工业出版社,2008:30–32
    [34]汪俊,李从心,阮雪榆.连续体塑性力学方法描述粉末金属压制过程[J].模具技术,1999,5:24–28
    [35]汪俊,李从心,阮雪榆.粉末金属压制过程数值模拟建模方法[J].机械科学与技术,2000,19(3):436–439
    [36]董林峰.粉末金属成形中的缺陷预测与成形过程的计算机仿真[D].上海交通大学博士论文,2001
    [37]程勇.粉末成形规律和过程模拟研究[D].武汉理工大学硕士论文,2001
    [38]H. A. Kuhn, C. L. Downey. Deformation characteristics and plasticity theory ofsintered powder materials [J]. International Journal of Powder Metallurgy,1971,15:7–15
    [39]R. J. Green. A plasticity theory for porous solids [J]. Int. J. Mech. Sci,1972,14:215–222
    [40]S. Shima, M. Oyane. Plasticity Theory for Porous Metals [J]. Int. J. Mech. Sci,1976,18:285–292
    [41]A. L. Gurson. Continuum theory of ductile rupture by void nucleation and growth:part I-Yield criteria and flow rules for porous ductile media [J]. ASME. J. Eng.Mater. Technol,1977,99:2–16
    [42]O. V. Roman, E. A. Doroshkevich, L. D.Velyuga, et al. Use of equations of thetheory of plasticity of a porous solid for determining stresses in steady stateprocesses of plastic working of P/M materials [J]. Scientific-Research Institute ofPowder Metallurgy,1980,6:15–22
    [43]S. M. Doraivelu, H. L. Gegel, J. S. Gunasekera, et al. A new yield function forcompressible P/M materials [J].Int. J. Mech. Sci,1984,26(9/10):527–532
    [44]S. D. El-Wakil. A yield criterion and a flow rule for sintered porous materials
    [C].Proc. of NAMRC XI Conference,1983,166
    [45]V. Tvergaard, A. Needleman. Analysis of the Cup-Cone Fracture in a RoundTensile Bar [J].Acta Metal.1984,32(1):157–169.
    [46]D. N. Lee, H. S. Kim. Plastic yield behavior of porous metals [J]. PowderMetallurgy,1992,35(4):275–279
    [47]C. S. Kang, S. C. Lee, K. T. Tim, et al. Densification behavior of iron powderduring cold stepped compaction [J]. Materials Science and Engineering,2007,452–453:359–366.
    [48]S. C. Lee, K. T. Tim, S. M. Hwang, et al. Finite element analysis for deformationbehavior of an aluminum alloy composite containing SiC particles and porositiesduring ECAP [J]. Materials Science and Engineering,2004,371:306–312
    [49]B. A. Yazici, T. Kraft, H. Riedel. Finite element modeling of PM surfacedensification process [J]. Powder Metallurgy,2008,51(3):211–217
    [50]P. Redanz. Numerical modeling of cold compaction of metal powder [J]. Int. J.Mesh. Sci,1998,40(11):1175–1189
    [51]K. Biswas. Comparison of various plasticity models for metal powder compactionprocesses [J]. Journal of Materials Processing Technology,2005,16:107–115
    [52]赵仲治.烧结体屈服准则[R].武汉工学院科研报告,1982,8
    [53]任学平,王尔德,霍文灿.粉末体的屈服准则[J].粉末冶金技术,1992,1(10):8–12
    [54]汪俊,罗思东,李从心.金属粉末零件压制过程有限元模拟的研究[J].中国机械工程,1997,8(4):40–43
    [55]汪俊,黄辉,李从心等.粉末成形工艺自动设计集成工具系统[J].计算机辅助工程,2000,3(9):20–25
    [56]Yuan-yuan LI, Pu-qing CHEN, Wei XIA, et al. Numerical modeling andsimulation of metal powder compaction of balancer [J]. Trans. Nonferrous Met.Soc. China,2006,16:507–510
    [57]Yuan-yuan LI, Wei-bin ZHAO, Zhao-yao ZHOU, et al. Coupled mechanical andthermal simulation of warm compaction [J]. Trans. Nonferrous Met. Soc. China,2006,16:311–316
    [58]王德广,吴玉程,焦明华等.不同压制工艺对粉末冶金制品性能影响的有限元模拟[J].机械工程学报,2008,44(1):205–212
    [59]宋平.铁基粉末压制成形数值模拟研究[D].合肥工业大学硕士论文,2008
    [60]李健.钼粉末温压成形过程的有限元模拟研究[D].西北工业大学硕士论文,2007
    [61]周洁.粉末成形过程的计算机模拟[D].昆明理工大学硕士论文,2005
    [62]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1990
    [63]赵志业.金属塑性加工力学[M].北京:冶金工业出版社,1999
    [64]D. C. Drucker, W. Prager. Soil Mechanics and Plastic Analysis or Limit Design [J].Quarterly Journal of Applied Mathematics,1952,10:157–165
    [65]D. C. Drucker, R. E. Henkel. Soil Mechanics and work hardening theories ofplasticity [J]. Trans. ASCE,1957,122:338–346
    [66]K. H. Roscoe, J. B. Burland. On the generalized stress-strain behaviour of’wet’clay. In Engineering plasticity[M].Cambridge University Press,1968:535–609
    [67]F. L. DiMaggio, I. S. Sandler. Material model for granular soils [J]. Journal ofEngineering Mechanical,1971,(ASCE97):935–950
    [68]C.S. Desai, Q. S. E. Hashmi. Analysis evaluation and implementation of anonassociative model for geologic materials [J]. Int. J. Plasticity,1989,5:397–420
    [69]A. R. Khoei, R. W. Lewis. Finite element simulation for dynamic largeelastoplastic deformation in metal powder forming [J]. Finite Element in Analysisand Design,1988,30:335–352
    [70]J. C. Simo, J. W. Ju, K. S. Taylor, et al. An assessment of the cap model: consistentreturn algorithms and rate-dependent extensions [J]. J. Eng. Mech. Div,1988,ASCE,114:191–218
    [71]G. Hofstetter, J. C. Simo, R. L. Taylor. A modified cap model: closest pointsolution algorithms [J]. Int. J. Comput. Struct,1993,46:203–214
    [72]I. S. Sandler, D. Rubin. An algorithm and a modular subroutine for the cap model[J]. Int. J. Numer. Anal. Methods Geomech,1979,3:173–186
    [73]H. A. Haggblad, M. Oldenbrug. Modelling and simulation of metal powder diepressing with use of explicit time integration [J]. Modelling Simul. Mater. Sci.Eng,1994,2:893–911
    [74]B. Wlkman, G. Bergman, M. Oldenburg, H. A. Haggblad. Estimation ofconstitutive parameters for powder pressing by inverse modeling [J]. StructMultidisc Optim,2006,31:400–409
    [75]R. W. Lewis, A. R. Khoei. Numerical modeling of large deformation in metalpowder forming [J]. Comput. Methods. Appl. Mech. Engrg,1998,159:291–328
    [76]A. R. Khoei, R. W. Lewis. Adaptive finite element remeshing in a largedeformation analysis of metal powder forming [J]. Int. J. Numer. Mech. Engng,1999,45,801–820
    [77]R. W. Lewis, A. R. Khoei. A plasticity model for metal powder forming processes[J]. International Journal of Plasticity,2001,17:1659–1692
    [78]A. R. Khoei, A. S. Iranfar.3D numerical simulation of elasto-plastic behavior inpowder compaction process using a quasi-nonlinear technique [J]. Journal ofMaterials Processing Technology,2003,143–144:886–890
    [79]A. R. Khoei, A. R. Azami. A single cone-cap plasticity with an isotropic hardeningrule for powder materials [J]. International Journal of Mechanical Sciences,2005,47:94–109
    [80]A. R. Khoei, A. R. Azami., S. Azizi. Computational modeling of3D powdercompaction processes [J]. Journal of Materials Processing Technology,2007,185:166–172
    [81]C. Gu, M. Kim, L. Anand. Constitutive equations for metal powders: applicationto powder forming processes [J]. International Journal of Plasticity,2001,17:147–209
    [82]M. Reiterer, T. Kraft, U. Janosovits, H. Riedel. Finite element simulation of coldisostatic pressing and sintering of SiC components [J]. Ceramics International,2004,30:177–183
    [83]D. C. Andersson, P. L. Larsson, A. Cadario, et al. On the influence from punchgeometry on the stress distribution at powder compaction [J]. Powder Technology,202(1-3):78–88
    [84]M. M. Rahman, A. K. Ariffin, S. S. M. Nor. Development of a finite elementmodel of metal powder compaction process at elevated temperature [J]. AppliedMathematical Modelling,2009,33:4031–4048
    [85]汪俊,李从心,阮雪榆.基于微观力学的粉末金属压制过程建模方法[J].模具技术,1999,6:12–16
    [86]焦明华,柏厚义,俞建卫等.金属粉末压制成形的细观模拟研究[J].金属功能材料,2008,15(5):28–33
    [87]P. A. Cundall, D. L. Stracko. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29:47–65
    [88]R. S. Ransing, D. T. Gethin, A. R. Khoei, et al. Powder compaction modeling viathe discrete and finite element method [J]. Materials and Design,2000,21:263–269
    [89]C. Bierwisch, T. Kraft, H. Riedel, et al. Die filling optimization usingthree-dimensional discrete element modeling [J]. Powder Technology,2009,196:169–179
    [90]C. Bierwisch, T. Kraft, H. Riedel, et al. Three-dimensional discrete elementmodels for the granular statics and dynamics of powders in cavity filling [J].Journal of the Mechanics and Physics of Solid,2009,57:10–31
    [91]C. L. Martin, D. Bouvard, S. Shima. Study of particle rearrangement duringpowder compaction by the Discrete Element Method [J]. Journal of the Mechanicsand Physics of Solids,2003,51:667–693
    [92]C.L. Martin, D. Bouvard. Study of the cold compaction of composite powders bythe discrete element method [J]. Acta Materialia.2003,51:373–386
    [93]杨霞,果世驹.粉末压制致密化过程的离散元模拟[C].中国粉末冶金新技术及难熔金属粉末冶金会议文集,2007,165–175
    [94]温彤, A. C. F. Cocks.粉末材料压制过程的DEM分析[J].重庆大学学报(自然科学版),2007,30(7):1–5
    [95]高红云.金属粉末流动温压的成形装置设计与成形过程基础理论研究[D].华南理工大学博士论文,2010
    [96]H. Kitahara, H. Kotera, S. Shima.3-D simulation of magnetic particles’ behaviourduring compaction in a magnetic field [J]. Powder Technology,2000,109:234–240
    [97]J. Segurado, E. Parteder, A. F. Plankensteiner, H. J. Bohm. Micromechanicalstudies of the densification of porous molybdenum. Materials Science andEngineering [J].2002, A333:270–278
    [98]Z. Y. Zhou, P. Q. Chen, W. B. Zhao, et al. Densification model for porous metallicpowder materials [J]. Journal of Materials Processing Technology,2002,129:385–388
    [99]汪俊,李从心,阮雪榆.粉末金属压制过程建模方法(2)——广义塑性力学方法和内蕴时间方法[J].金属成形工艺,2000,18(3):1–3
    [100] A. R. Khoei, A. Bakhshiani, M. Mofid. An endochronic plasticity model forfinite strain deformation of powder forming process [J]. Finite Elements inAnalysis and Design,2003,40:187–211
    [101] S. O. Kobayashi. Metal forming and the finite element method [M]. NewYork: Oxford University Press,1989:126–128
    [102]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社,2002
    [103] J. Lemaitre, J. L. Chaboche.固体材料力学[M].余庆天,吴玉树,译.北京:国防工业出版社,1997
    [104]王军.损伤力学的理论与应用[M].北京:科学出版社,1997
    [105] J. Lemaire. A course on damage mechanics [M]. Berlin: Springer-Verlag,1996
    [106]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [107] G. Rousselier. Ductile fracture models and their potential in local approach offracture [J]. Nuclear engineering and design,1987,105(1):97–111
    [108]杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1–9
    [109]张研,张子明.材料细观力学[M].北京:科学出版社,2008
    [110] B. Bennani, J. Oudin. Influence of steel matrix porosity on the finaldimensions and properties of cold stamped bars [J]. J. Mater. Proc. Tech.,1994,45(1):515–520
    [111] M. Oyane. Criterion for ductile and their applications [J]. J. Mech. work.Tech.,1980,65(4):188–198
    [112] Morimoto. Y, Hayashi. T, Takei. T. Mechanical behavior of Powder duringCompaction in a Mold with Variable Cross Section [J]. Int. J. of Powder Metall.and Powder Tech.,1982,18(2):129–144.
    [113] R. W. Lewis, A. K. Jinka, D. T. Gethin. Computer aided simulation of metalpowder die compaction process [J]. Powder Metallurgy International,1993,25(6):287–293
    [114]董林峰,李从心.基于金属粉末压制模型的韧性损伤模型[J].中国有色金属学报,2000,10(1):254–256
    [115]董林峰,李从心.基于细观处理的金属粉末成形中裂纹预测的损伤力学算法[J].模具技术,2000,6:72–75
    [116]张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2008
    [117] P. Jonsén and H.-. H ggblad. Fracture energy based constitutive model fortensile fracture of metal powder compacts [J]. International Journal of Solids andStrctures,2007,44:389–6411
    [118] P. Jonsén and H.-. H ggblad. Modelling and simulation of tensile fracturein high velocity compacted metal powder [C]. In Proceedings of the9thInternational Conference on Numerical Methods in Industrial Forming Processes,17-21June2007, Materials Processing and Design: Modeling Simulation andApplications,1117–1122
    [119] S. M. Tahir, A. K. Ariffin. Fracture in metal powder compaction [J].International Journal of Solids and Structures,2006,43:1528–1542
    [120] S. M. Tahir, A. K. Ariffin, M. S. Anuar. Finite element modeling of crackpropagation in metal powder compaction using Mohr-Coulomb and elliptical capyield criteria [J]. Powder Technology,2010,202(1-3):162–170
    [121]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998
    [122]李胜袛.金属塑性成形有限元模拟[M].安徽工业大学,2002
    [123]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003
    [124] PM-Modnet-Modelling-Group. Comparison of computer models representingpowder compaction process: state of the art review [J]. Powder Metallurgy,1999,42(4):301–311
    [125] SIMULIA Inc. Abaqus6.9.1Theory Manual [M]. Software Corporation,2009:115–120
    [126] H. Chtourou, M. Guillot, A. Gakwaya. Modeling of the metal powdercompaction process using the cap model. Part I. Experimental materialcharacterization and validation [J]. International Journal of Solids and Structures,2002,39(4):1059–1075
    [127] I. Aydin, B. J. Briscoe, K. Y. Sanliturk. The internal form of compactedceramic components: a comparison of a finite element modelling with experiment[J]. Powder Technology,1996,89:239–254
    [128] I. S. Sandler, F. L. DiMaggio, G. Y. Baladi. Generalized cap model forgeological materials [J]. Journal of the Geotechnical Engineering Division-ASCE,1996,102(7):683–699
    [129] C.Y. Wu, O. M. Ruddy, A. C. Bentham, et al. Modelling the mechanicalbehaviour of pharmaceutical powders during compaction [J]. PowderTechnology,2005,152(1–3):107–117
    [130] A. T. Procopio, A. Zavaliangos, J. C. Cummingham. Analysis of thediametrical compression test and the applicability to plastically deformingmaterials [J]. Journal of Materials Science,2003,38:3629–3639
    [131] P. Doremus, F. Toussaint, O. Alvain. Simple test standard procedure for thecharacterisation of green compacted powder in Recent Developments in ComputerModeling of Powder Metallurgy Processes [M]. A. Zavaliangos, A. Laptev (Eds.),Computer and Systems Science, Vol.176of III, NATO, IOS Press, Amsterdam,2001,29–41
    [132] O. Coube, H. Riedel. Numerical simulation of metal powder die compactionwith special consideration of cracking [J]. Powder Metallrugy,2000,43(2):122–131
    [133] W. F. Chen, G. Y. Baladi. Soil plasticity: Theory and Implementation [M].Elsevier, New York,1985
    [134]陈普庆.金属粉末压制过程的力学建模和数值模拟[D].华南理工大学博士学位论文,2004
    [135]董林峰.粉末金属成形过程计算机仿真与缺陷预测[M].冶金工业出版社.北京:冶金工业出版社,2011:4–5
    [136]张定铨. X射线应力测定基本知识:第一讲残余应力的基本概念[J].理化检验-物理分册,2007,43(4):211–214
    [137] F. Kafkas, C. Karatas, A. Sozen, etc al. Determination of residual stressesbased on heat treatment conditions and densities on a hybrid (FLN2-4405) powdermetallurgy steel using artificial neural network [J]. Materials and Design,2007,28:2431–2442
    [138]陈会丽,钟毅,王华昆等.残余应力测试方法的研究进展[J].云南冶金,2005,34(3):52–55
    [139]蒋刚,谭明华,王伟明,何闻.残余应力测量方法的研究现状[J].机床与液压,2007,35(6):213–218
    [140]张持重.采用X射线法测算材料内部残余应力的研究[J].吉林化工学院学院,2001,4:73–75
    [141] A. Anon. Measuring casting residual stress with X-ray diffraction [J].Modern Casting,2005,95(2):48–49
    [142] O. Taizo, M. Kazuo, M. Katsumi etc al. Application of X-ray stressmeasuring technique to curved surfaces residual stress on spherical surfaces [J].Materials Science Research International,2002,8(2):74–81
    [143] P. J. Withers, H. H. Bhadeshia. Residual stress Part1-Measurementtechniques [J]. Materials Science and Technology,2001,17:355–365
    [144] L. R. Schneider, S. V. Hainsworth, A. F. Cocks, etc al. Neutron diffractionmeasurements of residual stress in a powder metallurgy component [J]. Scripta,Materialia,2005,52:917–921
    [145] D. C. Zenger, C. Haimian. Handbook of the common cracks in green P/Mcompacts [M]. Metal Powder Industry,1998
    [146] D. KORACHKIN, D. T. GETHIN, R. W. LEWIS et al. Measurement ofYoung’s modulus and tensile failure properties of green powder compacts [J].Powder Metallurgy,2008,51(2):150–160
    [147] C. C. Degnan., P. H. Shipway, A. R. Kennedy. Comparison of the greenstrength of warm compacted Astaloy CrM and Distaloy AE Densmix powdercompacts [J]. Materials Science and Technology,2004,20(6):731–738
    [148] Q. Z. WANG, X. M. JIA, S. Q. KOU, et al. The flattened Brazilian discspecimen used for testing elastic modulus, tensile strength and fracture toughnessof brittle rocks: analytical and numerical results [J]. International Journal of RockMechanics&Mining Sciences,2004,41(2):245–253
    [149] C. ATKINSON, R. E. SMELSER, J. SANCHEZ. Combined mode fracturevia the cracked Brazilian disk test [J]. Int J Fract,1982,18(4):279–291
    [150] S. P. Timoshenko, J. N. Goodier. Theory of Elasticity [M]. New York:McGrawHill,3rdedition,1970
    [151] G. HONDROS. The evaluation of Poisson’s ratio and the modulus of a lowtensile resistance material by the Brazilian (indirect tensile) test with particularreference to concrete [J]. Aust J Appl Sci,1959,10(3):243–268
    [152] Q. Z. WANG, L. XING. Determination of fracture toughness KICby usingthe flattened Brazilian disk specimen for rocks [J]. Eng Fract Mech,1999,64(2):193–201
    [153] Y. SATOH. Position and load of failure in Brazilian test, a numerical analysisby Griffith criterion [J]. J Soc Mater Sci Japan,1987,36(10):1219–1224
    [154] M. K. FAHAD. Stresses and failure in the diametral compression test [J].Journal of Materials Science,1996,31(14):3723–3729
    [155] P. DOREMUS, F. TOUSSAINT, O. ALVIN. Simple test standard procedurefor the characterisation of green compacted powder in recent developments incomputer modeling of powder metallurgy Processes [M]. Zavaliangos A, LaptevA, Computer and Systems Science, Vol.176of Ⅲ, NATO, IOS Press,2001:29–41
    [156] Н. И. Мусхелишьили. Some Basic Problems in Mathematic ElasticMechanics [M]. ZHAO Hui-yuan, Trans. Beijing: Science Press,1958:249–251
    [157] F. V. CAUWELLAERT, B. ECKMANN. Indirect tensile test applied toanisotropic materials [J]. Mater Struct,1994,27(1):54–60
    [158] S. T. AL-HASSANI, P. W. TENNANT, M. A. SARUMI. Stress wave methodfor measuring elastic modulus of powder compacts in tension and compression [J].Powder Metallurgy,1989,32(3):204–208
    [159] C. C. Degnan, A. R. Kennedy, P. H. Shipway. Fracture toughnessmeasurement of powder metallurgical (P/M) green compacts: A novel method ofsample preparation [J]. Journal of Materials Science,2004,39(6):2605–2607
    [160]张行,王奇志,孟庆春等.断裂力学中应力强度因子的解法[M].北京:国防工业出版社,1992
    [161] S. Dong, Y. Wang, Y. Xia. Stress intensity factors for central crackedcircular disk subjected to compression [J]. Engineering Fracture Mechanics,2004,71:1135–1148
    [162]谢和平,彭瑞东,周宏伟等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展,2004,14(10):1086–1093
    [163]范天佑.断裂理论基础[M].北京:科学出版社,2003
    [164] P. Jonsén and H.-. H ggblad. Tensile strength and fracture energy ofpressed metal powder by diametral compression test [J]. Powder Technology,2007,176:148–155
    [165] A. Hillerborg, M. Modeer, P. E. Petersson. Analysis of crack formation andcrack growth in concrete by means of fracture mechanics and finite elements [J].Cement Concrete Res,1976,6(6):773–782
    [166] G. I. Barenblatt. The mathematical theory of equilibrium cracks in brittlefracture [J]. Adv. Appl. Mech.,1962,7:55–129
    [167] SIMULIA Inc. Abaqus6.10.1Theory Manual [M]. Software Corporation,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700