用户名: 密码: 验证码:
中国东方蜜蜂资源遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首次系统地采集中国18个省、市、自治区的20个东方蜜蜂不同地理种群工蜂样本,建立了我国东方蜜蜂DNA基因库,并在此基础上应用形态标记、微卫星标记及线粒体序列变异对中国东方蜜蜂遗传多样性进行全面研究,分析群体间和群体内的遗传变异,评估群体遗传结构,并探讨彼此之间的亲缘关系,为进一步保护和利用我国东方蜜蜂遗传资源提供理论依据。主要试验结果如下:
     1.本研究对工蜂的右前翅长与宽、吻长、肘脉指数、第3与4背板总长等形态指标进行测定,结果表明:20个东方蜜蜂种群之间在形态标记上存在显著或极显著差异(P <0.05或P <0.01)。西藏中蜂和迪庆中蜂右前翅长、宽及翅面积存在一个或多个指标的显著大于其它种群,表明它们具有更强的飞翔能力;从化中蜂除了与桐庐中蜂、西双版纳蜜蜂、阿坝中蜂、兴城中蜂、长白山中蜂之外,吻长均显著长于其它种群,表明其具有更强的花蜜觅食能力;长白山中蜂与西藏中蜂的第3、4背板总长显著长于其它种群,表明其具有更强的贮蜜能力。通过对形态指标相关性分析表明20个东方蜜蜂种群的右前翅长、前翅宽、前翅面积、吻长与第3、4背板总长均有极显著相关(P <0.01);肘脉指数与其它形态指标均不相关(P >0.05),表明肘脉指数是一个相对独立的形态标记。20个东方蜜蜂种群的6个形态标记和8项生态特征数据的主成分分析结果表明,不同东方蜜蜂种群形态指标的差异主要反映在包括形态标记和生态因素在内的7个主成分上,其累计贡献率达89.386%。主成分分析结果表明东方蜜蜂种群间差异分析除了考虑蜜蜂个体形态特征差异外,蜂群所生活地区的环境因素也应被纳入其中。形态学的结果表明中国东方蜜蜂形态指标存在丰富的遗传多样性。
     2.本研究使用从西方蜜蜂上适用的56对微卫星引物中筛选出的21对微卫星引物对20个东方蜜蜂地理种群遗传多样性进行分析,共检测到502个等位基因,平均等位基因数为24.1430。21对微卫星位点的平均期望杂合度为0.8689±0.0525,PIC值为0.8564±0.0603,所有位点均具有较高的多态性,表明所筛选的微卫星标记能为分析东方蜜蜂不同地理种群遗传多样性提供充分的信息。20个地理种群的平均期望杂合度为0.8378±0.0136,显示出丰富的遗传多样性和较高的选择潜力。单个位点偏离Hardy-Weinberg平衡的群体数从6到20不等。群体间的平均遗传分化为42.3% (P <0.001),群体间存在着极显著的遗传分化。群体间的Reynolds'遗传距离从0.020(迪庆中蜂-武定中蜂)到1.085(北京中蜂-南昌中蜂)不等,而Nm值变异范围从0.128(南昌中蜂-北京中蜂)到12.376(迪庆中蜂-武定中蜂)。长白山中蜂、北京中蜂同其它种群的基因流动值总体很小,是相对隔绝的地理种群。
     3.对中国20个东方蜜蜂地理种群mtDNA中tRNAleu-COⅡ片段的核苷酸序列进行分析,结果发现mtDNA COII基因部分序列中A、C、G、T这4种核苷酸的平均比例分别为38.2%、10.0%、4.6%和47.1%,序列中富含A+T,表现出碱基组成的偏倚性;测定非编码区序列A、C、G、T这4种核苷酸的平均比例分别为47.5%、8.3%、5.0%和39.2%,A+T含量也明显占优势,同样表现出碱基组成的偏倚性。COⅡ基因序列中共发现16个变异位点,约占分析位点总数的6.18%,没有检测到插入和缺失,颠换和转换之比为0.07。20个地理种群中只有武定中蜂、海南中蜂和南昌中蜂检测到颠换现象。非编码区序列中发现17个变异位点,约占分析位点总数的17.53%,其中插入/缺失位点2个,颠换和转换之比为0.25。20个地理种群中只有黄山中蜂、海南中蜂和费县中蜂检测到颠换现象。东方蜜蜂非编码区的变异位点比COⅡ基因多,表明东方蜜蜂非编码区变异程度高于COⅡ基因。
     4.COⅡ基因序列中共检测到18种单倍型,其中5种为共享单倍型,其它13个单倍型均为各种群所特有,其中单倍型H2出现最多,为测试蜜蜂种群的主体单倍型。非编码区序列中共检测到22种单倍型,其中7种为共享单倍型,其它15个单倍型均为各种群所特有,其中单倍型H1包含的个体最多,为测试蜜蜂群体的主体单倍型。所有种群中,武定中蜂和醴县中蜂COⅡ基因和非编码区单倍型类型最多,均各为4个,长白山中蜂的单倍型类型最少,分别为1个和2个。20个东方蜜蜂群体内单倍型多样度差异较大,COⅡ基因的单倍型多样度从0到0.778不等,单倍型变异度总体为0.621±0.038;非编码区的单倍型多样度变异范围从0到0.778,单倍型变异度总体为0.699±0.035。20个东方蜜蜂种群COⅡ基因序列整体的平均核苷酸差异数为0.939,核苷酸多样度为0.851%;非编码区序列整体的平均核苷酸差异数为1.003,核苷酸多样度为1.034%。20个东方蜜蜂地理种群间mtDNA COⅡ基因序列核苷酸分歧度(Dxy)在0%~0.965%之间变化,非编码区序列核苷酸分歧度(Dxy)在0%~2.062%之间变化,核苷酸分歧度差异均很大;种群间mtDNA COⅡ基因序列核苷酸净遗传距离(Da)为-0.007%~0.781%,非编码区序列核苷酸净遗传距离(Da)为-0.037%~1.489%,核苷酸净遗传距离差异也很大。20个东方蜜蜂地理种群mtDNA COⅡ基因和非编码区序列群体间Fst分别为0.4978和0.4332,差异均极显著(P <0.001)。表明20个东方蜜蜂不同地理种群间存在显著的遗传分化。
     5.利用21对微卫星标记对20个东方蜜蜂地理种群亲缘关系进行分析,NJ系统发生树和Sturcture程序运行结果显示20个种群中华东地区六个种群首先形成一大类,然后再与其它种群聚类,表明华东地区蜜蜂种群可能形成相对一致的遗传特征。黄山中蜂、阿坝中蜂、天水中蜂、海南中蜂、武定中蜂等多个种群遗传多样性较为丰富,可能与它们具有复杂的遗传基础有关。从化中蜂、南宁中蜂和醴县中蜂,西藏中蜂和西双版纳蜜蜂彼此之间的遗传基础十分类似,表明它们可能受到共同的起源影响。迪庆中蜂遗传多样性较低,是一个相对独立的类群,与西藏中蜂亲缘关系较远。西藏中蜂、海南中蜂与阿坝中蜂聚类分析时没有和中华蜜蜂的各类群区分开,表明三者可能不是独立于中华蜜蜂之外的亚种。黄山中蜂存在两个不同生态类群,并且与桐庐中蜂存在较大的基因流动。对20个种群mtDNACOⅡ基因和非编码区序列单倍型进行分子系统树和网络关系分析及利用Kimura双参数模型构建的分子系统树中,分析表明中国东方蜜蜂地理种群具有复杂的起源,利用MEGA3.1构建的与GENBANK中报道的东方蜜蜂各地理种群COⅡ及非编码区序列单倍型间的分子系统树也证实了这一点。综合微卫星DNA和mtDNA对中国东方蜜蜂20个种群的遗传多样性分析结果表明东方蜜蜂的群体遗传差异可能是由于某些种群在独特的生态环境下发生的,遗传分化仅仅是类群间的差异,而不是亚种水平上的分化,因而在东方蜜蜂资源保护中应充分根据不同地理种群的特征制定科学的保护措施。
     6.利用微卫星标记和mtDNA标记分析20个东方蜜蜂种群间遗传距离和地理距离的关联性,20个地理种群遗传距离与地理距离回归公式:Fst/(1-Fst) = 0.209 +0.084ln (d)以及Mantel’s检验结果(P=0.055)并不能为遗传距离与地理距离之间的显著联系提供足够的证据。线粒体COⅡ基因和非编码区序列的差异与种群间地理距离和种群地理分布也没有相关。研究结果说明我国东方蜜蜂地理种群的形成过程中,各自的地理分布并不是影响其群体遗传结构的决定因素。
Genetic diversity of 20 Apis cerana populations from 18 provinces, cities and municipalities in China were established to DNA GenBank of Apis cerana in China and evaluated with morphology markers, microsatellite markers and mtDNA sequences firstly and roundly. Genetic variability within populations, population structure and the relationship of them were estimated to provide academic reference for farther protection and utilize of Apis cerana in China. The main results were summarized as follows:
     1.The 6 main indexes of external morphology such as the length and width of the anterior wing, the cubital vein indexes, the length of proboscis and the length of terga 3+4 were detected. There were significant differences (P <0.05 and P <0.01) among 6 characteristics of 20 populations in China. Tibet bee and Diqing bee had differences in one or more characters in length of bee right forewing, width of bee right forewing, area of the anterior wing from other populations, indicating better collecting ability; there were no difference in length of proboscis among Conghua bee, Tonglu bee, Xishuangbanna bee, A-ba bee, Xingcheng bee and Changbaishan bee, and their values were higher than other ones; Changbaishan bee and Tibet bee had the longest length of terga 3+4, which indicated that they had the best honey storing capability. The research result showed that significant difference (P <0.01) existed in the length, width and area of the anterior wing ,the length of proboscis and the length of terga 3+4; there was no difference between the cubital vein indexes and other characters(P>0.05), which indicated that cubital vein indexes was an independent morphological features. The principal component analysis (PCA)of the 6 main indexes of external morphological and 8 ecological features of 20 populations showed that the difference among morphological features of 20 populations were performed by 7 principal components included both morphological features and ecological features, and contribution rate of the two was 89.386%. Not only induviduals’morphological features but also ecological features should be considered in principal component analysis.
     2. 21 microsatellite markers suited for Apis cerana were selected from 56 microsatellite markers used in Apis mellifera to be used to analyze genetic diversity of 20 Apis cerana populations. 502 alleles were found, and the average value was 24.1430. The average value of gene heterozygosity (He) of 21 microsatellite loci was 0.8689±0.0525, The PIC was 0.8564±0.0603. All 21 microsatellite loci in this study showed high levels of polymorphism. The average value of gene heterozygosity (He) of all populations was 0.8378±0.0136, showed rich genetic diversity and higher selected potentiality. The number of populations deviated from Hardy-Weinberg equilibrium per locus ranged from 6 to 20. The average value of Fst was 42.3% (P <0.001), and all loci were contributed significantly (P <0.001) to this differentiation. There was significant genetic differentiation among 20 populations. Reynolds’distance values varied between 0.020 (Diqing bee-Wuding bee pair) and 1.085 (Beijing bee-Nanchang bee pair). The Nm value was ranged from 0.128 (between Nanchang bee and Beijing bee) to 12.376 (between Diqing bee and Wuding bee). The Nm value between Changbai bee, Beijing bee and the others were low, so they maybe separate populations from the others.
     3. Seqence of mtDNA tRNAleu-COⅡo f 20 Apis cerana populations were sequenced and analyzed. The result showed the average ratio of A、C、G、T in the sequence of mtDNA COⅡwas 38.2%、10.0%、4.6%、47.1%, respectively. High A+T was contained in the sequence demonstrating the bias of base composition. The average ratio of A、C、G、T of noncoding area was 47.5%、8.3%、5.0%、39.2%. Similarly, High A+T showed the bias of base composition. There were 16 polymorphic sites represent 6.18 % of total analyzed sites in COⅡ, no insertion/deletion were found in this region, the ratio of transition and transversion in this study was 0.07.There were 17 polymorphic sites represent 17.53% of total analyzed sites in noncoding area, contained 2 insertion/deletion, and the ratio of transition and transversion in this study was 0.25. Transitions were only found in Huangshan bee, Hainan bee and Feixian bee. The variability measure of noncoding area of Apis cerana populations was more than COⅡ.
     4. 18 haplotypes were found in COⅡsequence,among which 5 haplotypes were shared among some populations, 13 haplotypes were unique for one population. H2 appeared the most times which was the main haplotype of 20 populations. 22 haplotypes were found in noncoding aera,among which 7 haplotypes were shared among some populations, 15 haplotypes were unique for one population. H1 concluded the most individuals, was the main haplotype to test the population of honeybee. The result showed that, Wuding bee and fengxian bee had the most haplotypes in the noncoding area of COⅡ, and all were 4; Changbaishan bee had the fewest, 1 and 2 respectively. The distribution of all haplotypes among the populations was disequilibrium and the diversity of haplotypes in COⅡwas ranged from 0 to 0.778, the average diversity of haplotypes was 0.621±0.038; The diversity of haplotypes in noncoding area was ranged from 0 to 0.778.The average diversity of haplotypes was 0.699±0.035. The average number of nucleotide divergence (K) and average nucleotide diversity (Pi) of COⅡwere 0.939 and 0.851%, respectively. The average number of nucleotide divergence (K) and average nucleotide diversity (Pi) of noncoding area were 1.003 and 1.034%, respectively. Inter-population Nucleotide Divergence (Dxy) of COⅡin 20 Apis cerana populations was ranged from 0%~0.965%, Inter-population Nucleotide Divergence (Dxy) of noncoding area in 20 Apis cerana populations was ranged from 0%~2.062%. The results indicated that the genetic diversity of 20 Apis cerana populations was very abundant.Inter-population Net Nucleotide Divergence (Da) in COⅡin 20 Apis cerana populations was ranged from -0.007%~0.781%, Inter-population Net Nucleotide Divergence (Da) in COⅡin 20 Apis cerana populations was ranged from -0.037%~1.489%. Fst value of mtDNA COⅡand noncoding area of 20 Apis cerana populations was 0.4978 and 0.4332 respectively, which indicated the genetic variation was extremely significant within populations (P < 0.001). There was significant divergence among 20 Apis cerana populations.
     5. The phylogenetic relationship among 20 Apis cerana populations in China was analyzed with 21 microsatellite loci. The 6 populations from Eastern China fell together in the first place by NJ phylogenetic tree and Sturcture procedure, and the reason may be that Apis cerana from Eastern China had formed the same genetic characters. nshui bee, Hainan bee, Wuding bee), related to their complex genetic basis. Populations from Conghua, Nanning and Fengxian, populations from Tibet and Xishuangbanna had similar genetic basis, and the results suggested that they were affected by the same phylogenetic origin. The genetic diversity of Diqing bee was low, it maybe a separate population, and had great far relationship with Tibet bee. Huangshan bee had two different ecological groups, and had more genetic exchanges. Analysis of haplotypes of mtDNA COⅡand noncoding area among 20 populations estimated with molecular phylogenetic trees and network and molecular phylogenetic trees based on Kimura-2 parameters indicated that there was a complex origin for Apis cerena cerena populations, which was validated by molecular phylogenetic trees of the haplotypes of mtDNA COⅡand noncoding area of Apis cerena both from GENBANK and our research. Analysis of polymorphism and genetic relationship among 20 Apis cerena cerena populations estimated with 21 microsatellite loci and mtDNA sequences indicated that the genetic diversity were occurred as a result of certain geographic populations. Genetic diversity was only difference among different populations, rather than differentiation of the subspecies. So more reasonable measures should be made according to the charaters of different geographical populations to protect and make use of the Apis cerena resource.
     6. Analysis of genetic distance and geographical distance among 20 Apis cerena cerena populations were estimated with 21 microsatellite loci and mtDNA. The result suggested that the equation Fst/ (1-Fst) = 0.209 +0.084ln (d) and the result from Mantel’s test (P=0.055) did not provide enough support for a significant correlation between the genetic and geographical pair wise distances. There were no significant correlations between the genetic diversity of mtDNA D-loop and sequence of noncoding area and the distributing of these populations. The results concluded that the geographical distributing maybe not the determinant influence on the genetic structure of Apis cerena cerena populations during the course of their developed history.
引文
[1] Higes M., Garcia-Palencia P., Martin-Hernandez R., Meana A. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia)[J]. J Invertebr Pathol, 2007, 94(3): 211-7.
    [2]陈盛禄.中国蜜蜂学[M].北京:中国农业出版社, 2001.
    [3]龚一飞.养蜂学[M], ed.福建科技出版社.福州, 1980.
    [4]吴燕如.中国动物志昆虫纲(第二十卷)膜翅目准蜂科蜜蜂科[M].北京:科学出版社, 1980.
    [5]杨冠煌,许少玉.中国蜜蜂资源调查[J].云南农业大学学报, 1986(1): 89-92.
    [6]吴燕如,匡邦郁.小蜜蜂属(Micrapis)的研究(蜜蜂科Apidae)[J].动物学研究, 1986, 7(2): 99-102.
    [7] Tingek.S. Koeniger.G.and Koeniger.N Description of a new cavity nesting species of Apis(Apis nuluensis n.sp.)from Sabah,B,with notes on its occurrence and reproductive biology (Insecta: Hymenoptera: Apoidea: Apini)[J]. Senckenbergiana Bilo, 1996, 6: 115-119.
    [8] G.w.0tis S. Hadisoesilo. Dieeerences in drone cappings of Apis cerana and Apis nigrocincta[J]. journal of apiculture reserch, 1998, 37(1): 11-15.
    [9]王桂芝.中国华北地区东方蜜蜂多样性及其分类研究: [学位论文][D].山东:山东农业大学, 2007.
    [10]洪友崇.山东莱阳盆地莱阳群昆虫化石的新资料[C].地层古生物论文集第十一辑, 1984.
    [11] E.o.wilson. The insect societies[M]. Cambridge,MA,USA: Belknap Press of Harvard University Press, 1971.
    [12] Bryan.N. Danforth Sedonia Sipes, Jennifer Fang, and Seán G. Brady. The history of early bee diversification based on five genes plus morphology[J]. PNAS, 2006, 103(41): 15118-15123.
    [13]黄智勇.蜜蜂全基因组出笼前后[J].昆虫知识, 2007, 44(1): 5-9.
    [14]洪友崇.蜜蜂化石和起源问题[J].中国养蜂, 1997(5): 13-15.
    [15]龚一飞,张其康.蜜蜂分类与进化[J]. 2000.
    [16] G. O. Poinar Jr, B. N. Danforth. A Fossil Bee from Early Cretaceous Burmese Amber [J]. science, 2006, 314(10): 614.
    [17] Danforth Bryan. Bees[J]. Current Biology, 2007, 17(5): 156-161.
    [18]洪友崇.山东莱阳盆地莱阳群昆虫化石的新资料[M].地层古生物论文集第十一辑:地质出版社, 1984.
    [19]洪友崇.山东山旺硅藻土矿中的昆虫化石[J].天津地质矿产研究所所刊, 1983(8).
    [20] Ruttner F. Biogengraphy and taxonomy of honeybee[J]. Heidelberg (berlin):Springer-Verlag 1988: 282.
    [21]龚一飞,张其康.蜜蜂分类与进化[M].福州:福建科学技术出版社, 2000.
    [22]姜玉锁.中国境内不同地理型东方蜜蜂遗传变异及其分化研究: [学位论文][D].山西:山西农业大学, 2006.
    [23] N.Koeniger. Biology of the Eastern honeybee Apis cerana (Favriticius 1793).In The Asiatic Hive Bee:Apiculture,Biology and Role in Sustainable Development in Tropical andSubtropical Asia (P,g.Kevan,ed).[M]. Cambridge,Ontaro,Canada., 1995.
    [24] Ruttner. Biogeography and Taxonomy of Honeybees[M]. Berlin, 1988.
    [25]姜玉所.中国境内不同地理型东方蜜蜂遗线粒体DNAtRNAleu~COⅡ基因多态性研究[J].中国农业科学, 2006, 40(7): 1535 -1542.
    [26]杨冠煌.引入西方蜜蜂对中蜂的危害及生态影响[J].昆虫学报, 2005, 48(3): 401-406.
    [27] Yao-chun Cheng. Apiculture in China[M]. Beijing: China Agricultural Publicatio, 1993.
    [28]杨冠煌.中华蜜蜂[M].北京:中国农业科技出版社, 2001.
    [29]吉挺,陈晶,殷玲,包文斌,陈国宏.江苏省野生及家养中华蜜蜂微卫星DNA遗传多样性分析[J].中国畜牧兽医, 2007, 34(12): 39-41.
    [30]何明.江苏的中蜂资源亟待保护[J].蜜蜂杂志, 2007, 3(16).
    [31] Maa.T.C. An inquiry into the systematics of the tribus Apidini or honey bees(Hym.)[J]. Treubia, 1953, 21: 525~640.
    [32]李绍文李举怀蜜蜂属六个种酶同工酶的研究[J].北京大学学报, 1986(4): 53-57.
    [33]李绍文,孟玉萍,张宗炳,李举怀,和绍禹,匡邦郁.蜜蜂属(Apis)六个种酯酶同工酶的研究[J].北京大学学报(自然科学版), 1986, 24(4): 53-57.
    [34]李绍文.蜜蜂酯酶同工酶的研究[J].昆虫学报, 1985.
    [35]杨冠煌,许少玉,匡邦郁.东方蜜蜂在我国的分布及其亚种分化[J].云南农业大学学报, 1986(1): 89-92.
    [36]黄文诚,杨冠煌,陈世壁.中蜂生物学特性的初步研究[J].中国农业科学, 1963(1): 43一44.
    [37]邵玉昌.长白山区野生中蜂濒临灭绝巫待保护[J].中国养蜂, 2002, 53(5): 22-23.
    [38]葛凤晨,陈东海.论西方蜜蜂在我国野生的可能性[J].中国养蜂, 2003, 54(4): 4-5.
    [39]葛凤晨历延芳,柏建民,等.长白山中蜂分布及其生产效率的研究[J].中国养蜂, 2002, 53(6): 4-7.
    [40]葛凤晨.源远流长的长白蜜蜂文化[J].中国养蜂, 1996(6): 23-24.
    [41]李俊.本国蜂过箱是养蜂大跃进的关键问题[J].中国养蜂, 1960(3): 146-147.
    [42]杨冠煌,许少玉,孙庆海. .中蜂的分布和变异[J].中国养蜂, 1982(3): 17-19.
    [43]杨龙龙.西双版纳热带森林地区不同生境蜜蜂的物种多样性研究[J].生物多样性, 1998, 6(3): 197-204.
    [44]龚一飞.论中蜂[J].中国养蜂, 1978, 1: 10-13.
    [45]周冰峰许正鼎蜜蜂低温采集活动的研究[J].中国养蜂, 1988(5): 7-9.
    [46]马德风粱诗魁中国蜜粉源植物[M].北京:中国农业出版社, 1993.
    [47]谭垦,和绍禹,刘意秋.海南岛东方蜜蜂的形态分类研究[J].蜜蜂杂志,2004(11): 3-4.
    [48]谭垦,祁文忠.甘肃东方蜜蜂的形态特征研究[J].蜜蜂杂志, 2004(3): 6-7.
    [49]谭垦,张炫,和绍禹,周丹银.云南东方蜜蜂的形态特征数值分类研究[J].中国养蜂, 2003, 54(3): 4-6.
    [50]谭垦,张炫,和绍禹,周丹银.中国东方蜜蜂的形态学及生物地理学研究[J].云南农业大学学报, 2005, 20(3): 410-414.
    [51]谭垦张炫.云南省东方蜜蜂形态学研究[J].蜜蜂杂志, 2001(6): 3-4.
    [52]谭垦,葛凤晨,赵蓉,和绍禹.长白山东方蜜蜂的形态特征研究[J].蜜蜂杂志, 2004, 6: 8-9.
    [53]谭垦,张炫,和绍禹,周丹银.云南东方蜜蜂的形态特征数值分类研究[J].中国养蜂, 2003, 54(3): 4-6.
    [54]苏松坤,陈盛禄.意蜂王浆生产性能形态学遗传标记的研究[J].遗传, 2003, 25(6): 677-680.
    [55]樊贤谭垦,和绍禹.河南东方蜜蜂的形态特征研究[J].云南农业大学学报, 2006, 21(2): 235-238.
    [56]汪霞王志平,王科.东方蜜蜂(Apis ceranaFab.)染色体核型研究[J].中国养蜂, 1988(2): 2-4.
    [57]邵瑞宜.蜜蜂育种学[M],中国农业出版社.北京, 1998.
    [58]吉挺.意大利蜜蜂四品系遗传资源比较研究: [学位论文][D].扬州:扬州大学, 2003.
    [59]关迎辉李绍文,李举怀,陈盛禄.意蜂三个品系间的基因差异[J].昆虫学报, 1994, 37(2): 159-164.
    [60]刘艳荷陈盛禄,童富淡,张传溪.西方蜜蜂六个亚种苹果酸脱氢酶Ⅱ基因的遗传差异[J].昆虫学报, 2005, 46(2): 188-192.
    [61]童富淡,汪俏梅,刘艳荷.西方蜜蜂四个亚种酯酶同工酶型和苹果酸脱氢酶Ⅱ同工酶基因型的遗传差异[J].动物学报, 2002, 48(6): 828-832.
    [62]李举怀,王筱静.西方蜜蜂亚种间MDH同工酶的研究[J].华北农学报, 1996, 11(2): 121-126.
    [63] Sheppard.W.S, Berlocher S.H. En- zyme polymorphism in Apismellifera mellifera from Norway[J]. J. Apic. Res, 1984, 23: 64-69.
    [64]李绍文孟玉萍,张宗炳,李举怀,和绍禹,匡邦郁蜜蜂属(Apis)六个种酯酶同工酶的研究.[J].北京大学学报(自然科学版) 1986, 24(4): 53-57.
    [65]姜玉锁,刘文忠,张春香,乔利英,朱文进,张桂贤,郭传甲.中国境内不同地理型东方蜜蜂遗传多样性的AFLP分析[J].昆虫学报, 2007, 50(2): 144-152.
    [66]薛运波,李兴安,葛凤晨,蒋滢,历延芳,李志勇,王志.长白山中华蜜蜂基因组DNA多态性的研究[J].中国农业科学, 2007, 40(2): 426-432.
    [67]孙亮先,吉挺,周斌.以随机扩增多态性DNA(RAPD)技术筛选意大利蜜蜂重要农艺性状遗传标记[J].中国养蜂, 2003, 54(6): 6-8.
    [68]孙亮先,胥保华.四个意大利蜜蜂品系RAPD遗传标记的分析[J].山东农业大学学报(自然科学版), 2004, 35(3): 335-338.
    [69]吴黎明,彭文君,吉挺,刘福秀.三个蜂种的RAPD标记比较分析[J].中国养蜂, 2005, 56(4): 9-10.
    [70]李建科.意大利蜜蜂产浆量性状的微卫星DNA和数量遗传研究: [学位论文][D].浙江:浙江大学, 2003.
    [71]陈盛禄,李建科,钟伯雄,苏松坤.意大利蜜蜂产浆性状10个微卫星位点的遗传分析[J].遗传学报, 2005, 32(10): 1037-1044.
    [72]吉挺,陈晶,孟春玲,包文斌,陈国宏.平湖浆蜂与苏王1号遗传多样性的微卫星DNA分析[J].中国畜牧兽医, 2007, 34(11): 32-34.
    [73]吉挺,陈晶,包文斌,殷玲,陈国宏.江苏省意大利蜂与中华蜜蜂微卫星DNA遗传多样性分析[J].安徽农业科学, 2007, 35(32):10232-10233,10235.
    [74]吉挺,殷玲,刘敏,陈国宏.华东地区中华蜜蜂六地理种群的遗传多样性及遗传分化[J].昆虫学报, 2009, 52(4): 413-419.
    [75]丁建,余林生,汪时佳,解文飞,刘建.九州意蜂与肥东意蜂微卫星标记研究[J].中国蜂业, 2008, 59(6): 10-11.
    [76]陈晶,陈国宏,吉挺,殷玲,刘敏.沂蒙山中华蜜蜂微卫星DNA遗传多样性分析[J].中国蜂业, 2008, 59(4): 11-13.
    [77] Takezaki.N Nei.M Genetic distances and reconstruction of plylogenetic trees from microsatellite DNA [J]. Genetics, 1996, 144:389-399.
    [78] Nei.M. Molecular evolutionary genetics [M]. New York: Columbia University Press, 1987.
    [79] Kimura M Crow J F The number of alleles that can be maintained in a finite population[J]. Genetics and Molecular Biology, 1964, 49: 725-738.
    [80] Munro H N ed. Mammalian Protein Metabolism[C]. New York, 1969.
    [81] Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences [J]. J Mol Evol, 1980, 16: 111-120.
    [82] Nei.M,Tajima.F,Tateno.Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data[J]. J Mol Evol, 1983, 19: 153-170.
    [83] Tamura K. Estimation of the number of nucleotide substitutions there are transition-transversion and G+C-content biases [J]. Molecular Biology and Evolution, 1992, 9: 678-687.
    [84] Hasegawa.M Kishino.H, Yano.K. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA[J]. J Mol Evol, 1985, 22: 160-174.
    [85] Tamura.K Nei.M Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees [J]. Mol Biol Evol, 1993, 10(3): 512-526.
    [86] Cavalli-Sforza.L.L A.W.F.Edwards Phylogenetic analysis: models and estimation procedures[J]. merican Journal of Human Genetics, 1967, 19: 233-257.
    [87] Nei.M. Genetic distance between populations[J]. Amer Natur, 1972, 106: 283-292.
    [88] Wright.S. Evolution and the genetics of population variability within and among natural populations[M]. Chicago: University of Chicago Press, 1978.
    [89] Slatkin.M. Inbreeding coefficients and coalescence times [J]. Genet Res, 1991, 58: 167-175.
    [90] Nei.M. Analysis of gene diversity in subdivided populations[J]. Proc. Natl. Acad. Sci. USA, 1973, 70: 3321-3323.
    [91] An J. D., Wu J., Peng W. J., Tong Y. M., Guo Z. B., Li J. L. [Foraging behavior and pollination ecology of Bombus lucorum L. and Apis mellifera L. in greenhouse peach garden][J]. Ying Yong Sheng Tai Xue Bao, 2007, 18(5): 1071-6.
    [92] Sneath.P.H.A Sokal.R.R Numerical Taxonomy[M]. San Francisco: Freeman, 1973.
    [93] Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4: 406-425.
    [94] Fitch.W.M. Towards defining the course of evolution: Minimum change for a specific tree topology[J]. Systematic Zoology, 1971, 20: 406-416.
    [95] Hartigan.J.A. Minimum mutations fits to a given tree[J]. Biometrics, 1973, 29: 53-65.
    [96] Felsenstein.J. Evolutionary trees from DNA sequences: a maximum likelihood approach[J]. J Mol Evol, 1981, 17: 368-376.
    [97] Vaiman.D Pailhoux.E, Payen.E. . Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene: mapping in sheep and cattle[J]. Cytogenet Cell Genet, 1995, 70: 112-115.
    [98] Debrauwere.H Gendrel.C.G, Leehat.S. Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites[J]. Biochimie, 1997, 79: 577-586.
    [99] Tautz.D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Res, 1989, 17: 6463-6471.
    [100] Hamada.H Marianne.G.P, Kakunaga.T. A Novel Repeated Element with Z-DNA-Forming Potential is Widely Found in Evolutionarily Diverse Eukaryotic Genomes[J]. PNAS, 1982, 79: 6465-6469.
    [101] Gilmour.D.S Thomas.G.H, Elgin.S.C.R. . Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters [J]. Science, 1989, 245(1487-1490).
    [102] Hancock.J.M. The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution[J]. Journal of Molecular Evolution, 1995, 40: 629-639.
    [103] Weber J L. Informativeness of human (dC--dA)n(dG--dT)n polymorphisms[J]. Genomics, 1990, 7: 524-530.
    [104] Beckmann J S, Weber J L. Survey of human and rat microsatellites[J]. Genomics, 1992, 12: 627--63 I.
    [105] Weber J, Wong C. Mutation of human short tandem repeats[J]. Molecular Genetics, 1993, 2: 1123-1128.
    [106] Ellegren H, Primmer C R, Sheldon B C. Microsatellite evolution: directionality or bias in-locus selection[J]. Nature Genetics,, 1995(11): 360-362.
    [107] weber.J.L. Informativeness of human (dC一dA)n (dG一dT)n Polymorphisms[J]. Genomics, 1990, 7: 524-530.
    [108] Estoup A, M Solignac, M.Harry. Characterization of (GT)n and (CT)n microsatellites in two insect species.Apis mellifera and Bombus terrestris[J]. NuclAcids.Res.Oxford;IRL Press, 1993, 21(6): 1427-1431.
    [109] Estoup.A Tailliez.C, Cornuet.J.M, et al. . Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae)[J]. Mol Biol Evol, 1995, 12: 1074-1084.
    [110] King.T.L Lubinski.B.A Spidle A P. Microsatellite DNA variation in atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplificaion in the Acipenseridae[J]. Conservation Genetics, 2001(2): 103-119.
    [111] Levinson.G Gutman.G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J]. Mol Biol Evol, 1987(4): 203-221.
    [112] Jeffreys.A.J Tamaki.K MacLeod A, et al. Complex gene conversion events in germ line mutation at human minisatellites[J]. Nature Genetics, 1994, 6: 136-145.
    [113] Levinson.G Gutman.G. A High frequencies of short frameshift in poly-CA/GT tandem repeats borne by bacteriophage M13 in Escherichia coli K-12[J]. Nucleic Acids Res, 1987, 15: 5323-5338.
    [114] Henderson.S.T Petes.T.D. . Instability of simple sequence DNA in Saccharomyces cerevisiae[J]. Mol. Cell. Biol, 1992, 12: 2749-2757.
    [115] The Honeybee Genome Sequencing Consortium.[J]. Nature, 2006, 443: 931~949.
    [116] Ma.R.Z Russ.I, Park.C, et al. : . Isolation and characterization of 45 polymorphic microsatellites from the bovine genome [J]. Animal Genetics, 1996, 27: 43-47.
    [117] Cheng.H.H Crittenden.L.B. . Microsatellite markers for genetic mapping in the chicken[J]. Poultry Science, 1994, 73: 539-546.
    [118] Dettman.J.R Taylor.J.W. Mutation and Evolution of Microsatellite Loci in Neurospora[J]. Genetics, 2004, 168: 1231-1248.
    [119] Rohrer.G.A Alexander.L.J Keele J W, et al. A microsatellite linkage map of the porcine genome[J]. Genetics, 1994, 136: 231-245.
    [120] Sekine.I Yokose.T, Ogura.T, et al. Microsatellite instability in lung cancer patients 40 years of age or younger[J]. Jpn J Cancer Res, 1997, 88(6): 559-563.
    [121] Rowe.D.J Rinderer.T.E, Stelzer.J.A,et al. Seven polymorphic microsatellite loci in honeybees(Apis mellifera)[J]. Insectes Sociaux, 1997, 44(2): 85-93.
    [122] Callen.D.F Thompson.A.D, Shen.Y. Incidence and origin of“null”alleles in the (AC)n microsatellite markers[J]. Am J Hum Genet, 1993, 52: 922-927.
    [123] Paetkau.D Strobeck.C. The molecular basis and evolutionary history of a microsatellite null allele in bears[J]. Mol Ecol, 1995(4):519-520.
    [124] Ginot.F Bordelais.I, Nguyen.S. Correction of some genotyping errors in automated flurescent microsatellite analysis by enzymatic removal of one base overhangs [J]. Nucleic Acid Res, 1996, 24: 540-541.
    [125] Fontana.F Lanfred.M, Rossi.R. Karyotypic characterization of Acipenser gueldenstaedti with C-, Ag-NO3 and fluorescence banding techniques[J]. Ital J Zool, 1996, 63: 113-118.
    [126] Viard.F Franck.P, Dupois.MP, et al Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species[J]. J Mol Evol, 1998, 47: 42-51.
    [127] Taylor.J.S Sanny.P, Breden.F Microsatellite alleles size homoplasy in the guppy (Poecilia reticulata) [J]. J Mol Evol, 1999, 48: 245-247.
    [128] Frank P Garnery L , Solignac M , Cornuet J M. Molecular confirmation of a fourth lineagein honeybees from the Near East[J]. Apidologie, 2000, 31: 167-180.
    [129] Willis.L.G Winston.M.L, Honda.B.M. Phylogenetic relationships in the honeybee (genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA[J]. Mol Phylogenet Evol, 1992, 1(3): 169-178.
    [130] Michel Solignac, Dominique Vautrin, Anne Loiseau et al. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome[J]. Molecular Ecology Notes, 2003, 3: 307-311.
    [131] S. H?rtel, P. Neumann, F.S. Raassen. Hepburn.Social parasitism by Cape honeybee workers in colonies of their own subspecies (Apis mellifera capensis Esch.)[J]. Insect. Soc, 2006, 53: 183-193.
    [132] Sittipraneed S, Laoaroons, Klinbungss. Genetic differentiation of the honey bee(Apis cerana) in Thailand:evidence from microsatellite polym orphism[J]. J.A pic.R es, 2001, 40(1): 9-16.
    [133] Segura Jal. Highlypolym orphicDNA markers in an Africanized honeybee population in Costa Rica [J]. Genetics M ol.Bio, 2000, 23(2): 317-322.
    [134] ChenS heng-Lu, LIJian-Ke, ZHONG Bo-Xiong. Microsatellite Analysis of Royal Jelly Producing Traitsof It a lia nH oneybee(Apism elliferaL iguatica[J]. Acta Genetica Sinica, 2005, 32(10): 1037-1044.
    [135] Rinderer T. E. Koeniger N., Tingek S., MardanM. and Koeniger G. . A morphological comparison of the cavity dwellinghoneybees of Borneo Apis koschevnikovi (Buttel-Reepen, 1906)* and Apis cerana (Fabricius, 1793)[J]. 1989(20): 405-411.
    [136] Per Kryger, Ute Kryger, Moritz. Robin F. A. Genotypical Variability for the Tasks of Water Collecting and Scenting in a Honey Bee Colony[J]. Ethology, 2000, 106(9): 769 -779.
    [137] F.Bernhard Krausa, Nikolaus Koenigerb, Salim Tingekc et.al. Using drones for estimating colony number by microsatellite DNA analyses of haploid males in Apis[J]. Apidologie, 2005, 36: 223-229.
    [138] P. De La Rúa, J. Galián, J. Serrano et al. Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands[J]. Molecular Ecology Notes, 2001, 10: 1733-1742.
    [139] C.M. Payne, T.M. Laverty, M.A. Lachance. The frequency of multiple paternity in bumble bee (Bombus) colonies based on microsatellite DNA at the B10 locus[J]. Insect. Soc, 2003, 50: 375-378.
    [140] Maxine Beveridge, SIMMONS. LEIGH W. Microsatellite loci for Dawson's burrowing bee (Amegilla dawsoni) and their cross-utility in other Amegilla species[J]. Molecular Ecology Notes, 2004, 4: 379 - 381.
    [141] J.-C. Lenoir, D. Laloi, F.-X. Dechaume-Moncharmont. Intra-colonial variation of the sting extension response in the honey bee Apis mellifera[J]. Insect. Soc, 2006, 53: 80-85.
    [142] N. Azuma, J. Takahashi, M. kidokopro. Isolation and characterization of microsatellite loci in the bee Ceratina flavipes[J]. Molecular Ecology Notes, 2005, 5: 433-435.
    [143]曾志将主编.蜜蜂生物学[M].北京:中国农业出版社, 2007.
    [144]郭新军.秦岭地区蜜蜂科昆虫生物地理学研究: [学位论文][D].陕西:陕西师范大学, 2005.
    [145] Annette B, Jensen, Kellie A. Palmer, Jacobus J. Boomsma Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee , Apis mellifera mellifera,in northwest Europe[J]. Molecular Ecology Notes, 2005, 14: 93-106.
    [146] Franck P, Coussy H, Conte Y Le. Microsatellite analysis of sperm admixture in honeybee[J]. Insect Molecular Biology, 1999, 8(3): 419-421.
    [147] B. Darvill, J. S. Ellis, G. C. Lye. Population structure and inbreeding in a rare and declining bumblebee Bombus muscorum (Hymenoptera: Apidae )[J]. Molecular Ecology Notes, 2006, 15(3): 601-611.
    [148] Karsten Neumann, Karsten Seidelmann. Microsatellites for the inference of population structures in the Red Mason bee Osmia rufa (Hymenoptera, Megachilidae)[J]. Apidologie, 2006, 37: 75-83.
    [149] Annette B.Jensen, Kellie A. Palmer, Nicolas Chaline et.al. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis[J]. Conservation Genetics, 2005, 6: 527-537.
    [150] Greg.J. Hunt Robert.E.Page.Jr. Linkage analysis of sex determination in the honey bee (Apis mellifera) [J]. Molecular and General Genetics MGG, 1994, 244(5): 512-518.
    [151] Archibald.A.L Burt.D.W Williams J L. Gene mapping in farm animals and birds a overview [J]. Proc.5th world Conger Genet.Appli Livest Prod, 1994, 21: 3-4.
    [152] Greg J . Hunt, Robert E, Page Jr. Linkage map of the honey bee , Apis mellifera , based on RAPD markers[J]. Genetics and Molecular Biology, 1995, 139: 1371-1382.
    [153] Michel Solignaca, Dominique Vautrina, Emmanuelle Baudrya et al. A Microsatellite-Based Linkage Map of the Honeybee[J]. Apis melliferal Genetics, 2004, 167: 253-262.
    [154]刘艳荷,陈盛禄,钟伯雄.西方蜜蜂王浆产量与品质性状的配合力和杂种优势分析[J].遗传学报, 2001, 28(10): 926-932.
    [155] Kang.Dongchon Hamasaki.N. . Maintenance of mitochondrial DNA integrity: repair and degradation[J]. Curr Genet, 2002, 41: 311-322.
    [156] Capps.G.J Samuels.D.C Chinnery P F. A model of the nuclear control of mitochondrial DNA replication[J]. J theor Biol, 2003, 221: 565-583.
    [157] Smith.D.R. Mitochondrial DNA and honeybee biogeography. In: Diversity in the Genus Apis(ed.Smith D R)[M]. Westview: Boulder,Co, 1991, 131~176.
    [158] Smith D R, Brown W M. Polymorphism in mitochondrial DNA of European and Africanized honeybee(Apis mellifera)[J]. Experientia, 1988, 44: 257-260.
    [159] J.M.Cornuet L.Garnery. Mitochondrial DNA variability in honeybees and its phylogeographic implications[J]. Apidologie, 1991, 22: 627-642.
    [160] Garnery.L. Cornuet.J.M, Solignac.M Evolutionary history of the honeybee Apis mellifera inferred from mitochondrial DNA analysis[J]. Molecular Ecology Notes, 1992(1): 145~154.
    [161] Garnery.L Solignac.M, Celebrano.G.and Cornuet.J.M A simple test using restricted PCR-amplied mitochondrial DNA to study the genetic structure of Apis mellifera L[J]. Experientia, 49: 1016-1021.
    [162] Smith.D.R. Villafuerts G,Otis and M.Palmer.Biogeography of Apis cerana and A.nigrocincta:Insights from mtDNA studies[J]. Apidologie, 2000, 31: 265~279.
    [163] Crozier R. H. Crozier and Y. C. The Mitochondrial Genome of the Honeybee Apis melliferu: Complete Sequence and Genome Organization[J]. Genetics, 1992, 133: 97-177.
    [164] Smith D.R. et al Neotropical Africanized honeybees have African mitochonarialDNA[J]. Nature, 1989, 3369: 213~215.
    [165] Cornuet J M, Garnery L. Mitochondrial DNA variability in honeybees and its phylogeographic implications[J]. Apidoloqie, 1991, 22(6):627-628.
    [166] Gyllensten.U Wharton.D, Josefsson.A, et al. . Paternal inheritance of mitochondrial DNA in mice[J]. Nature, 1991, 352: 255-257.
    [167]赵兴波李宁,吴常信.动物线粒体核质基因互作的研究进展[J].遗传, 2001, 23(1): 81-85.
    [168] Adam Eyre-Walker Philip Awadalla. Does human mtDNA recombine [J]. J Mol. Evol, 2001, 53: 430-435.
    [169] Leslie G W Mark L W, Barry M H. Phylogenetic relationships in the honeybee (Genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA[J]. Molecular Phylogenetics and Evolution, 1992, 3: 169-178.
    [170] Maria C A, Walter S S. Phylogenetic relationships of honey bees (Hymenoptera : Apinae : Apini) inferred from nuclear and mitochondrial DNA sequence data[J]. Molecular Phylogenetics and Evolution, 2005, 1(37): 25-35.
    [171] Arias M C, Sheppard W S. Molecular Phylogenetics of Honey Bee Subspecies (Apis mellifera L) Inferred from Mitochondrial DNA Sequence[J]. Molecular Phylogenetics and evolution, 1996, 5: 557-566.
    [172] Onuma S. Siriporn S., and Sirawut K. Mitochondrial DNA Diversity and Genetic Differentiation of the Honeybee (Apis cerana) in Thailand[J]. Biochem. Genet., 2006, 44(56): 256-269.
    [173] Kouch.T.D Thomas.W.K.A, Meyer.S.V. Dynamics of mitochondrial DNA evolution in animal :amplification and sequencing with conserved primers[J]. Proc Acad Sci USA, 1989, 86: 6190-6200.
    [174] Vladimir.O.A Poltoraus.L.A, Zhivotovsky.V Mitochondrial DNA sequence diversity in Russians [M]: Federation of European Biochemical Societies Letter, 1999, 197-201.
    [175] Bacandritsos N., Papanastasiou I., Saitanis C., Nanetti A., Roinioti E. Efficacy of repeated trickle applications of oxalic acid in syrup for varroosis control in Apis mellifera: influence ofmeteorological conditions and presence of brood[J]. Vet Parasitol, 2007, 148(2): 174-8.
    [176] ?.Kandem ? R, Marina D M Ayca O, Sheppard SW. Morphometric. Allozymic and variation in honeybee (Apis Mellirera Cypria , Pollman 1879) Populations in northern Cyprus[C].
    [177]卜云郑哲民. COⅡ基因在昆虫分子系统学研究中的作用和地位[J].昆虫知识2005, 42(1): 18 -22.
    [178] Crozier R H, Crozier Y C. The cytochrome b and ATPase genes of honeybee mitochondrial DNA[J]. Molecular Biology and Evolution, 1992, 9(3): 474-482.
    [179]姜玉锁,赵慧婷,姜俊兵,曹果清,张桂贤,朱文进,郭传甲.中国境内不同地理型东方蜜蜂线粒体DNAtRNAleu~COⅡ基因多态性研究[J].中国农业科学, 2007, 40(7): 1535-1542.
    [180]谭垦.云南东方蜜蜂的形态学与mtDNA变异性研究: [学位论文][D].昆明:云南大学, 2001.
    [181] Cornuet.J.M Carney.L, N.Solignac Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA[J]. Genetics, 1991, 128: 393-403.
    [182] Nikolenko A G Poskryakov A V. Polymorphism of Locus COI-COII of Mitochondrial DNA in the Honeybee Apis mellifera L. from the Southern Ural Region[J]. Russian Journal of Genetics 2002, 38: 364-368.
    [183] Collet T, Ferreira K M, Arias M C, Soares A E E, Del Lama M A. Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI-COII patterns[J]. Heredity, 2006, 97: 329-335.
    [184]殷玲.线粒体DNA在蜜蜂遗传育种中的应用[J].昆虫知识, 2008, 45(5): 708-712.
    [185] Pilar.De.la.Rúaa José.Galiána, José.Serranoa and Robin.F.A.Moritz. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism [J]. Genet. Sel. Evol, 2003, 35:339-350.
    [186] De la Rúa P, S. Radloff, R. Hepburn and J. Serrano. Do molecular markers support morphometric and pheromone analyses ? A preliminary case study in Apis mellifera populations of morocco[J]. Arch. Zootec, 2007, 56(213): 33-42.
    [187] Arias M C, Tingek S, Kelitu A, Sheppard W S. Apis nulunsis Tingek , Koeniger and Koeniger ,1996 and its genetic relationship with sympatric species inferred from DNA sequences[J]. Apidologie, 1996, 27: 415-422.
    [188] Tanaka E. D., Hartfelder K. The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes[J]. Arthropod Struct Dev, 2004, 33(4): 431-42.
    [189] D.R.Smith M.R.Palmer, G.Otis, M.Damus Mitochondrial DNA and AFLP markers support species status of Apis nigrocincta [J]. Insectes Sociaux, 2003, 50(2): 185-190.
    [190] Maria.C.Ariasa Walter.S.Sheppard. Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data [J]. Molecular Phylogenetics and Evolution, 2005, 37(1): 25-35.
    [191] Sheppard W S, Rinderer T E , Meixner M D, Yoo H R, Stelzer J A, Schiff N M, Kamel S M, Krell R. Hinfl Variation in Mitochondrial DNA of Old World Honey Bee Subspecies[J]. Journal of Heredit, 1996, 87: 35-40.
    [192] Robert NC, Alice PM, Maria DT, Kristen AB, William LR, Spencer JJ. Feral honey bees in pine forest landscapes of east Texas[J]. Forest Ecology and Management, 2005, 215:91-102.
    [193] Sihanuntavong.D Sittipraneed.S. and Klinbunga.S Mitochondrial DNA diversity and population structure of the honey bee (Apis cerana) in Thailand[J]. J. Apic. Res, 1999, 38: 211-219.
    [194] De La Rúa P Simon UE, Tilde AC, Moritz RF, Fuchs S. MtDNA variation in Apis cerana populations from the Philippines[J]. Heredity, 2000, 84(1): 124-130.
    [195] Insuan S., Deowanish S., Klinbunga S., Sittipraneed S., Sylvester H. A., Wongsiri S. Genetic differentiation of the giant honey bee (Apis dorsata) in Thailand analyzed by mitochondrial genes and microsatellites[J]. Biochem Genet, 2007, 45(3-4): 345-61.
    [196] Rika R Y, Ross H C. Phylogenetic analysis of honey bee behavioral evolution[J]. Molecular Phylogenetics and Evolution, 2006.
    [197] Garnery.L Solignac.M, Celebrano.G.and Cornuet.J.M A simple test using restricted PCR-amplied mitochondrial DNA to study the genetic structure of Apis mellifera L[J]. Experientia, 1993, 49: 1016~1021.
    [198] Benjamin.P.Oldroyd Jean-Marie.Cornuet1, Darryl.Rowe, Thomas.E.Rinderer, Ross H Crozier. Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe[J]. Heredity, 1995, 74: 315-325.
    [199] S.Koulianos R.H.Crozier Mitochondrial DNA sequence data provides further evidence that the honeybees of Kangaroo Island, Australia are of hybrid origin[J]. Apidologie 1996, 27(3): 165-174.
    [200] S.Deowanish J.Nakamura, M.Matsuka, K.Kimura. mtDNA variation among subspecies of Apis cerana using restriction fragment length polymorphism [J]. Apidologie, 1996, 27(5): 407-413.
    [201] Oldroyd B. P. Reddy M. S. , Chapman N. C. , Thompson G. J. and Beekman M. Evidence for reproductive isolation between two colour morphs of cavity nesting honey bees (Apis) in south India[J]. Insectes Sociaux, 2006, 53(1): 428-434.
    [202]王瑞武.蜜蜂线粒体DNA遗传变异与形态特征地理变异的研究.: [学位论文][D].北京: 1998.
    [203] Sittipraneed S, Sihanuntavong D, Klinbunga S. Genetic differentiation of the honey bee (Apis cerana) in Thailand revealed by polymorphism of a large subunitof mitochondrial ribosomal DNA[J]. Insectes Sociaux, 2001, 48(4): 266-272.
    [204] Hall.H.G.,Muralidharzn.Evideace from mitochondrial DNA thatAfrican honeybee spreed as continuous maternal lineages[J]. Nature, 1989, 339: 211~213.
    [205] Nilza M D, Ademilson E E S, Walter S S, Marco A D L. Genetic structure of honeybee populations from southern Brazil and Uruguay[J]. Genetics and Molecular Biology, 2003, 26(1): 47-52.
    [206] J. Javier G. QUEZADA-EUáNa, Eleazar E. PéREZ-CASTROb, William de J. MAY-ITZáa. Hybridization between European and African-derived honeybee populations (Apis mellifera) at different altitudes in Perú[J]. Apidologie, 2003, 34: 217-225.
    [207] Kandemir I Maria A P, Marina D Me and Walter S S. Hinf-I digestion of cytochrome oxidase I region is not a diagnostic test for A. m. lamarckii[J]. Genetics and Molecular Biology, 2006, 29(4): 747-749.
    [208] Weigend S, Romanov M N. Current strategies for the assessment and evaluation of genetic diversity in chicken resources[J]. World Poult Sci J, 2001, 57(3): 275-288.
    [209]李志勇,王志.关于蜜蜂形态鉴定技术的探讨[J].中国养蜂, 2004, 55(4).
    [210]任再金孙庆海西藏中蜂资源状况[J].中国养蜂, 1985(5): 9-10.
    [211]郑大红.谈阿坝中蜂[J].蜜蜂杂志, 2003(1): 24.
    [212]李斌,夏庆友,鲁成,周泽扬.蜜蜂EST中的微卫星分析[J].遗传学报, 2004, 31(10): 1089-1094.
    [213]魏朝明,孔光耀,廉振民,刘慧,范永文,张慧.昆虫知识[J].蜜蜂全基因组中微卫星的丰度及其分布, 2007, 44(4): 501-504.
    [214] Baker J S F. A global protocol for determining genetic distance among domestic livestock breeds[C]. Proceedings of the 5th world congress on genetics applied to livestock production, 1994.
    [215] Botstein D, White R L, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32: 314-331.
    [216] Nei M. Analysis of gene diversity in subdivided populations[J].Proc. Natl. Acad. Sci. USA, 1973, 70: 3321-3323.
    [217] Nei M. Genetic distance between populations[J]. Amer Natur, 1972, 106: 283-292.
    [218] Felsentein J. Confidence limits on phylogenies: an approach using the bootstrap[J]. Evolution, 1985, 39(4): 783-791.
    [219] Rousset F. Genetic differentiation and gene flow from F- statistics under isolation by distance[J]. Genetics and Molecular Biology, 1997, 145: 1219-1228.
    [220] Park S D E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection: [学位论文][D]. University of Dublin, 2001.
    [221] Goudet J. FSTAT version 2.9.3.2. Switzerland: Department of Ecology & Evolution: [学位论文][D]. LAUSANNE: University of Lausanne, 2002.
    [222] Raymond M, Rousset F. Population genetics software for exact test and ecumenicism[J]. Journal of Heredity, 1995, 86: 248-249.
    [223] Felsentein J. PHYLIP (Phylogeny inference package) version 3.57c. USA: Department of Genetics University of Washington, Seattle, 1995.
    [224] Saitou N and Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4: 406-425.
    [225]闫路娜,张德兴.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响[J].动物学报, 2004, 50(2): 279-290.
    [226]包文斌.中国家鸡和红色原鸡遗传多样性及亲缘关系分析: [学位论文][D].扬州:扬州大学, 2007.
    [227] Vanhala.T Tuiskula-Haavisto.M, Elo.K Evaluation of genetic distances between eight chicken lines using microsatellite markers [J]. Poultry Science, 1998, 77: 783-790.
    [228] Maudet C, Miller C, Bassano B et al. Microsatellite DNA and recent statistical methods in wild conservation management: application in Alpine ibex Capra ibex (ibex)[J]. Molecular Ecology Notes, 2002, 11:421-436.
    [229]陈晶.华东地区中华蜜蜂和意大利蜜蜂遗传多样性研究: [学位论文][D].扬州:扬州大学, 2008.
    [230] Ott Jurg. Analysis of Human Genetic Linkage[M], ed. Revised edition. Baltimore: Johns Hopkins University Press, 2001.
    [231]李志勇王志.长白山区中蜂资源的保护与利用[J].特产研究, 2004(4): 42-45.
    [232]罗林娟,谭垦.云南德钦东方蜜蜂形态学及分类地位研究[J].云南农业大学学报, 2008, 23(2): 230-232.
    [233]余林生.安徽省蜜蜂种群消长及其分布与自然环境的关系[J].应用生态学报, 2006, 17(8): 1465-1468.
    [234] Baker.J.S.F. A global protocol for determining genetic distance among domestic livestock breeds[C]. Proceedings of the 5th world congress on genetics applied to livestock production, 1994.
    [235] Rozas.J Sánchez-DelBarrio.J.C, Messegue..DnaSP DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19: 2496-2497.
    [236] Badiou A., Meled M., Belzunces L. P. Honeybee Apis mellifera acetylcholinesterase--a biomarker to detect deltamethrin exposure[J]. Ecotoxicol Environ Saf, 2008, 69(2): 246-53.
    [237] Kumar.S Tamura.K & Nei.M MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment [J]. Briefings in Bioinformatics, 2004, 5: 150-163.
    [238] S.Schneider. Excoffier.L.G. and. Arlequin ver. 3.0: An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
    [239] Tobias.P Siavash.V Network4.1.0.8[M]: Fluxus Technology Ltd, 2004.
    [240] Guez D., Miller R. R. Blocking and pseudoblocking: the reply of Rattus norvegicus to Apis mellifera[J]. Q J Exp Psychol (Colchester), 2008,61(8): 1186-98.
    [241] [Functional interaction of AMPA and metabotropic L-glutamate receptors in the process of formation of the long-term memory in the honeybee Apis mellifera L.][J]. Zh Evol Biokhim Fiziol, 2007, 43(4): 366-369.
    [242]张亚平施立明动物线粒体DNA多态性的研究概况[J].动物学研究, 1992, 13(3): 289-298.
    [243] Birky.C.W.J Furest.P, Maruyama.T Organelle gene diversity under migration,mutation and drift:equilibrium expectations,approach to equilibrium,effects of heteroplasmic cells,and comparison to nuclear genes[J]. Genetics, 1989, 121: 613-627.
    [244]郭新军.秦岭地区蜜蜂科昆虫生物地理学研究: [学位论文][D].西安:陕西师范大学, 2005.
    [245]谢进金,孙亮先,黄周英.蜜蜂(Apis)线粒体DNA(mtDNA)研究进展[J].泉州师范学院学报, 2001, 19(2): 54-58.
    [246]谭垦,张炫,周丹银,和绍禹.亚洲部分地区东方蜜蜂mtDNA多态性研究[J].云南农业大学学报, 2004, 19(2): 227-230.
    [247]谭垦,张炫,和绍禹,周丹银.中国东方蜜蜂的形态学及生物地理学研究[J].云南农业大学学报, 2005, 20(3): 410-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700