用户名: 密码: 验证码:
中国家鸡和红色原鸡遗传多样性及亲缘关系分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验使用多重PCR结合全自动电泳技术,利用29对国际通用的微卫星引物对仙居鸡、茶花鸡、鹿苑鸡、白耳鸡、藏鸡、固始鸡、大骨鸡、河南斗鸡、狼山鸡、泰和乌骨鸡、萧山鸡、北京油鸡、淮南麻黄鸡和皖南三黄鸡等14个中国家鸡品种以及红色原鸡Gallus gallus spadiceus亚种和Gallus gallus gallus亚种的570个个体进行扫描,讨论样本量、性别和微卫星座位数对微卫星分析中群体遗传多样性指标的影响以及近缘物种间微卫星引物的适用性,同时对中国家鸡和红色原鸡的256个个体mtDNA D-loop序列进行系统分析,利用微卫星DNA和mtDNA共同评估群体的遗传结构和遗传关系,分析群体间和群体内的遗传变异,探讨中国家鸡和红色原鸡的亲缘关系。主要研究结果如下:
     1.利用29对微卫星标记对16个群体内和群体间的遗传多样性进行分析,共检测到286个等位基因,平均值为9.86±6.36,所有群体的期望杂合度为0.6708±0.0251,PIC值为0.52,29个微卫星位点均具有较高的多态性。单个位点偏离Hardy-Weinberg平衡的群体数从0到7不等。群体间平均遗传分化为16.7%(P <0.001),所有的位点都极显著地贡献于这一结果(P <0.001);杂合子缺失的水平很高,为0.015(P <0.01);中国家鸡和红色原鸡16个群体间存在着极显著的遗传分化。群体间的Reynolds'遗传距离从0.036(萧山鸡-鹿苑鸡)到0.371(泰国红色原鸡-河南斗鸡)不等,而Nm值变异范围从0.583(泰国红色原鸡-河南斗鸡)到5.833(萧山鸡-鹿苑鸡)。
     2.利用29对微卫星标记对16个群体的亲缘关系进行分析,NJ系统发生树及Structure程序运行结果显示, 16个群体可以分成轻体型的鸡种(包括8个群体:泰国红色原鸡、中国红色原鸡、茶花鸡、藏鸡、仙居鸡、固始鸡、白耳鸡和泰和乌骨鸡)和重体型的鸡种(包括8个群体:皖南三黄鸡、淮南麻黄鸡、大骨鸡、河南斗鸡、狼山鸡、北京油鸡、鹿苑鸡和萧山鸡)两大类。藏鸡、皖南三黄鸡和淮南麻黄鸡遗传基础非常复杂,鹿苑鸡和萧山鸡彼此之间遗传基础十分类似。茶花鸡和藏鸡与中国红色原鸡存在着较近的亲缘关系,与泰国红色原鸡亲缘关系相对较远。中国家鸡和红色原鸡两个亚种的亲缘关系从近到远的排序是:进化型品种-原始型品种(茶花鸡与藏鸡)-中国红色原鸡(Gallus gallus spadiceus亚种)-泰国红色原鸡(Gallus gallus gallus亚种)。
     3.利用微卫星DNA和mtDNA遗传标记分析15个中国鸡种遗传距离与地理距离的关联性,对于特定的群体而言,微卫星DNA和mtDNA遗传距离与地理距离表现出相当程度的关联性,但15个鸡种间遗传距离和地理距离回归公式:FST/(1-FST) =–1.0283–0.0407ln(d)以及Mantel’s检验的结果(P=0.596)并不能为遗传距离与地理距离之间的显著联系提供足够的证据。线粒体D-loop序列的差异与群体间的地理分布也没有相关。中国地方鸡种的形成过程中,各自的地理分布可能并不是影响其群体遗传结构的决定因素。
     4.以实际测定的29个微卫星座位的基因频率为基础,分析样本量、性别和微卫星座位数对微卫星分析中群体遗传多样性指标的影响。结果表明:当样本量超过20后,期望杂合度值趋于稳定,样本量以20-25较为适宜,样本量与期望杂合度无显著相关,而与平均等位基因数呈正相关;微卫星位点多态性的高低直接影响到检测所需的样本量,在使用平均等位基因数分析群体遗传多样性时,应该充分考虑样本量对检测结果的影响;期望杂合度受样本量变动的影响较小,可作为度量群体遗传多样性的一个最适参数;在微卫星分析中性别对群体遗传多样性指标不表现出显著影响;随着微卫星数目的增多,遗传距离估测精确度精度也随着升高。
     5.对近缘物种间微卫星引物的适用性进行尝试,利用29对鸡微卫星标记对孔雀基因组DNA进行种间扩增,发现14对引物能扩增出特异性条带,每对引物扩增的平均等位基因数为1.71,有7对引物具有较丰富的多态性,其中MCW0080和MCW0098最为理想。蓝孔雀和绿孔雀群体间和群体内的遗传分析结果表明,绿孔雀和蓝孔雀两个群体的期望杂合度分别为0.7422和0.6943,群体间的遗传分化系数为0.078,Reynolds'遗传距离和基因流分别为0.0603和3.896,结果显示这两个孔雀群体的杂合度和遗传多样性水平都很低,且有相互混杂的趋势。
     6.对中国家鸡和红色原鸡的256个个体mtDNA D-loop序列进行系统分析,测定16个群体线粒体D-loop部分序列大小约为560bp,A、C、G、T这4种核苷酸的平均比例分别为25.00%、37.40%、4.40%和33.20%。A+T含量58.20%,G+C含量41.80%, A+T含量高于G+C含量;共发现44个变异位点,约占分析位点总数的7.86%,没有观测到插入/缺失,颠换和转换之比为0.13;共具有32种单倍型,9种为共享单倍型,其它23个单倍型均为各群体所特有;16个群体内单倍型多样度差异很大,从0到0.964,单倍型变异度总体为0.909±0.014,固始鸡的核苷酸多样度最低,淮南麻黄鸡和皖南三黄鸡的核苷酸多样度较高,红色原鸡两个亚种和14个中国地方鸡种整体的平均核苷酸差异数为7.276,核苷酸多样度为1.851%。16个群体表现出较高水平的遗传多态性。群体间核苷酸分歧度(Dxy)在0.747%~3.125%之间变化,核苷酸净遗传距离(Da)为-0.015%~2.633%,核苷酸分歧度(Dxy)和核苷酸净遗传距离差异均较大。红色原鸡2个亚种和14个中国地方鸡种间kimura双参数距离变异范围为0.007~0.031。mtDNA D-loop环序列群体间(Va)的方差组分占总变异的23.83%,Fst=0.38155,差异显著(P<0.05)。红色原鸡两个亚种和14个中国地方鸡种间表现出显著的遗传分化。
     7.对16个群体mtDNA D-loop单倍型进行分子系统树和网络关系分析,以日本鹌鹑(Coturnix japonica)为外群(Genbank登录号:D82924),16个鸡种mtDNA D-loop区32种单倍型的NJ、ME和UPGMA分子系统树均分为明显的4个类群,单倍型类群A中包含有泰国红色原鸡Gallus gallus gallus亚种的单倍型;单倍型类群B和单倍型类群C中包含有中国红色原鸡Gallus gallus spadiceus亚种的单倍型;单倍型类群D中同时含有这两个红色原鸡的单倍型。单倍型网络关系图中序列明显也聚为4个聚类簇,与单倍型系统发生树的结果完全一致。利用Kimura双参数模型构建D-loop区的分子系统树中,固始鸡、仙居鸡始终与泰国红色原鸡Gallus gallus gallus亚种聚在一起,茶花鸡、藏鸡、泰和乌骨鸡、河南斗鸡和白耳鸡也始终出现在一个类群。
     8.对中国红色原鸡Gallus gallus spadiceus亚种与泰国红色原鸡Gallus gallus gallus亚种微卫星DNA和mtDNA的多态性进行分析,中国红色原鸡Gallus gallus spadiceus亚种与泰国红色原鸡Gallus gallus gallus亚种的微卫星DNA遗传距离为0.167,Nm值为1.040。没有表现出较近的遗传距离和较大的基因流动,群体的遗传分化系数为0.194(P<0.01),所有位点都极显著地贡献于这一结果(P<0.01)。红色原鸡两个亚种没有共享单倍型,它们各自具有不同的单倍型,群体间mtDNA D-loop Fst值差异显著(P=0.0360)。Gallus gallus spadiceus亚种和Gallus gallus gallus亚种群体具有不同的群体遗传结构,群体之间存在明显的遗传分化,本研究支持这两个亚种并非实际上是同一个亚种的观点。
     9.综合分析中国家鸡和红色原鸡微卫星DNA和mtDNA多态性和亲缘关系的结果,推测泰国红色原鸡Gallus gallus gallus亚种被驯化后,有部分群体演化形成了一些中国家鸡的群体如固始鸡和仙居鸡,而中国红色原鸡Gallus gallus spadiceus亚种被驯化后,也演化形成了一些中国家鸡的群体如茶花鸡和藏鸡等。泰国红色原鸡Gallus gallus gallus亚种中性检验的Tajima's D值为-1.79995(P< 0.05),不符合中性突变。在泰国红色原鸡Gallus gallus gallus亚种群体一段时间内的群体扩张过程中,对一些在中国本地起源的家鸡群体中的一些亚群产生了影响,因此在一些中国地方鸡种同时具有这两种红色原鸡的遗传贡献。本研究认为中国家鸡起源于泰国或单纯起源于中国的观点都是不全面的,支持红色原鸡的驯化是多次、多地、长期的人类活动的结果这一观点。
Combining the technique of multiplex-PCR and the fluorescent automated diction, genetic diversity and phylogenetic relationship among 570 individuals of 14 Chinese domestic chicken breeds(Xianju chicken, Chahua chicken, Luyuan chicken, Baier chicken, Tibetan chicken, Gushi chicken, Dagu Chicken, Henan Game, Langshan chicken, Taihe Silkies chicken, Xiaoshan chicken,Beijing Fatty chicken,Huainan Partridge and Wannan Three-yellow chicken) and two red jungle fowl subspecies(Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand)were evaluated with 29 microsatellite loci. The effects of sample size, sex and number of microsatellite loci on various genetic diversity measures were estimated, and similar part of mtDNA D-loop of these 16 populations were sequenced and analyzed. Genetic variability within populations and genetic differentiation among populations were estimated, thereafter genetic diversity and phylogenetic relationship among red jungle fowls and Chinese domestic fowls were analyzed. Our main results were summarized as follows:
     1. The genetic variability within populations and genetic differentiation among populations were estimated, a total of 286 alleles were detected in 16 populations with 29 microsatellite markers, and the average number of observed alleles was 9.86±6.36. The overall expected heterozygosity of all populations and PIC of all loci were 0.6708±0.0251 and 0.52, respectively. All 29 microsatellite loci in this study showed high levels of polymorphism. The number of populations deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among populations, measured as FST value, was 16.7% (P <0.001), and all loci were contributed significantly (P <0.001) to this differentiation. Significant genetic differentiation was observed among two subspecies of red jungle fowl and 14 Chinese domestic chicken breeds, and the deficit of heterozygote was observed very high (0.015) (P <0.01). Reynolds’distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.371 (Gallus gallus gallus–Henan Game chicken pair). The Nm value was ranged from 0.583 (between Gallus gallus gallus and Henan Game chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken).
     2. The phylogenetic relationship among Chinese domestic fowls and red jungle fowls were analyzed, an un-rooted consensus tree was constructed using the Neighbour-Joining method and the clustering results are generally in accordance with the results obtained from STRUCTURE. The tree topology revealed two main clusters, although the relationship between breeds was not always supported by high bootstrap values. The heavy-body sized chicken breeds, Huainan Partridge, Wannan Three-yellow chicken, Dagu chicken, Henan Game, Langshan chicken, Beijing Fatty chicken, Luyuan chicken and Xiaoshan chicken formed in one cluster; and the light-body sized chicken breeds, including Red Jungle Fowl in China, Red Jungle Fowl in Thailand, Chahua chicken, Tibetan chicken, Xianju chicken, Gushi chicken, Baier chicken and Taihe Silkies chicken formed in the second main cluster. The results suggested that the Tibetan, Huainan Partridge and Wannan Three-yellow chickens have mixed genetic structures, while the genetic bases of Luyuan chicken and Xiaoshan chicken are nearly same. Chahua chicken and Tibetan chicken had closer genetic relationship with Gallus gallus spadiceus but appeared rather farer phylogenetic relationship with Gallus gallus gallus. The evolutional dendrogram was as follows: evolutional breeds ? primitive breeds (Chahua chicken and Tibetan) ? red jungle fowl in China (Gallus gallus spadiceus ) ? red jungle fowl in Thailand (Gallus gallus gallus )
     3. The geographical elements may own to the close relationship for particular population pairs, however, the equation FST/ (1-FST) =–1.0283–0.0407ln (d) and the result from Mantel’s test (P=0.596) did not provide enough support for a significant correlation between the genetic and geographical pair wise distances. It was no significant correlation between the genetic diversity of mtDNA D-loop and the distributing of these populations. The results concluded that the geographical distributing maybe not the determinant influence on the genetic structure of Chinese chicken populations during the course of their developed history.
     4. Based on the analysis of genetic diversity in 4 Chinese indigenous chicken breeds at 29 microsatellite loci, the effects of sample size and sex on various genetic diversity measures were estimated, the accuracy of pair wise genetic distance among 4 Chinese native chickens were analyzed at 5, 10, 15, 20 and 25 microsatellite loci levels. The results indicated that the expected heterozygosity was fairly stable when sample size was over 20, the mean number of allele over loci was significantly affected by sample size, while there is no significant correlation between sample size and expected heterozygosity, the suitable sample size in microsatellite analysis ranged from 20 to 25. The sample size needed in the study was affected by the polymorphism of microsatellite loci. When the mean number of allele over loci has been chosen to detect the population diversity, the effect of sample size variation should be assessed deliberately, while the expected heterozygosity was not sensitive to sample size variation and can be used as a reliable parameter to estimate the genetic diversity. The genetic diversity measures were not significantly difference between sexes, and the accuracy of genetic distance estimation increased along with the numbers of the loci increased.
     5. The applicability of microsatellite primers from chicken to peafowl population was analyzed, the results showed that the 14 of the 29 pairs of microsatellite primers from chicken could amplify peafowl DNA and produce special allele patterns, with 1.71 mean alleles per locus. Seven pairs of primer had higher polymorphism, among them MCW0080 and MCW0098 primers were perfect markers for peafowl. Based on the analysis of genetic diversity within and between green peafowl and the blue peafowl population, our results demonstrated the expected heterozygosity of two peafowl populations were 0.2482 and 0.2744, respectively. Inbreeding index (FST), Reynolds' genetic distance and gene flow between two populations were 0.078, 0.0603 and 3.896, respectively. These results indicated that the heterozygosity and the genetic diversity of two peafowl populations were very low, it was a mix-up tendency between two peafowl populations.
     6. Part of mtDNA D-loop among 256 individuals of 14 Chinese domestic chicken breeds and two red jungle fowl subspecies were sequenced and analyzed. The result showed that the length of D-loop in this study was about 560 bp.Content of nucleotide A, C,G, T were 25.00%, 37.40%, 4.40% and 33.20%, respectively. The percentage of A+T was 58.2% and G+C was 41.8%, showed high A+T of mtDNA D-loop in 16 chicken populations. There were 44 polymorphic sites represent 7.86% of total analyzed sites.Only transition and transversion but no insertion/deletion were found in this region, the ratio of transition and transversion in this study was 0.13.32 haplotypes,among them 14 haplotypes were shared among some chicken populations, 23 haplotypes were unique for one population. The distribution of all haplotypes among the populations was disequilibrium and the diversity of haplotypes was ranged from 0 to 0.964.The average diversity of haplotypes was 0.909±0.014, indicated that there was existed rather abundant mitochondrial genetic diversity in 16 chicken populations.The Gushi chicken showed the lowest diversity of haplotypes while the Huainan Partridge and Wannan Three-yellow chickens showed the highest one. The average number of nucleotide divergence (K) and average nucleotide diversity (Pi) were 7.276 and 1.851%, respectively. Inter-population Nucleotide Divergence (Dxy) in 16 chicken populations was ranged from 0.747%~3.125%, wheras Inter-population Net Nucleotide Divergence (Da) in 16 chicken populations was ranged from -0.015% to 2.633%. The results indicated that the genetic diversity of 16 chicken populations was very abundant.Kimura 2-parameter distance among these populations ranged from 0.007 to 0.031. Analysis of molecular variance showed that 23.83% of genetic variation was present within populations. FST value was 0.38155, which indicated the genetic variation was significant within populations (P < 0.05). There were significant divergence among 14 Chinese domestic chicken breeds and two subspecies of red jungle fowl.
     7. The NJ, ME and UPGMA phylogenetic dendograms of 32 haplotypes in 16 chicken populations and as Coturnix japonica an outgroup from GenBank (Accession No. D82924) were constructed. As a whole, the results of three kinds of trees are same and these 32 haplotypes were placed into four lineages. Lineage A included the haplotypes of Gallus gallus gallus, Lineage B and C included the haplotypes of Gallus gallus spadiceus and Lineage D included the haplotypes of both Gallus gallus gallus and Gallus gallus spadiceus. The median-joining networks of the 16 chicken populations in the control region also showed the same results with phylogenetic trees and all 32 haplotypes appeared into four clusters. NJ, ME and UPGMA dendograms based on Kimura 2-parameter distance of mtDNA D-loop sequences in 16 chicken populations were also constructed, three kinds of dendograms all showed that Gushi chicken, Xianju chicken and Gallus gallus gallus were always in the same cluster, while other breeds such as Chahua chicken, Tibetan chicken, Taihe Silkies chicken, Henan Game and Baier chicken were confined into the same cluster.
     8. Genetic diversity of red jungle fowl in China(Gallus gallus spadiceus) and red jungle fowl in Thailand (Gallus gallus gallus)was evaluated with 29 microsatellite loci and mtDNA D-loop, Reynolds' genetic distance and gene flow between two populations were 0.157 and 1.040, respectively, there was no closer relationship and large gene flow between these two subspecies. Genetic differentiation index (FST) of these two populations was 0.194 (P <0.01) and all loci contributed significantly (P <0.01) to this differentiation. There was no shared haplotypes between these two subspecies, the pair wise genetic differentiation index (Fst) of mtDNA D-loop was also significant (P=0.0360), all results indicated that there were different genetic structure and significant genetic differentiation between red jungle fowl in China and red jungle fowl in Thailand, and this provided enough support to identify these two red jungle fowl subspecies as the different subspecies.
     9. Analysis of genetic diversity and phylogenetic relationships among Chinese domestic fowls and red jungle fowls estimated with 29 microsatellite loci and mtDNA D-loop sequences indicated that some Chinese domestic fowls such as Chushi chickens and Xianju chickens derived from some subpopulations of Gallus gallus gallus after their domestication, other Chinese domestic fowls such as Chahua chickens and Tibetan chickens derived from some subpopulations of Gallus gallus spadiceus. Tajima's D values were -1.79995 (P< 0.05)for Gallus gallus gallus, which showed significant difference from neutrality. During the course of population expansion after the domestication, Gallus gallus gallus maybe have some effect on some subpopulations of some Chinese domestic breeds originated from Gallus gallus spadiceus in China, so the genetic contribution of these two subspecies of red jungle fowl can be detected in some Chinese chicken populations. The results in this study concluded that the Chinese domestic fowls don’t just derive from red jungle fowl in Thailand or just from red jungle fowl in China and gave support the viewpoint that the red jungle fowls were domesticated several times independently in different place and the domestication of red jungle fowls was the outcome of human activities during the long period.
引文
[1] 马克平. 试论生物多样性的概念 [J]. 生物多样性, 1993, 1(1):20-22.
    [2] 葛 颂主编. 遗传多样性及其检验方法.生物遗传多样性研究的原理与方法 [M]. 北京: 科学出版社, 1994, 123-140.
    [3] 梁晓东, 叶万辉. 生物多样性[M]. 北京: 科学出版社,2001.
    [4] Wilson E O. ed. Biodiversity [M]. Washington D C: National Academy Press, 1988.
    [5] 刘 旭主编. 中国生物种质资源科学报告 [M]. 第 2 版, 北京: 科学出版社, 2003, 140-167.
    [6] 薛达元主编. 中国遗传资源现状与保护 [M]. 北京: 中国环境科学出版社, 2005, 14-20, 340-360.
    [7] 陈灵芝主编. 中国的生物多样性-现状及其保护对策 [M]. 北京:科学出版社,1993, 1-9,100-106.
    [8] 陆建身. 中国生物资源 [M]. 上海:上海科技教育出版社,1997.
    [9] 常 洪主编. 家畜遗传资源学纲要 [M] . 北京:中国农业出版社, 1995, 7-14, 300-303.
    [10] 郑丕留主编. 中国畜禽品种志 [M] . 上海:上海科学技术出版社, 1986-1989.
    [11] 马月辉, 陈幼春, 冯维祺. 中国家养动物多样性概况 [J]. 畜牧兽医学报, 2000, 31(5): 394-399.
    [12] 陈灵芝, 马克平. 生物多样性科学 [M]. 北京: 科学出版社,2002.
    [13] 范志勇.《濒危野生动植物种国际贸易公约》简介 [J ]. 野生动物, 1987, 38 (4) : 7-8.
    [14] 田兴军. 生物多样性及其保护生物学 [M] . 北京: 化学工业出版社, 2005.
    [15]《中国生物多样性国情研究报告》编写组. 中国生物多样性国情研究报告 [M]. 北京: 中国环境科学出版社, 1995.
    [16] 国家环保总局. 中国生物多样性国情研究报告 [M]. 北京: 中国环境科学出版社, 1998.
    [17] 陈幼春. 中国家畜多样性保护的意义 [J]. 生物多样性, 1995, 3(3): 143-146.
    [18] 王玉玲. 生物多样性与生物多样性保护的意义 [J]. 农业与技术. 2005, 25(2): 48-49.
    [19] 中国生物多样性保护行动计划总报告编写组. 中国生物多样性保护行动计划[M ]. 北京: 中国环境科学出版社, 1994.
    [20] 岳天祥. 生物多样性研究及其问题 [J]. 生态学报, 2001, 21(3): 462-467.
    [21] 刘新平, 付水广, 余明泉. 中国生物多样性及其保护的综述 [J]. 南昌高专学报, 2006, 63(2): 97-100.
    [22] 钱迎倩, 马克平. 生物多样性研究的原理和方法 [M]. 北京: 中国科学技术出版社, 1994.
    [23] 黄宏义, 康明译, R. 法兰克汉. 保护遗传学导论 [M]. 北京:科学出版社,2005, 29-45.
    [24] Nei M. Molecular evolutionary genetics [M]. New York: Columbia University Press, 1987.
    [25] Kimura M, Crow J F. The number of alleles that can be maintained in a finite population [J]. Genetics, 1964, 49: 725-738.
    [26] Jukes T H, Cantor C R. Evolution of protein molecules [A]. In: Munro H N, ed. Mammalian Protein Metabolism [C], New York: Academic Press, 1969, 21-132.
    [27] Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences [J]. J Mol Evol, 1980, 16: 111-120.
    [28] Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data [J]. J Mol Evol, 1983, 19: 153-170.
    [29] Tamura K. Estimation of the number of nucleotide substitutions there are transition-transversion and G+C-content biases [J]. Molecular Biology and Evolution, 1992, 9: 678-687.
    [30] Hasegawa M, Kishino H, Yano K. Dating of the human-ape splitting by amolecular clock of mitochondrial DNA. [J]. J Mol Evol, 1985, 22: 160-174.
    [31] Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees [J]. Mol Biol Evol, 1993, 10(3): 512-526.
    [32] Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis: Models and estimation procedures [J]. Amer J Hum Genet, 1967, 19: 233-257.
    [33] Takezaki N, Nei M. Genetic distances and reconstruction of plylogenetic trees from microsatellite DNA [J]. Genetics, 1996, 144: 389- 399.
    [34] Nei M. Genetic distance between populations [J]. Amer Natur, 1972, 106: 283-292.
    [35] Wright S. Evolution and the genetics of population variability within and among natural populations [M]. Chicago III: University of Chicago Press, 1978.
    [36] Slatkin M. Inbreeding coefficients and coalescence times [J]. Genet Res, 1991, 58: 167-175.
    [37] Nei M. Analysis of gene diversity in subdivided populations [J]. Proc. Natl. Acad. Sci. USA, 1973, 70: 3321-3323.
    [38] Sneath P H A and Sokal R R.Numerical Taxonomy [M].San Francisco: Freeman, 1973.
    [39] Cavalli-Sforza L L and A W F Edwards. Phylogenetic analysis: models and estimation procedures [J]. American Journal of Human Genetics, 1967, 19: 233-257.
    [40] Saitou N and M Nei. The neighbor-joining method: A new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4: 406-425.
    [41] Fitch W M. Towards defining the course of evolution: Minimum change for a specific tree topology [J]. Systematic Zoology, 1971, 20: 406-416.
    [42] Hartigan J A. Minimum mutations fits to a given tree [J]. Biometrics, 1973, 29: 53-65.
    [43] Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihoodapproach [J]. J Mol Evol, 1981, 17: 368-376.
    [44] Vaiman D, Pailhoux E, Payen E. Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene: mapping in sheep and cattle [J]. Cytogenet Cell Genet, 1995, 70: 112-115.
    [45] Debrauwere H, Gendrel C G, Leehat S. Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites [J]. Biochimie, 1997, 79, 577-586.
    [46] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res, 1989, 17: 6463-6471.
    [47] Hamada H, Marianne G P, Kakunaga T. A Novel Repeated Element with Z-DNA-Forming Potential is Widely Found in Evolutionarily Diverse Eukaryotic Genomes [J]. PNAS, 1982, 79: 6465-6469.
    [48] Gilmour D S, Thomas G H, Elgin S C R. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters [J]. Science, 1989, 245: 1487-1490.
    [49] Hancock J M. The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution [J]. Journal of Molecular Evolution, 1995, 40: 629-639.
    [50] Van Zeveren A, Peelman L, Van de Weghe A, et al. A genetic study of four Belgian pig populations by means of seven microsatellite loci [J]. J Anim Breed Genet, 1995, 112: 191-204.
    [51] Van Schalkwyk S J, Cloete S W P, de Kock J A. Repeatability and phenotypic correlations for body weight and reprodution in commercial ostrich breeding pairs [J]. British Poultry Science, 1996, 37: 953-962.
    [52] 牟彦双,李 辉. 鸡基因组研究新进展 [J]. 遗传, 2006, 28(5):617-622.
    [53] Weber J L. Informativeness of human (dC-dA)n?(dG-dT)n polymorphisms [J]. Genomics, 1990, 7: 524-530.
    [54] Estoup A, Tailliez C, Cornuet J M, et al. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae) [J]. Mol Biol Evol, 1995, 12: 1074-1084.
    [55] Wilke K, Jung M, Chen Y, et al. Porcine (GT)n sequences: structure and association with dispersed and tandem repeats [J].Genomics, 1994, 21:63-70.
    [56] Moore S S, Sargeant L L, King T J, et al. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterogonous PCR primer pars in closely related species [J]. Genomics, 1991, 10: 654-670.
    [57] Kim C H, Yoo C G, Han S K, et al. Genetic instability of microsatellite sequences in non-small cell lung cancers [J]. Lung Cancer, 1998, 21(1): 21-25.
    [58] 王丽娟. 微卫星 DNA 及其 PCR 技术的进展 [J]. 国外医学分子生物学分册, 1996, 18(4): 169-173.
    [59] King T L, Lubinski B A, Spidle A P. Microsatellite DNA variation in atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplificaion in the Acipenseridae [J]. Conservation Genetics, 2001, 2: 103-119.
    [60] Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution [J]. Mol Biol Evol., 1987, 4: 203-221.
    [61] Jeffreys A J, Tamaki K, MacLeod A, et al. Complex gene conversion events in germ line mutation at human minisatellites [J]. Nature Genetics, 1994, 6: 136-145.
    [62] Levinson G, Gutman G A. High frequencies of short frameshift in poly-CA/GT tandem repeats borne by bacteriophage M13 in Escherichia coli K-12 [J]. Nucleic Acids Res, 1987, 15: 5323-5338.
    [63] Henderson S T, Petes T D. Instability of simple sequence DNA in Saccharomyces cerevisiae [J]. Mol. Cell. Biol., 1992, 12: 2749-2757.
    [64] Ma R Z, Russ I, Park C, et al. Isolation and characterization of 45 polymorphic microsatellites from the bovine genome [J]. Animal Genetics, 1996, 27: 43-47.
    [65] Cheng H H, Crittenden L B. Microsatellite markers for genetic mapping in the chicken [J]. Poultry Science, 1994, 73: 539-546.
    [66] Dettman J R, Taylor J W. Mutation and Evolution of Microsatellite Loci in Neurospora [J].. Genetics, 2004, 168: 1231-1248.
    [67] Rohrer G A, Alexander L J, Keele J W, et al. A microsatellite linkage map of the porcine genome [J]. Genetics, 1994, 136: 231-245.
    [68] Sekine I, Yokose T, Ogura T, et al. Microsatellite instability in lung cancer patients 40 years of age or younger [J]. Jpn J Cancer Res, 1997, 88(6): 559-63.
    [69] Karran P. Microsatellite instability and DNA mismatch repair in human cancer [J]. Semin Cancer Biology, 1996, 7: 15-24.
    [70] Vaiman D, Pailhoux E, Payen E, et al. Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene: mapping in sheep and cattle [J]. Cytogenet Cell Genet, 1995, 70: 112-115.
    [71] Reed K M., Mendoza K M., Beattie C W. Comparative analysis of microsatellite loci in chicken and turkey [J]. Genome, 2000, 43: 796-802.
    [72] Levin I, Cheng H H, Baxter-Jones C, et al. Turkey microsatellite DNA loci amplified by chicken-specific primers [J]. Animal Genetics, 1995, 26: 107-110.
    [73] Callen D F, Thompson A D, Shen Y, et al. Incidence and origin of “null” alleles in the (AC)n microsatellite markers [J]. Am J Hum Gene, 1993, 52: 922-927.
    [74] Paetkau D, Strobeck C. The molecular basis and evolutionary history of a microsatellite null allele in bears [J]. Mol Ecol, 1995, 4: 519-520.
    [75] Ginot F, Bordelais I, Nguyen S, et al. Correction of some genotyping errors in automated flurescent microsatellite analysis by enzymatic removal of one base overhangs [J]. Nucleic Acid Res, 1996, 24: 540-541.
    [76] Fontana F, Lanfredi M, Rossi R, et al. Karyotypic characterization of Acipenser gueldenstaedti with C-, Ag-NO3 and fluorescence banding techniques [J]. Ital J Zool,1996, 63: 113-118.
    [77] Viard F, Franck P, Dupois MP, et al. Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species [J]. J Mol Evol, 1998, 47: 42-51.
    [78] Taylor J S, Sanny P, Breden F. Microsatellite alleles size homoplasy in the guppy (Poecilia reticulata) [J]. J Mol Evol, 1999, 48: 245-247.
    [79] Archibald A L, Burt D W, Williams J L. Gene mapping in farm animals and birds a overview [J]. Proc.5th world Conger Genet. Appli Livest Prod, 1994, 21:3-4.
    [80] Crooijmans R P, Dijkhof R J, van der Poel J J, et al. New microsatellite markers in chicken optimized for automated fluorescent genotyping [J]. Animal Genetics, 1997, 28: 427-437.
    [81] Lyman B Crittenden, Leonard Provencher, Lisa Santangelo, et al. Characterization of a Red Jungle Fowl by White Leghorn Backcross reference population for Molecular Mapping of the chicken Genome [J] Poultry Science, 1993, 72: 334-348.
    [82] Rooijmans R P M A, Dijkhof R J M, Vaander Poel J J, et al. New microsatellite markers in chicken optimized for automated fluorent genotyping [J]. Anim Genet, 1997, 48: 427-437.
    [83] Crooijmans R P, van Oers P A, Strijk J A, et al. Preliminary linkage map of the chicken genome based on microsatellite markers: 77 new markers mapped [J]. Poult Sci, 1996, 75(6): 746-754.
    [84] Bumstead N, Palyga J. A preliminary linkage map of the chicken genome [J]. Genomics, 1992, 13, 72: 334-348.
    [85] Cheng H H, Levin I, Vallejjo R L, et al. Development of a genetic map of the chicken with markers of high utility [J]. Poult Sci, 1995, 74(11): 1855-1874.
    [86] Groenen M A, Cheng H H, Bumstead N, et al.A consensus linkage map of the chicken genome [J]. Genome Res, 2000, 10(1): 137-147.
    [87] Schmid M,Nenda I,Guttenbach M, et al. First report on chicken genes and chromosomes [J]. Cytogenet Cell Cenet, 2000, 90(34): 169-218.
    [88] Takahashi H, Tsudzuki M, Sasaki O, et al. A chicken linkage map based on microsatellite markers genotyped on a Japanese Large Game and White Leghorn cross [J]. Anim Genet, 2005, 36(6): 463-467.
    [89] Jacobsson L, Park H B, Wahlberg P, et al. Assignment of fourteen microsatellite markers tothe chicken linkage map [J]. Poult Sci, 2004, 83(11): 1825-1831.
    [90] Primmer C R, Raudsepp T, Chowdhery B P, et al. Low frequency of microsatellites in the avian genome [J]. Genorne Res, 1997, 7(5): 471-482.
    [91] Ponsuksili S, Wimmers K, Horst P. Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting [J]. J Hered, 1998, 89(1): 17-23.
    [92] 黄海根, 孟安民. DNA 指纹图带与鸡的蛋重性状的遗传相关性分析 [J]. 遗传, 1998, 20(3): 13-15.
    [93] 王金玉, 龚允陈. 鸡的DNA指纹与屠宰性能的相关性研究 [J]. 遗传学报, 1999, 26(4): 324-328.
    [94] 高玉时, 李慧芳, 陈国宏, 等.苏禽黄鸡微卫星DNA指纹分析 [J]. 扬州大学学报(农业与生命科学版), 2004, 25(4): 39-43.
    [95] 高玉时, 李慧芳, 陈国宏, 等. 地方鸡种微卫星DNA指纹图谱建立与遗传多样性研究 [J]. 云南农业大学学报, 2005, 20(3): 313-318.
    [96] Hutt F B. Sex-linked dwarfism in the fowl [J]. J Hered, 1959, 50: 209-221.
    [97] Valliejo et al. Current reseach on Mardk’s Disease [J]. Proceedings of the 5th international symposium, 1996: 14-23.
    [98] Ruyter-Spira C P, de Groof A J, van der Poel J J, et al. The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken [J]. The Journal of Heredity, 1998, 89(4): 295-300.
    [99] N Yonash, Cheng H H, Hillel D E, et al. DNA microsatellite linked to QTL affecting antibody response and survival rate in meat-type chicken [J]. Poul Sci, 2001,80: 22-28.
    [100] 邓学梅, 李俊英, 李 宁等. 基于 F-2 群体的鸡重要生长性状遗传分析 [J]. 遗传学报, 2001, 28(9): 801-807.
    [101] M Tuiskula-Haavisto, Honkatukia M,Vilkki J, et al. Use of microsatellite markers for localizing genes affecting egg quality in chicken [J]. 2000, 2: 56-61.
    [102] van kaam J B C H M., van Arendonk J A M, Groene M A M, et al. Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design [J]. Livestock Production Science, 1998, 54: 133-150.
    [103] Tatsuda K, Fujinaka K, Yamasaki T. Gentic mapping of a body weight trait in chicken [J]. Animal science journal, 2000, 71(2): 130-136.
    [104] K Tatsuda, K Fujinaka. Genetic mapping of the QTL affecting body weight in chickens using a F2 family [J]. British Poultry Science, 2001, 42(3): 333-337.
    [105] Kerje S, Carlborg O, Schutz K, et al. The two-fold difference in adult size between Red Junglefowl and White Leghorn chickens is largely explained by a limited number of QTL [J]. Animal Genetics, 2003, 34: 264-274.
    [106] Siwek M, Cornelissen S J B, Nieuwland M G B, et al. Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cell [J]. Poultry Science, 2004, 83: 853-859.
    [107] Van Kaam J B C H M, Groenen M A M, Bovenhuis H, et al. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency [J]. Poultry Science, 1999, 78: 15-23.
    [108] Sewalem A, Morrice D M, Law A, et al. Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross [J]. Poultry Science, 2002, 81: 1775-1781.
    [109] 杜志强.利用基因组扫描定位鸡的重要性状基因座: [学位论文] [D]. 北京:中国农业大学, 2003.
    [110] McElroy J P, Dekkers J C, Fulton J E, et al. Microsatellite markers associated with resistance to Marek's disease in commercial layer chickens [J]. Poult Sci., 2005, 84(11): 1678-1688.
    [111] McElroy J P, Kim J J, Harry D E, et al. Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens [J]. Poult Sci, 2006, 85(4): 593-605.
    [112] Abasht B, Pitel F, Lagarrigue S, et al. Fatness QTL on chicken chromosome 5 and interaction with sex [J]. Genet Sel Evol, 2006, 38(3): 297-311.
    [113] Gao Y, Hu X X, Du Z Q, et al. A genome scan for quantitative trait loci associated with body weight at different developmental stages in chickens [J]. Anim Genet, 2006, 37(3): 276-278.
    [114] Atzmon G, Ronin Y I, Korol A, et al. QTLs associated with growth traits and abdominal fat weight and their interactions with gender and hatch in commercial meat-type chickens [J]. Anim Genet, 2006, 37(4): 352-358.
    [115] 李红霞, 朱 庆, 李 亮, 等. 黄羽肉鸡微卫星多态性与体重的相关分析 [J]. 遗传, 2004, 26(6): 854-858.
    [116] 沈立权. 微卫星 DNA 标记与新扬州鸡蛋用性状的相关研究: [学位论文][D]. 扬州: 扬州大学, 2004.
    [117] 周海龙, 朱 庆. 丝羽乌骨鸡月产蛋性能与微卫星标记关系的研究 [J]. 四川农业大学学报, 2005, 23(4): 450-453.
    [118] 高玉时, 王克华, 陈国宏, 等. 鸡微卫星DNA标记与屠宰性状的关系 [J]. 江苏农业学报, 2006a, 22(3): 258-264.
    [119] 高玉时, 王克华, 陈国宏, 等. 鸡微卫星DNA标记与肉品质性状关系研究 [J]. 畜牧兽医学报, 2006b, 37(7): 650-655.
    [120] 包文斌, 周群兰, 吴信生, 等. 微卫星标记与仙居鸡体重的相关性研究 [J]. 安徽农业科学, 2005, 33(4): 652-654.
    [121] 周群兰, 吴信生,包文斌, 等. 微卫星标记与鹿苑鸡体重的相关初探 [J]. 扬州大学学报(农业与生命科学版), 2005, 26(2): 25-28.
    [122] 包文斌, 束婧婷, 张红霞, 等. 29个微卫星标记与淮南麻黄鸡体重的相关性分析 [J]. 中国家禽, 2006, 28(5): 17-19.
    [123] 包文斌,陈国宏, 王克华, 等. 微卫星DNA标记与肉鸡腹脂率的相关分析[J]. 中国畜牧杂志, 2006, 42(9): 5-6.
    [124] 朱 庆, 张义正, 刘继霞, 等. 黄羽肉鸡群体遗传变异的微卫星分析及其与体重杂种优势的关系 [J]. 畜牧与兽医, 2006, 38(3): 8-10.
    [125] Ellegren H, Johansson M, Sandberg K, et al. Cloning of highly polymorphic microsatellites in the horse [J]. Anim.Genet,1992, 23: 133-142.
    [126] Rosenberg N A, Burke T E, Marcus W F, et al. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds [J]. Genetics, 2001, l59: 699-713.
    [127] 张丽娟, 杨长锁, 陈 宏, 等. 微卫星标记在白壳蛋鸡品系鉴定中的应用 [J]. 农业生物技术学报, 2005, 13(1): 72-76.
    [128] Nakamura A, Kino K, Minezawa M, et al. A method for discriminating a Japanese chicken, the Nagoya breed, using microsatellite markers [J]. Poult Sci, 2006, 85(12): 2124-2129.
    [129] 李显耀, 张龙超, 曲鲁江, 等. 静宁鸡和固原鸡品种划分的分子遗传基础 [J]. 农业生物技术学报, 2005, 13(5): 664-667.
    [130] Hillel J, Schaap T, Haberfeld A, et al. DNA fingerprints applied to gene introgression in breeding programs [J]. Genetics, 1990, 124(3): 783-789.
    [131] 李军林, 张思河, 魏 弘. 用微卫星引物对近交系小鼠进行遗传监测 [J]. 西北农业学报,2001, 10(1): 1-3.
    [132] 曲鲁江, 吴桂琴, 李显耀, 等. 采用微卫星 DNA 标记分析部分地方鸡种保种场的保种效果 [J]. 遗传学报, 2004, 31(6): 591-595.
    [133] 高玉时, 杨 宁, 李慧芳, 等. 我国地方鸡品种保种群微卫星多态性分析与分子标记档案的建立 [J]. 遗传, 2004, 26(6): 859-864.
    [134] 李慧芳, 高玉时, 苏一军, 等. 中国地方鸡种资源不同保种方法的分子检测 [J]. 云南农业大学学报, 2006, 21(2): 228-230.
    [135] Baker J S F. A global protocol for determining genetic distance among domestic livestock breeds [J]. In: Proceedings of the 5th world congress on genetics applied to livestock production, 1994, 21: 501-508.
    [136] 张细权, 杨关福, 施振旦, 等. 用微卫星多态性研究家鸡品种的遗传结构及亲缘关系[J]. Animal Biotechnology Bulletin, 1996, 5: 54-59.
    [137] Zhou H J, Lamont S J. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite marker [J]. Animal Genetics, 1999, 30: 256-264.
    [138] Wimmers K, Ponsuksill S, Hardge T, et al. Genetic distinctness of African, Asian and South American local chickens [J]. Anim Genet, 2000, 31: 159-165.
    [139] Romanov M N, Weigend S. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers [J]. Poult Sci, 2001, 80:1057-1063.
    [140] 朱 庆,李 亮. 不同地方乌骨鸡种群遗传多样性的微卫星 DNA 分析 [J]. 畜牧兽医学报, 2003, 34(3): 213-216.
    [141] 胡晓湘,黄银花,高 宇, 等. 对中国农业大学鸡资源群进行基因组扫描的初步分析 [J]. 遗传学报, 2003, 30(12): 1101-1106.
    [142] 陈红菊, 岳永生, 樊新忠, 等. 利用微卫星标记分析山东地方鸡品种的遗传多样性 [J]. 遗传学报, 2003, 30(9): 855-860.
    [143] 杜志强, 曲鲁江, 李显耀, 等. 藏鸡群体遗传多样性研究 [J]. 遗传, 2004, 26(2): 167-171.
    [144] 陈红菊, 岳永生, 樊新忠, 等. 山东地方鸡种遗传距离与聚类分析方法比较研究 [J]. 畜牧兽医学报, 2004, 36(1): 33-36.
    [145] 吴信生,陈国宏,王得前, 等. 利用微卫星技术分析中国部分地方鸡种的遗传结构[J]. 遗传学报, 2004, 31(1): 43-50.
    [146] 李慧芳, 陈宽维, 章双杰, 等. 中国受威胁地方鸡品种的遗传多样性 [J]. 南京农业大学学报, 2005, 28(3): 68-70.
    [147] 李慧芳,陈宽维, 汤青萍, 等. 利用微卫星标记分析云南6个地方鸡品种的遗传多样性[J]. 江苏农业学报, 2006, 22(I): 33-37.
    [148] 张 勇, 肖礼华, 陈 祥, 等. 利用微卫星标记分析贵州地方鸡种的遗传多样性及亲缘关系 [J]. 畜牧兽医学报, 2006, 37(12): l274-1281.
    [149] 邓雪娟, 孙桂荣, 康相涛, 等. 固始鸡不同品系及部分外来鸡种遗传多样性的微卫星分析 [J].中国畜牧杂志, 2006, 42(21): 1-3.
    [150] 陈宽维, 李慧芳, 王金玉, 等. 华东27个地方鸡品种(品系)的遗传变异[J]. 畜牧兽医学报, 2006, 37(1): 7-11.
    [151] Tadano R, Sekino M, Nishibori M, et al. Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds [J]. Poult Sci, 2007, 86(3): 460-469.
    [152] Shahbazi S, Mirhosseini S Z, Romanov M N. Genetic diversity in five Iranian native chicken populations estimated by microsatellite markers [J]. Biochem Genet, 2007, 45(1-2): 63-75.
    [153] 曲鲁江, 李显耀, 徐桂芳, 等. 利用微卫星标记分析中国地方鸡种的遗传多样性 [J]. 中国科学(C辑), 2006, 36(1): 17-26.
    [154] 陈国宏, 季从亮, 王敏强, 等. 12个地方鸡种群体遗传结构及遗传多样性分析 [J].畜牧兽医学报, 2006, 1: 1-6.
    [155] Kang Dongchon, Hamasaki N. Maintenance of mitochondrial DNA integrity: repair and degradation [J]. Curr Genet, 2002, 41: 311-322.
    [156] Capps G J, Samuels D C, Chinnery P F. A model of the nuclear control of mitochondrial DNA replication [J]. J theor Biol, 2003, 221: 565-583.
    [157] Anderson S, De Bruin MHL, Coulson A R, et al.. Complete sequence of bovinemitochondrial DNA. Conserved features of the mammalian mitochondrial genome [J]. J Mol Evol, 1982, 156: 683-717.
    [158] Hecht W. Studies on mitochondrial DNA in farm animals [A]. Genome analysis in domestic animals, 1990, 259-268.
    [159] Lin C S, Sun Y L, Liu C Y, et al. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within [J]. Artiodactyla Genetics, 1999, 236: 107-114.
    [160] Hiendleder S, Lewalski H, Wassmuth R, et al. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype [J]. J Mol Evol, 1998, 47: 441-448.
    [161] Xu X, Amason U. The complete mitochondrial DNA sequence of the horse, Equus caballus; Extensive heteroplasmy of the control region [J]. Gene, 1994, 148: 357-362.
    [162] Pietro P, Maria F, Gianfranco G, et al. The complete nucleotide sequence of goat (Capra hircus) mitochondrial genome [J]. DNA sequence, 2003, 14(3): 199-203.
    [163] Kutsyi M P, Gouliaeva N A, Kuznetsova E A, et al. DNA-binding proteins of mammalian mitochondria [J]. Mitochondrion, 2005, 5(1): 35-44.
    [164] Taanman J W. The mitochondrial genome: Structure, transcription, translation and replication [J]. Biochim Biophys Acta, 1999, 1410: 103-123.
    [165] Gerold K, Marcelo V, Artur S, et al. Analysis of mitochondrial D- loop region casts new light on domestic water buffalo(Bubalus bubalis) phylogeny [J].Mol Phylogenet Evol, 2004, 30: 308-324.
    [166] Faber J E, Stepien C A. The utility of mitochondrial DNA control region sequences for analyzing phylogenetic relationships among populations, species, and genera of the Percidae [A]. Kocher T D, Stepien C A, Eds. In Molecular Systematic of Fishes [M]. SanDiego: Academic Press, 1997, 125-139.
    [167] David O F, Sklbinskl, Zouros S E, et al. Mitochondrial DNA inheritance [J]. Nature, 1994, 368: 817-818.
    [168] Gyllensten U, Wharton D, Josefsson A, et al. Paternal inheritance of mitochondrial DNA in mice [J]. Nature, 1991, 352: 255-257.
    [169] Hutchison C A, Newbold J E, Potter S S, et al. Maternal inheritance of mammalian mitochondrial DNA [J]. Nature, 1974, 251: 536-538.
    [170] Watanabe T, Masangkay J S, Wakana S, et al. Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns [J]. Biochem Genetics, 1989, 27: 431-438.
    [171] Lamb T, Avise J C. Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: the influence of mating behavior [J]. Proc Natl Acad Sci. USA, 1986, 83: 2526-2530.
    [172] Giles R E, Blance H, Cann H M, et al. Maternal inheritance of human mitochondrial DNA [J]. Proc Natl Acad Sci USA, 1980, 77(11): 6715-6719.
    [173] Gyllensten U, Wharton D, Wilson A C. Maternal inheritance of mitochondrial DNA in mice [J]. J Hered, 1985, 76: 321-324.
    [174] Shitara H, Hayashi Jun-Ichi, Takahama S, et al. Maternal inheritance of mouse in interspecific hybrids: Segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage [J]. Genetics, 1998, 148: 851-858.
    [175] Kondo R, E T Matsuura, S I Chigusa. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method [J]. Genetic Research, 1992, 59: 81-84.
    [176] Schwartz M, Vissing J. Brief report: Paternal inheritance of mitochondrial DNA [J]. The new England Journal of Medicine, 2002, 347(8): 576-580.
    [177] Bromham L, Eyre-Walker A, Smith N H, et al. Mitochondrial steve: paternal inheritance of mitochondria in humans [J]. Trends in Ecology and Evolution, 2003, 18(1): 2-4.
    [178] Justin C S J, Gerald Schatten. Paternal Mitochondrial DNA Transmission During Nonhuman Primate Nuclear Transfer [J]. Genetics, 2004, 167: 897-905.
    [179] 赵兴波, 储明星, 李 宁, 等. 绵羊线粒体 DNA 的父系遗传 [J]. 中国科学(C辑), 2000, 30(6): 642-646.
    [180] Zhao X, Li N, Guo W, et al. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries) [J]. Heredity, 2004, 93(4): 399-403.
    [181] Kikkawa Y, Takada Sutopo T, Nomura K, et al. Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle [J]. Animal Genetics, 2003, 34: 96-101.
    [182] 赵兴波, 李 宁, 吴常信. 动物线粒体核质基因互作的研究进展 [J]. 遗传, 2001, 23(1): 81-85.
    [183] Adam Eyre-Walker, Philip Awadalla. Does human mtDNA recombine [J]. J Mol. Evol, 2001, 53: 430-435.
    [184] Xia Xuhua. The rate heterogeneity of nonsynonymous substitutions in mammalian mitochondrial genes [J]. Mol Biol Evol, 1998, 15(3): 336-344.
    [185] Rand D M. Endotherms, ectotherms, and mitochondrial genome-size variation [J]. J Mol Evol, 1993, 37: 281-295.
    [186] 张四明,邓 怀,汪登强, 等. 中华鲟(Acipenser sinensis) mtDNA 个体间的长度变异与个体内的长度异质性 [J]. 遗传学报, 1999, 26(5): 489-496.
    [187] Brzuzan Pawel. Tandemly repeated sequences in meDNA control region of whitefish, Coregonus lavaretus [J]. Genome, 2000, 43(3): 584-587.
    [188] Hauswirth W W, Laipis P J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows [J]. Proc Natl Acad Sci U S A, 1982, 79(15): 4686-4690.
    [189] Bendall K E, Macaulay V A, Baker J R, et al. Heteroplasmic point mutations in the human mtDNA control region [J]. Am J Hum Genet, 1996, 59 (6): 1276-1287.
    [190] Tully L A, Parsons T J, Steighner R J, et al. A sensitive denaturing gradient - Gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region [J]. Am J Hum Genet, 2000, 67 (2): 432-443.
    [191] Ingman M, Gyllensten U. Analysis of the complete human mtDNA genome:Methodology and inferences for human evolution [J]. Journal of Heredity, 2001, 92(6): 454-461.
    [192] Kouch T D, Thomas W K A, Meyer S V, et al. Dynamics of mitochondrial DNA evolution in animal :amplification and sequencing with conserved primers [J]. Proc Acad Sci USA, 1989, 86: 6190-6200.
    [193] Vladimir O A, Poltoraus L A, Zhivotovsky V. Mitochondrial DNA sequence diversity in Russians [M]. Federation of European Biochemical Societies Letter, 1999, 197-201.
    [194] 刘益平, 朱 庆, 曾凡同, 等. 原鸡线粒体 DNA 部分序列多态性分析 [J]. 畜牧兽医学报, 2004, 35(2): 134-140.
    [195] 李 明, 王小明, 盛和林. 四种鹿属动物线粒体 DNA 差异和系统进化关系研究 [J]. 动物学报, 1999, 45(1): 99-105.
    [196] 崔雨新, 王小明, 梁云媚, 等. 在线粒体 DNA 细胞色素 b 基因序列水平上鬣羚系统发育的研究 [J]. 兽类学报, 2001, 21(4): 251-258.
    [197] 李庆伟, 田春宇, 李 爽, 等. 鹰科四种鸟类线粒体 DNA 的差异和分子进化关系的研究 [J]. 遗传, 2001, 23(6): 529-534.
    [198] 张亚平. 金丝猴属的DNA序列变异及进化与保护遗传学研究 [J]. 遗传学报, 1997, 24(2): 116-121.
    [199] Douglas A Elrod, Earl G, Zimmerman, et al. A new subspecies of pocketgopher (genus Geomys) from the Ozark Mountains of Arkansas with comments on its historical biogeography [J]. Journal of Mammalogy, 2000, 81(3): 852-864.
    [200] Brian S, Arbogast. Mitochondrial DNA phylogeography of the New World flyings quirrels (Glaucomys): Implications for Pleistocene biogeography [J]. Journal of Mammalogy, 1999, 80(1): 142-155.
    [201] Steven M, David S, PierrePepin, et al. Molecular systematics of gadidfishes: Implications for the biogeography origins of Pacific species [J]. Canadian Journal of Zoology, 1999, 77(1): 19-26.
    [202] 刘安芳, 王继文, 朱 庆. 家鹅线粒体细胞色素b跨膜螺旋结构分析 [J]. 畜牧兽医学报, 2006, 37 (2): 117-121.
    [203] 赵 凯, 杨公社, 李俊兵, 等. 黄河裸裂尻鱼群体遗传结构和Cyt b 序列变异 [J]. 水生生物学报, 2006, 30(2): 129-132.
    [204] 邢秀梅, 杨福合, 苏伟林, 等. 新疆马鹿 mtDNA 细胞色素 b 多态性分析 [J].吉林农业大学学报, 2006, 1: 1-4.
    [205] 邢秀梅, 杨福合, 苏伟林, 等. 鹿线粒体DNA序列多态性分析 [J]. 吉林农业大学学报, 2006, 28(13): 325-329.
    [206] 李金莲, 石有斐, 布仁其其格, 等. 三大不同品种马mtDNA Cytb基因PCR-RFLP分析 [J]. 遗传, 2006, 28(8): 933-938.
    [207] Fumihito A, Miyake T, Sumi S, et al. One subspecies of the red jungle fowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds [J]. Proc Natl Acad Sci USA, 1994, 91: 12505-12509.
    [208] Fumihito A, Miyake T, Takada M, et al. Monophyletic origin and unique dispersal patterns of domestic fowls [J]. Proc. Natl. Acad. Sci. USA, 1996,93: 6792-6795.
    [209] 杨 光, 周开亚.中国水域江豚种群遗传变异的研究 [J]. 动物学报,1997, 43(4): 411-419.
    [210] John W B, Thomas R L, Donald G C, et al. Genetic variability and population decline in Stellersealions from the Gulf of Alaska [J]. Journal of Mammalogy, 1998, 79(4): 1390-1395.
    [211] Robin L W, Gregory M C C. Macro geographic structure and patterns of genetic diversity in harborseals (Phocavitulina) from Alaska to Japan [J]. Journal of Mammalogy, 2002, 83(4): 1111-1126.
    [212] 刘中禄, 魏 泓, 曾养志, 等. 中国三种实用小型猪 mtDNA D-loop 多态性分析 [J]. 动物学报, 2001, 47(4): 425-430.
    [213] 刘若余, 夏先林, 雷初朝, 等. 贵州黄牛mtDNA D-loop遗传多样性研究 [J]. 遗传, 2006, 28(3): 279-284.
    [214] 张红平, 李 利, 李学伟. 4 个引进山羊品种 mtDNA 控制区序列变异和系统发生关系研究 [J]. 中国畜牧杂志, 2006, 42(9): 1-4.
    [215] 李祥龙, 张增利, 巩元芳, 等. 我国主要地方绵羊品种 mtDNA D-loop 区PCR-RFLP 研究 [J]. 遗传, 2006, 28(2): 165-170.
    [216] 邱高峰. 中国对虾 16srRNA 基因序列多态性的研究 [J]. 动物学研究, 2000, 21(1): 35-40.
    [217] Monica M, Timothy M C, Patrick J W. mtDNA ribosomal genephylogency of seahares in the genus Aplysia (gastropoda, opisthobrancia, Anaspidea):Implications for comparative eneurobiology [J]. Systematic Biology, 2001, 50(5): 676-688.
    [218] 李伟丰, 黄永成 陈邦禄, 等. 7种长蠹科昆虫的线粒体DNA ND4基因序列比较分析 [J]. 植物检疫, 2001, 15(5): 257-262.
    [219] 张四明, 王登强, 邓 怀, 等. 长江中游水系鲢和草鱼群体 mtDNA 遗传变异的研究 [J]. 水生生物学报, 2002, 26(2): 142-147.
    [220] 姚纪花,楼允东,江 涌. 我国六地区银鲫种群线粒体多态性的研究 [J]. 水产学报, 1998, 22(4): 289-295.
    [221] Watanabe T, Masangkay J S, Wakana S, et al. Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns. Biochem [J]. Genetics, 1989, 27: 431-438.
    [222] 陈 宏, F Leibenguth, 邱 怀. 家畜线粒体 DNA(mtDNA)多态性研究 [J]. 黄牛杂志, 1995, 21(1): 7-13.
    [223] Chen H and Leibenguth F. Restriction endonuclease analysis of mitochondrial DNA of three farm animal species: Cattle, sheep and goat. Comp. BIochem. Physiol [J]. Part B: Biochemical and molecular Biology, 1995, 111(4): 643-649.
    [224] 蒙世杰, 王 静, 刘 佩, 等. 羚牛细胞色素 b 基因序列分析和系统进化研究[J]. 西北大学学报(自然科学版), 2001, 31(4): 347-354.
    [225] 兰 宏, 熊习昆, 林世英. 云南黄牛和大额牛的 mtDNA 多态性研究 [J]. 遗传学报, 1993, 20(5): 233-235.
    [226] 涂正超. 动物线粒体 DNA 多态性及其在畜牧科学种的应用 [J]. 黑龙江畜牧兽医, 1994, 12: 38-40.
    [227] 孙玉华, 王 伟, 刘思阳, 等. 中国胭脂鱼线粒体控制区遗传多样性分析 [J].遗传学报, 2002, 29(9): 787-790.
    [228] 罗静, 张亚平, 朱春玲, 等. 鲫鱼遗传多样性的初步研究 [J]. 遗传学报, 1999, 26(1): 36-38.
    [229] 赵 凯, 李军祥,张亚平, 等. 青海湖裸鲤 mtDNA 遗传多样性的初步研究 [J].遗传, 2001, 23(5): 445-448.
    [230] S Sultana, H Mannen, S Tsuji. Mitochondrial DNA diversity of Pakistani goat [J]. J Anim Genet, 2003, 34(6): 417-421.
    [232] 雷初朝,陈 宏,杨公社, 等. 中国部分黄牛品种 mtDNA 遗传多态性研究 [J]. 遗传学报, 2004, 31(1): 57-62.
    [233] 黄族豪, 刘迺发, 龙 进, 等. 从线粒体DNA控制区基因比较石鸡和大石鸡的遗传变异 [J]. 江西农业大学学报, 2006, 28(3): 420-425.
    [234] 周 慧, 李迪强, 张于光, 等. 藏羚羊mtDNA D-loop区遗传多样性研究 [J]. 遗传, 2006, 28(3): 299-305.
    [235] Luis C, Bastos-Silveira C, Cothran E G, et al. Iberian origins of New World horse breeds [J]. J Hered, 2006, 97(2): 107-113.
    [236] Iwanczyk E, Juras R, Cholewinski G, et al. Genetic structure and phylogenetic relationships of the Polish Heavy horse [J]. J Appl Genet, 2006, 47(4): 353-359.
    [237] Guo S, Savolainen P, Su J, et al. Origin of mitochondrial DNA diversity of domestic yaks [J]. BMC Evol Biol, 2006, 6: 73.
    [238] Kijas J M H, Anderson L. A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome [J]. J Mol Evo, 2001, 52: 302-308.
    [239] 蒋思文, Giuffra Elisabetta, Andersson Leif, 等. 6 个中国猪地方品种和 3 个瑞典猪 DNA 分子系统发育相关关系 [J]. 遗传学报, 2001, 28(12): 1120-1128.
    [240] Yang J, Wang J, Kijas J. Genetic diversity present within the near-completemtDNA genome of 17 breeds of indigenous Chinese pigs [J]. Journal of Heredity, 2003, 94(5): 381-385.
    [241] Grossi S F, Lui J F, Garcia J E, et al. Genetic diversity in wild (Sus scrofa scrofa) and domestic (Sus scrofa domestica) pigs and their hybrids based on polymorphism of a fragment of the D-loop region in the mitochondrial DNA [J]. Genet Mol Res, 2006, 5(4): 564-568.
    [242] Fang M, Andersson L. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication [J]. Proc Biol Sci, 2006, 273(1595):1803-1810.
    [243] 王存芳, 曾勇庆, 杜立新, 等. 线粒体 DNA(mtDNA)的研究进展 [J]. 动物科学与动物医学, 2001, 18(1): 16-18.
    [244] Lei C Z, Chen H, Zhang H C,et al. Origin and phylogeographical structure of Chinese cattle [J]. Anim Genet, 2006, 37(6): 579-82.
    [245] 李 伟,张雁云. 基于线粒体细胞 b 基因序列探讨红喉姬鹟两亚种的分类地位 [J].动物学研究, 2004, 25(2): 127-131.
    [246] 史宪伟, 曾凡同, 邱祥聘, 等. 中国主要鹅品种的线粒体 DNA 多态性与起源分化研究 [J]. 遗传学报, 1998, 25(6): 499-507.
    [247] Vila` C, Savolainen P, Maldonado J E, et al. Multiple and ancient origins of the domestic dog [J]. Science, 1997, 276(13): 1687-1689.
    [248] 罗理杨. 现代家犬的起源----线粒体 DNA 的研究: [学位论文] [D]. 杨陵:西北农林科技大学, 2003.
    [249] Ivankovic A, Dovc P, Kavar T, et al. Genetic cha2racterisation of the Pag island sheep breed based on microsatellite and mtDNA data [J]. Small Ruminant Research, 2005, 57(2-3): 167-174.
    [250] Vila C, Leonard J A, Gotherstrom A, et al. Widespread origins of domestic horse lineages [J]. Science, 2001, 291(5503): 474-477.
    [251] Jansen T, Forster P, Levine M A, et al. Mitochondrial DNA and the origins of thedomestic horse [J]. Proc Natl Acad Sci USA, 2002, 99(16): 10905-10910.
    [252] 王 昕.中国中西部 9 个地方绵羊品种 mtDNA 遗传多样性与系统进化研究: [学位论文] [D]. 杨陵: 西北农林科技大学, 2005.
    [253] Liu R Y, Yang G S, Lei C Z. The Genetic Diversity of mtDNA D-loop and the Origin of Chinese Goats [J]. Acta Genetica Sinica, 2006, 33 (5):420-428.
    [254] 巩元芳, 李祥龙, 刘铮铸, 等. 几个地方绵羊品种线粒DNA(mtDNA)细胞色素b基因多态性研究 [J]. 中国兽医学报, 2006, 26(2): 213-215.
    [255] Tapio M, Marzanov N, Ozerov M, et al. Sheep mitochondrial DNA variation in European, Caucasian, and Central Asian areas [J]. Mol Biol Evol, 2006, 23(9): 1776-1783.
    [256] Pedrosa S, Arranz J J, Brito N, et al. Mitochondrial diversity and the origin of Iberian sheep [J]. Genet Sel Evol, 2007, 39(1): 91-103.
    [257] Chen S Y, Duan Z Y , Sha T, et al. Origin, genetic diversity, and population structure of Chinese domestic sheep [J]. Gene. 2006, 376(2): 216-223.
    [258] 王 文, 兰 宏, 刘爱华, 等. 家鸡和原鸡的线粒体DNA多态性比较 [J]. 动物学研究, 1994, 15(4): 45-61.
    [259] Liu Y P, Wu G S, Yao Y G, et al. Multiple maternal origins of chickens: Out of the Asian jungles [J]. Molecular Phylogenetics and Evolution, 2006, 38: 12-19.
    [260] Liu Y P, Zhu Q, Yao Y G. Genetic relationship of Chinese and Japanese gamecocks revealed by mtDNA sequence variation [J]. Biochem Genet, 2006, 44(1-2): 19-29.
    [261] Ronan T L, David E M, Daniel G. Evidence for two independent domestications of cattle [J]. J Proc Acid Sci USA, 1994, 91: 2757-2761.
    [262] 贾永红, 史宪伟, 简承松, 等. 贵州四个山羊品种 mtDNA 多态性及起源分化 [J]. 动物学研究, 1999, 20(2): 88-92.
    [263] H Takahashi, K Takata. Multiple lineages of the mitochondrial DNA introgression from Pungitius pungitius(L.) to Pungitiust ymensis(Nikolsky) [J]. Canadian Journal ofFisheries and AquaticSciences, 2000, 57(9): 1814-1833.
    [264] Koh H S, Zhang M H, Wang J X , et al. Mitochondrial DNA variation in the red squirrel ( Sciurus vu lgaris mantchuricus) from Korea and Northeast China [J]. Acta Theriologica Sinica, 2006, 26(1): 1-7.
    [265] 文陇英, 阮禄章, 刘迺发. 角雉属分类地位的探讨 [J]. 动物分类学报, 2006, 31(3): 467-474.
    [266] Zhao J L, Wang W W, Li S F, et al. Structure of the Mitochondrial DNA Control Region of the Sinipercine Fishes and Their Phylogenetic Relationship [J]. Acta Genetica Sinica, 2006, 33(9): 93-799.
    [267] 黄族豪, 龙 进, 张立勋, 等. 从线粒体 DNA 控制区基因探讨红腹锦鸡和白腹锦鸡的分类关系 [J]. 江西师范大学学报(自然科学版), 2006, 30(1): 91-94.
    [268] 张 静, 白俊杰, 叶 星, 等. 用线粒体 DNA D-loop 区序列探讨盘丽鱼属鱼类系统分类 [J]. 上海水产大学学报, 2006, 15(1): 17-20.
    [269] Gordon L, Ludovic G, Laurent E, et al. Multiple maternal origins and weak phyogeographic structure in domestic goats [J]. J Proc Acid Sci USA, 2001, 98(10): 5927-5932.
    [270] Liu N F, Wen L Y, Huang Z H, et al. Introgressive hybridization between Alectoris magna and A1chukar in the Liupan Mountain Region [J]. Acta Zoologica Sinica, 2006, 52(1):153-159.
    [271] Fang M, Berg F, Ducos A, et al. Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38 [J]. Anim Genet, 2006, 37(5): 459-64.
    [272] Riabinina O M. Mitochondrial DNA variation in Asian guardian dogs [J]. Genetika, 2006, 42(7): 917-920.
    [273] Pires A E, Ouragh L, Kalboussi M, et al. Mitochondrial DNA sequence variation in Portuguese native dog breeds: diversity and phylogenetic affinities [J]. J Hered, 2006, 97(4): 318-330.
    [274] Beja-Pereira A, Caramelli D, Lalueza-Fox C, et al. The origin of European cattle: evidence from modern and ancient DNA [J]. Proc Natl Acad Sci USA, 2006, (21): 8113-8118.
    [275] Bell B R. Effects of cytoplasmic in heritance on production traits of dairy cattle [J]. J Dairy Sci, 1985, 68: 2038-2051.
    [276] Toelle V D. Cytoplamic effects in swine [J]. J Anim Sci, 1986, 63: 203.
    [277] 薄吾成. 中国家畜起源论文集 [M]. 陕西: 天则出版社, 1993, 45-61.
    [278] 郑作新. 中国动物志,鸟纲(第四卷:鸡形目) [M]. 北京: 科学出版社, 1978.
    [279] 杨 岚. 红色原鸡在中国的分布与习性 [A]. 中国鸟类学研究, 第四届海峡两岸鸟类学术研讨会论文集 [M], 中国林业出版社, 2000, 121-124.
    [280] Delacour J. The pheasants of the world [M]. 2nd edition, Spur publications hindhead suurey, 1957, 103-119.
    [281] Howard Randmoore A. A compete check list of birds of the world [M]. Revised edition, London: Macmillan, 1984, 106.
    [282] Darwin C. The variation of animals and plants under domestication [M]. 20d edition, Vol. I.D, New york: Appleton and company, 1896.
    [283] Harrison C J O, Walker C A. The North Atlantic alba-. tross Diomedea anglica, a Pliocene – Lower Pleistocene species [J]. Tert Res, 1978, 2: 45–46.
    [284] Harrison C J O. Cuculiform, piciform and passeriform birds in the Lower Eocene of England [J]. Tert Res, 1982, 4: 71–81.
    [285] West B, Zhou B X. Did chicken go north? New evident for domestication [J]. World’s Poultry Science J, 1989, 45: 205-218.
    [286] Plant W J. The origin, evolution, history and distribution of the domestic fowl. Part3. the gallus species [M]. Jungle fowls, privated published 54b on a street, maitland2320, N.S.W. 1986.
    [287] Harrison C J O. A Field Guide to the Nests, Eggs, and Nestlings of North America. Peterson Field Guide Series [M]. Collins, London, Cleveland, New York,1988.
    [288] 《中国家畜家禽品种志》编委会. 中国家禽品种志 [M]. 上海:上海科学技术出版社, 1988.
    [289] 吴信生. 利用微卫星技术分析中国地方鸡品种遗传多样性及其与生产性能的关系: [学位论文] [D]. 扬州: 扬州大学, 2004.
    [290] 杨 宁, 李显耀. 家鸡与原鸡 [J]. 生物学通报, 2005, 40(1): 15-17.
    [291] Baker J E, Norris D M. Neurophysiological and biochemical effects of naphtha quinones on the central system of Periplaneta [J]. J Insect Physiol, 1971, 17: 2383-2394 .
    [292] Baker J E, Norris D M. Effects of feeding-inhibitory quinones on the nervous system [J]. Periplaneta Experientia, 1972, 28: 31-32.
    [293] Weiss R A, Biggs P M. Leukosis and Marek's disease viruses of feral red jungle fowl and domestic fowl in Malaya [J]. J Natl Cancer Inst, 1972, 49(6):1713-1725.
    [294] Frisby D P, Weiss R A, Roussel M, et al. The distribution of endogenous chicken retrovirus sequences in the DNA of galliform birds does not coincide with avian phylogenetic relationships [J]. Cell, 1979, 17(3): 623-634.
    [295] 程光潮, 刘坤凡, 张 琦, 等. 红色原鸡与家鸡的亲缘关系研究 [J]. 遗传学报, 1996, 23(2): 96-104.
    [296] 傅 衍, 牛 冬, 罗 静, 等. 中国家鸡的起源探讨 [J]. 遗传学报, 2001, 28(5): 411-417.
    [297] 刘益平, 朱 庆, 曾凡同, 等. 原鸡线粒体 DNA 部分序列多态性分析 [J]. 畜牧兽医学报, 2000, 35(2): 134-140.
    [298] 陈国宏, 王克华, 王金玉, 等. 中国禽类遗传资源 [M]. 上海:上海科技出版社, 2004.
    [299] 中国畜禽遗传资源状况编委会. 中国畜禽遗传资源状况 [M]. 北京:中国农业出版社, 2004.
    [300] Weigend S, Romanov M N. Current strategies for the assessment and evaluationof genetic diversity in chicken resources [J]. World Poult Sci J, 2001, 57 (3): 275-288.
    [301] 萨姆布鲁克 J,拉塞尔 D W. 分子克隆实验指南 [M]. 北京: 科学出版社, 2002.
    [302] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980, 32: 314-331.
    [303] Felsentein J. Confidence limits on phylogenies: an approach using the bootstrap [J]. Evolution, 1985, 39(4): 783-791.
    [304] Rousset F. Genetic differentiation and gene flow from F- statistics under isolation by distance [J]. Genetics, 1997, 145: 1219-1228.
    [305]Park S D E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection: [Ph.D. thesis] [D]. University of Dublin, 2001
    [306] Goudet J. FSTAT version 2.9.3.2. Switzerland: Department of Ecology & Evolution, University of Lausanne, LAUSANNE, 2002.
    [307] Raymond M, Rousset F. Population genetics software for exact test and ecumenicism [J]. Journal of Heredity, 1995, 86: 248-249.
    [308] Felsentein J. PHYLIP (Phylogeny inference package) version 3.57c. USA: Department of Genetics, University of Washington, Seattle, 1995.
    [309] Saitou N and Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol, 1987, 4: 406-425.
    [310] Prichad J K, Stephens M, Donnely P. Inference of population structure using multilocus genotype data [J]. Genetics, 2000, 155: 945-959.
    [311] Rosenberg N A, Pritchard J K, Weber J L, et al. Genetic structure of human populations [J]. Science, 2002, 298: 2981-2985.
    [312] Rosenberg N A. Distruct: a program for the graphical display of population structure [J]. Molecular Ecology Notes, 2004, 4: 137-138.
    [313] Chambercian J S, Gibbs R A, Ranier J E, et al. Detection screening of theduchenne muscular dystrophy locus via mutiplex DNA amplification [J]. Nucl Acids Res, 1988, (16): 1141-1156.
    [314] 黄银花,胡晓湘,邓学梅,等. 利用多重 PCR 进行鸡基因组扫描 [J]. 自然科学进展, 2001, 11(9): 950-954.
    [315] 孟凡玲. 利用多重 PCR 进行丝羽乌骨鸡产蛋量与微卫星标记的相关分析: [学位论文] [D]. 雅安: 四川农业大学, 2004.
    [316] Hillel J, Groenen M A M, Tixier-Boichard M, et al. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools [J]. Genet Sel Evol, 2003, 35: 533-557.
    [317] Vanhala T, Tuiskula-Haavisto M, Elo K, et al. Evaluation of genetic distances between eight chicken lines using microsatellite markers [J]. Poultry Science, 1998, 77: 783-790.
    [318] Maudet C, Miller C, Bassano B, et al. Microsatellite DNA and recent statistical methods in wild conservation management: application in Alpine ibex Capra ibex (ibex) [J]. Molecular Ecology, 2002, 11: 421-436.
    [319] Jurg Ott. Analysis of Human Genetic Linkage [M]. Revised edition, Baltimore: Johns Hopkins University Press, 2001.
    [320] 杜志强,曲鲁江,李显耀, 等. 藏鸡群体遗传多样性研究 [J]. 遗传, 2004, 26(2): 167-171.
    [321] 王存芳, 张 劳, 李俊英, 等. 平原饲养的藏鸡体型外貌分析和生长模型拟合的研究 [J]. 中国农业科学, 2005, 38(5): 1065-1068.
    [322] 耿照玉, 姜润深. 淮南麻黄鸡血清酯酶多态性与屠宰性能及肉质的关系[J]. 中国兽医学报, 2003, 23(1): 82-83.
    [323] 张云芳. 淮南麻黄鸡若干肉用性能的测定及其 RAPD 标记的研究: [学位论文] [D]. 合肥: 安徽农业大学, 2003.
    [324] Maudet C, Miller C, Bassano B, et al. Microsatellite DNA and recent statistical methods in wild conservation management: application in Alpine ibex Capra ibex(ibex)[J]. Molecular Ecology, 2002,11: 421-436.
    [325] 闫路娜, 张德兴. 种群微卫星 DNA 分析中样本量对各种遗传多样性度量指标的影响 [J]. 动物学报, 2004, 50(2): 279-290.
    [326] 张继全,邵春荣,王毓英, 等. Nei 氏标准遗传距离的估测精度 [J]. 畜牧兽医学报, 1998, 29(1): 27-32.
    [327] 张爱玲, 马月辉, 陈秀梅, 等. 不等微卫星座位数目对 Nei 氏标准遗传距离估测精度的影响 [J]. 畜牧兽医学报, 2005, 36(5): 431-433.
    [328] 常 弘, 柯亚永, 苏应娟, 等. 野生与笼养绿孔雀种群的随机扩增多态 DNA研究 [J]. 遗传, 2002, 24(3): 271-274.
    [329] 柯亚永, 常 弘, 苏应娟, 等. 笼养蓝孔雀两个种群的随机扩增多态 DNA 分析 [J]. 中山大学学报(自然科学版), 2002, 41(1): 123-124.
    [330] 朱世杰, 常 弘, 张国萍, 等. 孔雀属孔雀线粒体细胞色素 b 基因全序列分析及其系统进化研究 [J]. 中山大学学报(自然科学版), 2004, 43(6): 45-47.
    [331] 邹方东, 童芯锌, 岳碧松. 孔雀活化素基因(activin)βA 亚基成熟肽序列的分子克隆及其对白孔雀起源与分类的佐证分析 [J]. 遗传, 2005, 27(2): 231-235.
    [332] Gortari M J D, Freking B A, Kappes S M, et al. Crawford A M. Extensive genomic conservation of cattle microsatellite heterozygosity in sheep [J]. Animal Science, 1997, 28(17): 274-290.
    [333] 鲁双庆, 刘少军, 刘红玉, 等. 黄鳝微卫星引物筛选及其在保护遗传学上的应用 [J]. 水产学报, 2005, 29(5): 612-618.
    [334] Rozas J, Sánchez-DelBarrio J C, Messeguer X. DnaSP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics, 2003, 19: 2496-2497.
    [335] Kumar S, Tamura K & Nei M. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment [J]. Briefings in Bioinformatics, 2004, 5: 150-163.
    [336] Excoffier L G. and S Schneider. Arlequin ver. 3.0: An integrated software package for population genetics data analysis [J]. Evolutionary Bioinformatics Online, 2005, 1:47-5.
    [337] Tobias P, Siavash V. Network4.1.0.8 [M]. Fluxus Technology Ltd. 2004.
    [338] Nei M, Kumar S. 分子进化与系统发育[M]. 北京:高等教育出版社. 2002, 6.
    [339] 傅 衍, 牛 冬, 阮 晖, 等. 浙江省兼用型地方鸡种亲缘关系的研究 [J]. 农业生物技术学报, 2001, 9(4): 3l6-3l8.
    [340] 童晓梅, 梁 羽, 王 威, 等. 藏鸡线粒体全基因组序列的测定和分析 [J]. 遗传, 2006, 28(7): 769-777.
    [341] 傅 衍, 牛 冬, 阮 晖, 等. 浙江省地方鸡种的遗传多样性研究 [J]. 遗传学报, 2001, 28(7): 606-613.
    [342] Wilson A C,Cann R L, Carr S M. Mitochondrial DNA and two perspectives on evolutionary genetics [J].Bilogy Journal of the Lmnaen Society, 1985, 26: 375-400.
    [343] 张亚平, 施立明. 动物线粒体DNA多态性的研究概况 [J]. 动物学研究, 1992,13(3): 289-298.
    [344] Gavin T A, Yensn H P, May B. Population genetic structure of the northern udaho ground squirrel(Spermophflus bruneus bruneus) [J].Journal of Mammalogy, 1999,80(1): 156-168.
    [345] Bensch S, Hasselquist D. PhylogeographIc population structure of great reed warblers: an analysis of mtDNA control region sequences [J]. Biological Journal of the Linnean Society, 1999, 66(2): 171-185.
    [346] Paul H B.Phylogeography of the canyon tree frog,hylaaranicolor (Cope) based on mitochondrial DNA sequence data [J]. Molecular Ecology, 1999, 8: 547-562.
    [347] Waters J M, Burridge C P. Extreme intraspecific mitochondrial DNA sequence dive most wide spread freshwater fish [J].Molecular Phylogenetics and Evolution, 1999,11: 1-12.
    [348] Van Wagner C E, Baker A J. Association between mitochondrlal DNA and morphological evolution in Canada geese [J]. Journal of Molecular Evolution, 1990, 31:373 -382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700