用户名: 密码: 验证码:
几类网络控制系统的建模与控制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统是一种全分布、网络化实时反馈控制系统,它是计算机技术、通信技术与控制技术发展与融合的产物,具有信息资源能够共享、系统成本低、使用灵活、易于维护等优点,在工业自动化等方面已产生了深远影响。然而,控制系统引入网络后,由于带宽有限、分时复用、数据传输路径不确定等的影响,导致信息在网络传输中出现等待、乱序及丢包等现象。这些都会不同程度的影响控制系统性能,甚至导致系统失稳,给网络控制系统的分析、设计与控制带来很大困难。因此,如何解决上述问题,成为当今学术界最具挑战的课题之一。本文针对网络控制系统中存在的时延、丢包、乱序等问题,研究单包,多包传输,有线及无线网络控制系统的建模,包丢失检测和控制器设计算法。
     首先,针对同时具有时变时延和包丢失的单包传输网络控制系统,假设在一个采样周期末,若传感器数据未能成功被执行器接收,则丢弃该数据,将时变的网络条件看成是Markov状态的跳变,体现包丢失和网络诱导时延(为采样周期的任意倍)随机特征的等价时延由潜在的Markov状态来控制,应用迭代方法,将网络控制系统建模为离散时间Markov跳变系统,从而满足网络的时变特性。然后,利用随机稳定分析方法,通过线性矩阵不等式给出了系统稳定的充分条件和相应的控制器。数值算例验证了结果的有效性和优越性。
     其次,针对单包传输网络中存在的长时延、丢包及乱序问题,利用增广矩阵方法,考虑了网络控制系统的联合建模,将该网络控制系统建模为一个简单的离散时间切换系统,该模型更符合网络的时变特性。基于建立的模型,利用系统定性分析方法,给出了最大包丢失数目的计算公式和更具一般性的系统稳定结果,同时设计了相应的控制器。数值算例验证了结果的有效性。
     再次,针对多包传输网络控制系统,根据包丢失和量化的特性,将未知和随机的包丢失考虑为一种故障,而将量化误差建模为一种扰动。多包传输网络控制系统被建模为具有扰动和故障的增广离散时间线性切换系统。然后,通过鲁棒故障检测方法设计了最优滤波器,成功的检测到包丢失的发生。进一步,使用网络内模控制算法,设计了多包传输网络控制系统的高性能控制器,从而解决了系统性能和网络特性之间的冲突。仿真算例说明了方法的有效性。
     最后,本文给出了应用自适应编码调制的无线网络控制系统的建模及控制器设计方法,该方法可以提高能量效率,增加衰减信道传输的数据率。通过引入系统时延的概念,将无线传输通道的时变速率,干扰和路由特性包含到整个系统中。基于时变的网络条件,给出了系统时延的上下界。执行器为事件驱动时,将该系统建模为多控制器切换系统,用LMI的方法获得了闭环系统稳定的充分条件和状态反馈控制器;执行器为时间驱动时,将无线网络控制系统建模为具有时变输入延迟和结构不确定性的离散时间线性系统,利用新的时滞系统技术给出了系统保成本控制器设计方法。数值算例表明了本章方法的有效性。
Networked control system is a distributed real-time feedback control system, it is the syncretic results for computer technology, communication technology and control technology, and has a lot of advantages, such as shared information source, low cost, flexible use, simple maintenance. Thus it makes great sense in industrial automation. However, because of networks introduced in control system, information is delayed, disordered or dropout for the finite bandwidth, time division multiple access and the uncertain data transmission path. All of these will affect the performance of control system in different degree, even make it unstable, and bring great difficulty in system analyzing, designing and controlling. Thus, how to solve the problems above is becoming one of the most challenging tasks in today’s academe. This paper studies the modeling, packet detection and controller design algorithm for single-packet and multi-packet transmission, wire and wireless networked control system control system under consideration of delay, packet loss and disorder problems.
     Firstly, aiming at single-packet transmission networked control system with time-varying delay and packet loss, we assume that the packet will be dropped out if it does not arrive at actuator in one sampling period. Then the time-varying network conditions are considered as the jump of Markov states, and Equivalent Delay, which embodies stochastic character of packet loss and network induced delay (the random times of sampling period), is controlled by those Markov states, networked control system is modeled as discrete time Markov jump system using iterative approach. Thus, the dynamic characteristic of network is satisfied. Then, by stochastic stable analysis method, the sufficient stability conditions and the corresponding controllers are given in terms of Linear Matrix Inequality. Numerical examples show the validity and advantages.
     Secondly, through augmented matrix method, the paper considers the combined model for networked control system with single-packet transmission under consideration of delay, packet loss and disorder, the networked control system is modeled as a simple discrete time switched system. Based on this model, the qualitative analysis method is proposed, maximum number of packet loss and general stable results are given for the closed-loop networked control system. Meanwhile, the corresponding controller can be obtained. Numerical example shows the validity of our methods.
     Thirdly, aiming at networked control system with multi-packet transmission, the unknown and stochastic packet loss is considered as a kind of fault, and the quantization error is regarded as disturbance according to the character of packet dropout and quantization error. Networked control system is modeled as augmented discrete time switched linear system with disturbance and fault. Then, by robust fault detection method, optimal packet loss detection filter is designed to detect packet loss successfully. Further, using the networked internal model control algorithm, the high performance controller is design for networked control system with multi-packet transmission. Then the conflict between system performance and network characteristic is overcome. Simulation example shows the validity of our method.
     Finally, the modeling and controller design are developed for wireless networked control system applying adaptive coded modulation, which can improve the energy efficiency and increase the data rate over a fading channel. Through the introduction of System Delay, the characteristics of varying rate, interference, and routing in wireless transmission channel is contained in the whole system. Based on the time-varying network condition, the analytic lower and upper bounds of System Delays are given. If the actuator is event-driven, the networked control system is modeled as multi-controller switched system, sufficient stabilization condition and state feedback controller is given in terms of Linear Matrix Inequality; When the actuator is time-driven, it is modeled as a discrete-time system with time-varying input delay and structure uncertainty. The guaranteed cost control method of the networked control system is derived by novel techniques of time-delay system. Numerical result shows the validity of our proposed strategies.
引文
1 Y. Halevi, A. Ray. Integrated communication and control systems: Part I-Analysis. ASME Journal of Dynamic Systems, Measurement and Control, 1988, 110(4):367-373.
    2 A. Ray, Y. Halevi. Integrated communication and control systems: Part II-Design Considerations. ASME Journal of Dynamic Systems, Measurement and Control, 1988, 110(4):374-381.
    3 G. C. Walsh, H. Ye, L. Bushnell, et a1. Stability analysis of networked control systems. In Proceedings of the American Control Conference,1999:2876-2880
    4 G. C. Walsh, H. Ye, L. Bushnell. Stability analysis of networked control systems. Proceedings of the 1999 American Control Conference.Piscataway, NJ, USA:IEEE, 1999:2876-2880.
    5 R. M. Murray, K. J. Astrom, S. P. Boyd, et a1. Future directions in control in an information-rich world. IEEE Control Systems Magazine, 2003, 23(2):20-33.
    6商丽娜,张荣标.时延网络控制系统的研究综述.工业控制计算机, 2007, 20(5):1-3.
    7 X. Lin, J. Mikael, H. Haitham, B. Stephen. Joint optimization of wireless communication and networked control systems. Springer Berlin, Germany, 2005:248–272.
    8 R. Luck, A. Ray. An observer-based compensator for distributed delays. Automatica, 1990,26(5):903-908.
    9 R. Luck,A. Ray. Experimental verification of a delay compensation algorithm for integrated communication and control system. International Journal of Control, 1994, 59(6):1357-1372.
    10 H. Chan, U. Ozguner. Closed-loop control of systems over a communication network with queues. International Journal of Control, 1995,62(3):493-510.
    11 F. L. Lian, M. James, T. Dawn. Modeling and optimal controller design of networked control systems with multiple delays. International Journal of Control.2003, 76(6):591-606.
    12 G. C. Walsh, O. Beldiman, L. Bushnell. Error encoding algorithms for networked control system. Proceedings of the 38th conference on Decision and Control, Phoenex, 1999:4933-938.
    13 L. A. Montestruque, P. J. Antsaklis. State and output feedback control in model- based networked control systems. Proeeedings of the 41th Conference on Decision and Control, Lasvegas, 2002, 2: 620-1625.
    14 L. A. Montestruque, P. J. Antsaklis. On the model-based control of networked control systems.Automatiea, 2003, 39(10):1537-1543.
    15 J. Nilsson, B. Bemhardsson, B. Wittenmark. Stochastic analysis and control of real-time systems with random time delays. Automatiea, 1998, 34(l):57-64.
    16 J. Nilsson. Real-time control systems with delays. Phd dissertation. Sweden: Lund Institute of Technology.1998.
    17朱其新,胡寿松.网络控制系统的分析与建模.信息与控制, 2003, 21(l):5-8.
    18 S. S. Hu, Q. X. Zhu. Stochastic optimal control and analysis of stability of network control systems with long delay.Automatica.2003, 39:1877-1884.
    19朱其新,胡寿松,刘亚.无限时间长时延网络控制系统的随机最优控制.控制与理论. 2004, 21(3):321-326.
    20 B. Sinopoli, L. Schenato, M. Franceschetti, et al. Kalman filtering with intermittent observations. IEEE Transaction on Automatic Control.2004, 49(9):1435-1464.
    21 P. Seiler, R. SenguPta. Analysis of communication losses in vehicle control Problems. Proceedings of Ameriean Control Conference, Arlington. 2001(2):1491-1496.
    22 P. Seiler, R. SenguPta. An H- approach to networked control. IEEE Transactions on Automatic Control, 2005, 50(3):356-364.
    23 S. Thtikonda. Control under communication constrains. USA:MIT, 2000.
    24 Y. Xu, J. P. HesPanha. Estimation under uncontrolled and controlled communications in networked control systems. Proeeedings of the 44th Conference on Decision and Control, Seville, 2005:842-847.
    25 S. C. Smith, P. Seiler. Estimation with lossy measurement: jump estimators for jump systems. IEEE Transaction on Automatic Control. 2003, 48(12):2163-2171.
    26 W. Zhang, M. S. Brannicky, S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21 (1):84-99.
    27 D. Yue, Q. L. Han, P. Chen. State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II:Exp. Briefs, 2004, 51(11):640-644.
    28 C. Peng, Y. C. Tian. Networked H∞control of linear systems with state quantization. Information Sciences, 2007, 177(24):5763-5774.
    29 Z. G. Sun, D. S. Zhu. Analysis of networked control systems with multi-Packet transmission Proceedings of the 5th World Congress on Intelligent Control and Automation. Hang Zhou, China. 2004:1357-l360.
    30孙海燕,侯朝祯.具有数据包丢失及多包传输的网络控制系统稳定性.控制与决策, 2005, 20(5):511-515.
    31杨业,王永骥.一类多包传输网络控制系统的设计与稳定性分析.信息与控制, 2005, 34(2):129-132.
    32 F. L. Lian, J. Moyne, D. Tilbury. Analysis and modeling of networked Control systems: MIMO case with multiple time delays. Proceeding of the American control Conference, Arlington,USA, 2001:4306-4312.
    33 G. C. Walsh, L. Bushnell, H. Ye. Stability analysis of networked control systerns. IEEE Transactions on Control systems Technology, 2002, 10(3): 84-99.
    34 D. S. Kim. A scheduling method for networked control systems in fieldbus environments. Seul National University, 2003.
    35 T. J. Su, C. G. Huang. Robust stability of delay dependence for linear uncertain systems. IEEE Transactions on Automatic Control, 1992, 37(10):1656-1659.
    36 B. G. Xu. Comments on robust stability of delay dependence for linear uncertain system. IEEE Transactions on Automatic Control, 1994, 39(11):2365.
    37 Krtolica, U. Qzgianer, H. Chan et a1. Stability of linear feedback systems with random communication delays. Int J Control, 1994, 59(4):925-953.
    38于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究.控制理论与应用, 2002, 19(2):263-267.
    39 Y. Engin. Control of randomly varying systems with prescribed degree of stability. IEEE Trans Automat Contr. 1988, 33(4):407-410.
    40于之训,陈辉堂.闭环网络控制系统的理论与实验研究.博士学位论文.上海同济大学电气工程系. 2000
    41 Q. Ling, D. L. Michael. Optimal dropout compensation in networked control systems. In: Proceeding of the 42nd IEEE Conference on Decision and Control, Mani, Hawaii, USA, 2003.
    42 B. Sinopoli, L. Schenato, M. Franceschetti et a1. Time varying optimal control with packetlosses. In: Proceedings of the 43rd IEEE International Conference on Decision and Control, 2004.
    43 L. L. Lu,L. H. Xie, M. Y. Fu. Optimal control of networked systems with limited communication: a combined heuristic search and convex optimization approach. In: Proc of the 2005American Control Conference,Portland, 0R, 2005: 1419-1424.
    44马长林,张清国.网络化控制系统的随机最优控制.清华大学学报, 2008, 48(100):1175-1779.
    45邱占芝,张庆灵.一类不确定时延网络控制系统最优H∞控制.信息与控制, 2006, 35(l):64-72.
    46樊卫华,蔡哗,陈庆伟,胡维礼.时延网络控制系统的稳定性.控制理论与应用, 2004, 21(6):880-884.
    47谢玲,田有先.网络控制系统的μ鲁棒控制研究.自动化与仪表. 2008, 23(7):28-30.
    48 B. Tvassoli, P. J. Maralani. Robust design of networked control system with randomly varying delays and packet losses. In Proceedings of the 44th IEEE Conference on Decision and Control, 2005:1601-1606.
    49 W. G. Ma, C. Shao. Robust H∞control for networked control systems. Journal of Systems Engineering and Electronics, 2008, 19(5):1003-1009.
    50 W. Feng, J. F. Zhang, Mean square stabilization control of switched systems with stochastic disturbances. Proceedings of the 43rd IEEE Conference on Decision and Control. Piscataway, NJ, USA, 2004:3417-3719.
    51 Y. Tipsuwan, M. Y. Chow. Control methodologies in networked control systems. Control Engineering Practice, 2003, 1l(10):1099-1111.
    52 J. Huang, Z. H. Guan, Z. D. Wang. Robust stabilization of uncertain networked control systems with data packet dropouts. ACTA Automatica sinica. 2005, 31(3):440-445.
    53 D. Ma, J. Zhao. Exponential stabilization of networked control systems and design of switching controller. Journal of Control Theory and Applications. 2006, 4(1):96-101.
    54 Y. Z. Liu, H. B. Yu. Stability of networked control systems based on switched technique. In Proceedings of the 42rd IEEE Conference on Decision and Control, 2003:1110-1113.
    55 M. Yu,L. Wang, T. G. Chu, G. M. Xie. Stabilization of networked control systems with data Packet dropout and network delays via switching system approach. In Proceedings of the 43rd IEEE Conference on Decision and Control, 2004:3539-3544.
    56 M. Yu, L. Wang, G. M. Xie. A switched system approach to stabilization of networked control systems. Journal of Control Theory and Applications. 2006, 4(1):86-95.
    57 J. Wu, E. Q. Deng, J. G. Gao. Modeling and stability of long random delay networked control systems. In Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005:947-952.
    58 S. M. Mu, T. G. Chu, L. Wang. State feedback control of networked systems with uncertain plant. International Journal of Systems Science, 2008, 39(4): 383-393.
    59 K. C. Lee, S. Lee, M. H. Lee. Remote fuzzy logic control of networked contro1 system via Profibus-DP. IEEE Transaction on Industrial Electronics, 2003, 50(4):784-792.
    60 Z. Y. Sun, C. Z. Hou, Fuzzy control for networked control system, In Proceedings of the 2007 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2007:381-384.
    61 Y. Wang, W. L. Hu, W. H. Fan. Fuzzy model and control of nonlinear networked contro1 systems. In Proceedings of the 2005 International Conference on Wireless Communication, Networking and Mobile ComPuting, 2005:1060-1063.
    62 Q. Zhang, X. J. Guo, Z. Wang, et al. Application of improved fuzzy controller in networked control system. Journal of China University of Mining & Technology. 2006, 18(4):500-504.
    63 X. L. Tian, X. S. Wang, Y. H. Cheng. A self-tuning fuzzy controller for networked control system. International Journal of Computer Science and Network Security, 2007, 7(1):97-102.
    64 Y. Zheng, H. J. Fang, H. O. Wang. Takagi-Sugeno fuzzy model based fault detection for networked control systems with Markov delays. IEEE Transaction on Systems, Man, and Cybernetics-Part B: Cybernetics, 2006, 36(4):924-929.
    65 Y. Cheng, Y. B. Ruan, F. J. Cui, et al. Fault Detection for networked control systems with random communication delays. In Proceedings of the 42rd IEEE Conference on Decision and Control, 2008:496-499.
    66霍志红,方华京.一类随机时延网络化控制系统的容错控制研究.信息与控制, 2006,35(5):584-557.
    67 Z. X. Zhang, Z. H. Huo, L. M. Zhang. Fault-tolerant control research for networked control systems based on quasi T-S fuzzy models. In Proceedings of IEEE Conference on Industrial Technology, Chengdu, China, 2008:1-4.
    68 R. P. Patankar. A model for fault-tolerant networked control system using TTP/C cornrnunication. IEEE Transactions on Vehicular Technology, 2004, 53(5):1461-1467.
    69 G. Hassapis, Implementation of predictive control algorithms on networked control systems. American Control Conference. 2006.
    70 L. Fu, G. Z. Dai. Generalized predictive control method for networked control system with Random Time Delay. Measurement and Control Technology, 2007(9): 29-32.
    71 D. Srinivasagupta, H. Schattler, B. Joseph. Time-stamped model predictive control: an algorithm for control of processes with random delays. Computers and Chemical Engineering, 2004, 28(8):1337-1346.
    72 S. H. Hong. Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Transactions on Control Systems Technology, 1995, 3(2):225–230.
    73 T.J. Tarn, N. Xi. Planning and control of internet-based teleoperation. Proceedings of SPIE: Telemanipulator and telepresence technologies V. Boston, MA, 1998, 3524:189–193.
    74 T. F. Abdelzaher, E. M. Atkins, K. G. Shin. QoS negotiation in real-time systems and its application to automated flight control. IEEE Transactions on Computers, 2000, 49(11):1170-1183.
    75 Y. Tipsuwan, M. Y. Chow. Network-based controller adaptation based on QoS negotiation and deterioration. The 27th annual conference of the IEEE industrial electronics society (IECON01). Denver, Co, 2001, 3:1794-1799.
    76 M. Andersson, D. Henriksson, A. Cervin. True-time 1.3 reference manual. Department of Automatic Control, Lund Unlversity, Sweden. 2005.
    77 F. L. Lian, J. R. Moyne, D. M. Tilbury. Performance evaluation of control networks. IEEE Control System Magazine, 2001, 21(l):66-83.
    78 NS-2. http://www.isi.edu/nsnam/ns/index.html, 2004.
    79 G. C. Walsh, Y. Hong. Scheduling of networked control systems. IEEE Control SystemMagaZine, 2001, 21(1):57-65.
    80 F. L. Lian, J. R. Moyne, D. M. Tilbury. Network design consideration for distributed control systems. IEEE Transaction on Control Systems Technology, 2002, l0(2):297-307.
    81 A. Tzes,G. Nikolakopoulos, I. Koutroulis. Development and experimental verification of a mobile client-centric networked controlled system. European Journal of Control, 2005, 11(3):229-254.
    82 G. Nikolakopoulos, A. Panousopoulou. Multi-hopping induced gain scheduling for wireless networked controlled systems. Proceedings of the 44th IEEE Conference on Decision and Contro1, Seville, 2005: 470-475.
    83 X. H. Guo, Design of the output feedback controller for wireless networked control system. Journal of Mechanical and Electrical Engineering Magazine. 2008, 25(9):96-99.
    84 X. H. Liu, A. Goldsmith. Wireless communication tradeoffs in distributed control. Proceedings of the 42th IEEE Conference on Decision and Control, Maui, Hawaii, 2003:688-694.
    85 X. H. Liu, A. Goldsmith. Wireless medium access control in distributed control. The 41st Annual Allerton Conference On Communication, Control and Computing, Monticello, 2003:121-130.
    86 X. H. Liu, A. Goldsmith. Wireless medium access control in networked control system. Proceedings of the 2004 American Control Conference, Boston Massachusetts, 2004:3605-3610.
    87 S. Kumar, V. S. Raghavan, J. Deng. Medium access control protocols for ad hoc wireless networks: a survey. Ad Hoc Networks, 2004, 4(3):326-358.
    88 X. H. Liu, A. Goldsmith. Wireless network design for distributed control. Proceedings of the
    43th IEEE Conference on Decision and Control, Atlantis Paradise Island Bahamas, 2004:2823-2829.
    89 L. Xiao, M. Johansson, H. Hindi, et. al. Joint optimization of communication rates and linear systems. IEEE Transactions on Automatic Control, 2003, 48(1):148-153.
    90 J. Wu, T. W. Chen. Design of Networked control systems with packet dropouts. IEEE Transaction on Automatic control, 2007, 52 (7):1314-1319.
    91 J. L. Xiong, L. James. Stabilization of linear systems over networks with bounded packet loss. Automatica, 2007, 43:80-87.
    92 Y. Q. Yang, D. Xu, M. Tan, et al. Stochastic stability analysis and control of networked controlsystems with randomly varying long time-delays. Pro. World Congress on Intelligent Control and Automation. Hangzhou, P.R. China, June 2004: 1391-1395.
    93 C. N. Long, S. F. Dai, X. P. Guan. Compensation method of networked control system. Journal of Jilin University Information Science Edition, 2004, 22(14):438-443.
    94 Y. L. Yang, H. Chen, X. Q. Gao. Compensation method of networked control system. Journal of Jilin University Information Science Edition, 2004, 22(14):438-443.
    95 C. L. Ma, H. J. Fang, Research on mean square exponential stability of networked control systems with multi-step delay. Applied Mathematical Modeling, 2006, 9 (30): 941-950.
    96 L. Q. Zhang, Y. Shi, T. W. Chen, A new method for stabilization of networked control systems with random delays. IEEE Tran. Automat. Contr., 2005, 8(5): 1177-1181.
    97 S. S. Hu, Q. X. Zhu. Stochastic optimal control and analysis of stability of networked control systems with long delay [J]. Automatica, 2003, 39(11): 877-1884.
    98 Y. Y. Cao, J. Lam. Stochastic stabilizability and control for discrete-time jump linear systems with time delay [J]. Journal of the Franklin Institute. 1999, 366(8): 1263-1281.
    99 Z. X. Yu, H. T. Chen, Y. J. Wang. Research on control network system with Markov delay characteristic. In: Proceedings of the 3rd world congress on intelligent control and automation, Hefei, PR China, June 2000: 3636-40.
    100 A. T. Bharucha, Reid.马尔可夫过程论初步及其应用,上海科技出版社, 1979.
    101李漳南,吴荣.随机过程教程,高等教育出版社, 1987.
    102俞立.鲁棒控制-线性矩阵不等式处理方法.北京:清华大学出版社, 2002.
    103 M. Chow, Y. TIPSUWAN. Gain adaptation of networked DC motor controllers based on QOS variations. IEEE Tran. Ind. Electron., 2003, 10(12): 936-943.
    104 C. L. Ma, H. J., Fang, Research on stochastic control of networked control systems, Communications in Nonlinear Science and Numerical Simulation, 2007, 14(2): 500-507.
    105 Y. Yang, Y. J. Wang, Modeling and control for NCS with time-varying long delays, in: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 2005:1407-1411.
    106 Y. Q. Zhang, Q. H. Zhong, L. Wei. Stability of networked control systems with communicationconstraints. in: Proceedings of Conference on Decision and Control, Shandong China, 2008:335-339.
    107 G. S. Zhai, B. Hu, K. Yasuda, et al. Qualitative analysis of discrete-time switched systems, in: Proceedings of the American Control Conference, Anchorage, AK, 2002:1880- 1885.
    108 H. Lin, G. S. Zhai, P. J. Antsaklis. Robust stability and disturbance attenuation analysis of a class of Networked control systems, in: Proceedings of Conference on Decision and Control, Maui, Hawaii USA, 2003:1882-1887.
    109 Z. A. Liu, Y. Ge, Stability analysis on multiple-packet transmission-based networked control systems, Computer Simulation, 2006, 23 (3):92-94.
    110 M. Zheng, Q. L. Zhang, M. Song, et al. Stability analysis of multi-packet transmission networked control systems with short delay. Information and Control, 2007, 36(3):293-301.
    111 T. Liang, Z. M. Lei, H. X. Sun, et al. Modeling and controller design for a class of MIMO networked control systems. Proc. Int. Conf. Control and Automation, Guangzhou, China, May 2007:2391-2395.
    112 J. W. Cao, S. M. Zhong, Y. Y. Hu. Novel delay-dependent stability conditions for a class of MIMO networked control systems with nonlinear perturbation. Applied Mathematics and Computation, 2008, 197 (2):797-809.
    113 S. K. Nguang, P. Shi, S. Ding. Fault detection for uncertain fuzzy systems: an LMI approach. IEEE Trans. on Fuzzy Systems, 2007, 15 (6):1251-1262.
    114 N. Liu, K. M. Zhou. Optimal solutions to multi-objective robust fault detection problems, Proc. Int. Conf. Decision and Control, New Orleans, LA, US, December2007:981-988.
    115 X. B. Li, K. M. Zhou. A time domain approach to robust fault detection of linear time-varying systems’, Proc. Int. Conf. Decision and Control, New Orleans, LA, USA, December2007: 1015-1020.
    116 N. K. Liu, M. Zhou. Optimal robust fault detection for linear discrete time systems, Journal of Control Science and Engineering, vol.2008, Article ID 829459, 16 pages, 2008. doi:10.1155/2008/829459.
    117 P. Zhang, S. X. Ding, P. M. Frank, et al. Fault detection of networked control systems with missing measurements’, Asian Control Conference, July2004:1258-1263.
    118 Y. Zheng, H. J. Fang, Y. W. Wang. Kalman filter based FDI of networked control system’, Proc. Int. Conf. Intelligent Control and Automation, Hangzhou, China, June2004:1330-1333.
    119 Y. Q. Wang, H. Ye, G. Z. Wang. A new method for fault detection of networked control systems. Proc. Int. Conf. Industrial Electronics and Applications, Singapore, May2006:1-4.
    120 M. Y. Zhong, Q. L. Han. Fault detection filter design for a class of networked control systems. Proc. Int. Conf. Intelligent Control and Automation, Dalian, China, October2006:215-219.
    121 S. Tafazoli, X. Sun. Hybrid system state tracking and fault detection using particle filters’, IEEE Trans. on Control Systems Technology, 2006, 14(6):1078-1087.
    122 W. J. Kim, K. Ji, A. Srivastava. Network-based control with real-time prediction of delayed/lost sensor data’, IEEE Trans. on Control Systems Technology, 2006, 14 (1):182-185.
    123 H. J. Fang, H. Ye, M. Y. Zhong. Fault diagnosis of networked control systems. Annual Reviews in Control, 2007, 31 (1):55-68.
    124 X. Lin, J. Mikael, H. Haitham, Stephen, B. Joint optimization of wireless communication and networked control systems’, Springer Berlin, Germany, 2005:248–272.
    125 Z. G. Sun, L. Xiao, D. S. Zhu. Research on one class networked control systems with multiple-packet transmission. http://www.paper.edu.cn.
    126 C. X. Guo, Z. R. Xiang. Controller design of MIMO network control systems. Control Engineering of China, 2007, 14(3), 263-265.
    127 K. Zhou, Z. Ren. A new controller architecture for high performance robust and fault tolerant control. IEEE Transactions on Automatic Control, 2001, 46(10):1613-1618.
    128 K. M. Zhou. A new approach to robust and fault tolerant control. Acta Automatic Sinica, 2005,
    31(1):43-55.
    129 D. U. Campos-Delgado, K. Zhou. Reconfigurable fault-tolerant control using GIMC structure . IEEE Transactions on Automatic Control, 2003, 48(5): 832-839.
    130 J. Colandairaj, G. W. Irwin, W. G. Scanlon. Analysis of an IEEE 802.11B wireless networked control system, available: http://www.strep-necst.org/1st workshop/Colandairaj.pdf
    131 M. Drew, X. H. Liu, A. Goldsmith, et al. Networked control system design over a wireless LAN. In: Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain:IEEE, 2005:6704-6709.
    132 H. Meyr. Algorithm design and system implementation for advanced wireless communications systems. In: Proceedings of International Zurich Seminar on Broadband Communications, Zurich, Switzerland, 2000:229-235.
    133 P. Athanasia, N. George, T. Anthony. Experimental controller tuning and QoS optimization of a wireless transmission scheme for real-time remote control applications. In: Proceedings of the IEEE International Conference on Industrial Technology, Hammamet, Tunisiapp:IEEE, 2004. 801-806.
    134 A. J. Goldsmith, S. G. Chua. Adaptive coded modulation for fading channels. IEEE Transactions on Communication, 1998, 46(5): 595-602.
    135 Kjell, J. Holey. Bounds on the average spectral efficiency of adaptive coded modulation, available: http://www.iet.ntnu.no/projects/beats/Documents/telektronikk Hole.pdf
    136 J. R. Hartman, M. S. Branicky, V..Liberatore. Time-dependent dynamics in networked sensing and control. In: Proceedings of the American Control Conference, Portland, USA, 2005: 2925-2932.
    137 Q. K. Shao, L. Yu, G. J. Zhang. Online delay evaluation and controller co-design for networked control systems. Acta Automatica Sinica, 2007, 33(7): 781-784.
    138 K. J. Hole, G. E. Qien. Adaptive coding and modulation: A key to bandwidth-efficient multimedia communications in future wireless systems. Telektronikk, 2001, 97(1): 49-57.
    139 K. J. Hole, H. Holm, G. E. Qien. Adaptive multidimensional coded modulation over°at fading channels. IEEE J. Select.Areas Commun., 2000, 18(7): 1153-1158.
    140 K. J. Hole, G. E. Qien. Spectral efficiency of adaptive coded modulation in urban microcellular networks. IEEE Transaction on Vehical Technology, 2001, 50(1): 205-222.
    141 S. T. Chung, A. J. Goldsmith. Degrees of freedom in adaptive modulation: a unified view. IEEE Transactions on Communication, 2001, 49(9): 1561-1571.
    142 H. J. Gao, T. W. Chen. New results on stability of discrete-time systems with time-varying state delay. IEEE Transactions on Automatic Control, 2007, 52(2): 328-334.
    143 W. H. Chen, Z. H. Guan, X. M. Lu. Delay-dependent guaranteed cost control for uncertain discrete-time systems with both state and input delays J. Franklin Inst., 2004, 341(5):419-430.
    144 Y. Wang, L. Xie, C. E. de Souza. Robust control for a class of uncertain nonlinear systems,System Control Lett, 1992, 19: 139-149.
    145 Y. S. Moon, P. G. Park, W. H. Kwon, et al. Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, 2001, 74: 1447-1455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700