用户名: 密码: 验证码:
生态旅游区污染物处理的模型和算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国人环境保护意识的增强以及国家提倡的可持续发展战略的广泛实施情况下,生态旅游业得以发展迅速,显然已成为现今旅游发展的一个重要方向。然而在生态旅游发展过程中,如何协调好旅游业发展与生态环境的关系,寻求旅游活动与自然发展的和谐,实现旅游资源和旅游业可持续发展,成为当今旅游学术界的一个重要课题。虽然科学地界定旅游区生态环境容量,并给予严格的实施可以缓解此类矛盾,但是我们在倡导维护生态旅游区的可持续发展,不能忽视当地居民的经济利益和游客的旅游愿望。这就要考虑生态容量扩张问题,当用人工的方法对污染物进行处理时可以扩大生态容量。目前学术界涉及这一方面的研究较少,已有的对生态旅游环境容量的研究,多集中在概念的不同角度论述,和理论上进行指导,并未提升到定量研究,可操作性和复制性不强。本文从定量的角度研究生态旅游区主要的污染物:废水和固体废弃物的处理,以扩大生态旅游区的生态容量。
     论文首先从生态旅游的现状出发,引出了生态旅游环境容量研究的意义,在此基础上提出了本文主要的研究内容为旅游环境容量扩张中的—废水处理和固体废弃物收集。然后总结了论文的研究意义和创新之处,并介绍了论文的整体框架。
     其次,论文对生态容量的概念和研究的现状进行了综述,重点的综述是在废水处理和固体废弃物收集的研究上。介绍了废水在利用优化网络设计研究的进展、分类和求解此类问题的算法。固体废弃物收集为包括选址问题的逆向物流设计问题,所以对基本选址问题进行了综述,并特别总结了文章研究内容所用到的:选址-路径问题、选址-分配问题。同时对文章研究涉及到的多目标选址问题和逆向物流设计等问题也给予了介绍和总结。
     第三,废水再利用是减少新鲜水消费和废水排放的一个重要方法。连接多个用水过程的废水网络设计是一个相对复杂的问题,它涉及若干优化标准。因此,提出了一个模型同时考虑了两种标准:(1)新鲜水消费最小;(2)建立网络的构建成本最小。优化模型主要考虑规划过程点之间的废水再利用来减少新鲜水消费量。为了求解该模型,提出了一种整合了遗传算法的交叉算子的混合粒子群算法。最后,本文给出了一个废水再利用网络的算例,并分别使用混合粒子群算法,粒子群算法和遗传算法进行了求解。得到的计算结果表明,混合粒子群算法是求解优化废水再利用网络的最有效算法。
     第四,研究了再生成对再利用废水网络的影响,并扩展了前人研究的数学模型。再生成单元可以移除用水过程单元产生的废水中的部分杂质,降低这些杂质在废水中的浓度,使其可以更多的被其它用水过程单元再利用。该废水网络模型为新鲜水消耗量最小作为目标函数。并使用HPSO、PSO和GA三种算法对一个简单的算例进行了求解。从得到的解的结果可以发现,HPSO是三种算法中求解再生成再利用网络最有效的算法。
     第五,研究了生态旅游区废弃物逆向物流网络设计问题,包括中转站选址和车辆路径问题,并建立了最小化选址费用和运输费用的模型。选址路径问题为NP困难问题,本文采用了四叉树原理划分满足车辆容量限制的收集区,将问题化为小型的TSP问题,最后给出了算例验证模型和算法的有效性。
     第六,废弃物逆向物流设计必须考虑两方面因素:费用最小化和对人产生的不良影响尽量小。研究了生态旅游区固体废弃物逆向物流网络设计问题,包括中转站和处理站的两级选址。建立了成本最小和处理站距人们的最小距离最大化的双目标整数规划模型。考虑到废弃物产生量具有不确定性,提出了带有模糊参数的中转站和处理站选址的模糊优化模型,并用启发式算法给予求解。最后给出一个算例证明了算法的有效性和可行性。
     论文的最后部分对全文内容以及创新之处进行了总结,并对文中相关研究有待进一步深化的地方提出日后继续研究的展望.
With the enhanced awareness of people's envornment protection and with the wide range of implementation of sustainable development strategy that is advocated by our country, ecotourism has developed rapidly and has become a very important direction in the development of tourism. However, following with the ecotourism development, how to coordinate the development of tourism and ecological environment for human activities and nature tourism development in harmony, and tourism resources and tourism to achieve sustainable development, tourism has become an important topic in academic circles. Although scientific definition the capacity of ecotourism environment and strictly implementation with enforcement such conflicts can be mitigated, when we advocate for the maintenance of the sustainable development in ecotourism area, the economic interests of local residents and tourists' desire should not be ignored. The ecological capacity expansion is necessary to consider, when using artificial method to deal with the pollutions can be expanded the ecological capacity. But the study on this area is less at current academic, the existing environmental capacity of eco-tourism research, more focused on the discussion on the concept from different perspectives, and only theoretical guidance, not to quantitative research, feasibility and replication is not strong. This article starts from the quantitative angle and introduces the main pollutants of eco-tourism areas: the wastewater and solid waste treatment, and in order to expand eco-tourism area of ecological capacity.
     Firstly, the article introduces the present status of the ecotourism, and educes the research significance of environmental capacity of ecotourism. On the basis the major study-content of tourism expansion in the capacity is restricted on the disposition of wastewater and collection of solid waste. And then the article summarizes the reasons of choosing this topic and the innovation, introduces the overall framework of the thesis.
     Secondly, the thesis reviews the concept and the present study condition of the ecological capacity. The important synthesis is in wastewater treatment and solid waste collection. So the article introduces the wastewater network design optimization in the use of the progress of the study, classification and algorithm for solving such problems. Solid waste collection to include the facility location and the reverse logistics design problem, so the location of the basic problem are reviewed and, in particular, summed up the contains that used in article study, which are the location-round problem, the location-allocation problem. At the same time the multi-objection problems and reverse logistics design problems are also introduced.
     Thirdly, reuse of wastewater is an important strategy for reducing freshwater consumption and wastewater generation. The design of the wastewater network connecting water-using operations is a complex problem which involves several criteria to optimize. This paper describes an approach that considers two criteria: (i) the minimization of freshwater consumption and (ii) the minimization of the infrastructure cost required to build the network. The optimization model considers water reuse between operations as the main mechanisms to reduce freshwater consumption. The proposed method employs the hybrid particle swarm optimization (HPSO), which incorporates the breeding and subpopulation process in genetic algorithm (GA) into PSO. An example of a wastewater reusing network is used to show the algorithm performances under the same conditions. HPSO is shown to be a more efficient method to solve optimal design problems regarding than general GA and PSO, in particular, wastewater reusing networks, according to the results herein obtained.
     Fourthly, Studied the effect of renewable re-use of wastewater networks, and extends the mathematical model of previous studies. Re-generating unit can remove some impurities which generate on the process of using water, reduce these impurities in the wastewater concentration, so that it can be used again by other units of water used. The objective function of the wastewater network model is minimum fresh water consumption. This paper offers three algorithms of HPSO、PSO and GA to solve a simple computer test. From the results, we can find that HPSO is the most effective algorithms to solve the re-generate and re-use network.
     Fifthly, the design of reverse logistics network for solid waste should consider two factors: minimize the cost and the undesirable effect for people. This paper addresses the design of reverse logistics network for solid wastes of ecotourism area that involves locating transfer facility and dispose facility. The goal is select the optimum numbers, locations of transfer facilities and dispose facilities to open so that all wastes sources are satisfied at minim um total costs of the reverse logistics network and at maximum the minimum distance between people and dispose facilities. We develop a double—objective integer programming model and provide an efficient heuristic solution procedure for the reverse logistics network design. Computational tests demonstrate the efficiency and feasibility of our heuristics.
     Sixthly, the design of reverse logistics network for solid waste should consider two factors: minimize the cost and the undesirable effect for people. This paper addresses the design of reverse logistics network for solid wastes of ecotourism area that involves locating transfer facility and dispose facility. The goal is select the optimum numbers, locations of transfer facilities and dispose facilities to open so that al 1 wastes sources are satisfied at minim um total costs of the reverse logistics network and at maximum the minimum distance between people and dispose facilities. We develop a double—objective integer programming model and provide an efficient heuristic solution procedure for the reverse logistics network design. Computational tests demonstrate the efficiency and feasibility of our heuristics.
     Finally, this article concludes the main content, innovated points and presents a prospect on further studies.
引文
[1] Alan T., Murray R., Gerrard A. Capacitated service and regional constraints in location-allocation modeling[J]. Location Science, 1997, 5(2): 103-118
    [2] Albareda-Sambola M., D(?)az J. A., Fern(?)ndez E. A compact model and tight bounds for a combined location-routing problem[J]. Computers and Operations Research, 2005, 32(3): 407-428
    [3] Almato M., Espuna A., Puigianer L. Optimisation of water use in batch process industries[J]. Computers and Chemical Engineering, 1999, 23: 1427-1437
    [4] Alva-Argaez A., Kokossis A. C, Smith R. Wastewater minimization of industrial systems using an integrated approach[J]. Comput. Chem. Eng., 1998, 22(Suppl. ): S741-744
    [5] Ambrosino D., Scutella M. G Distribution network design: New problems and related models[J]. European Journal of Operational Research, 2005,165: 610-624
    [6] Antonio G. N., Novaes J. E., Souzade C. Solving continuous location-districting problems with Voronoi diagrams[J]. Computer & Operation Research, 2009, 36(1): 40-59
    [7] Averbakh I., Berman O. Probabilistic sales-delivery man and sales-delivery facility location problems on a tree[J]. Transportation Science, 1995, 29: 184-197
    [8] Averbakh I., Berman O. Minmax p-traveling salesmen location problems on a tree[J]. Annals of Operations Research, 2002, 110: 55-62
    [9] Aytug H., Saydam G. Solving large-scale maximum expected covering location problems by genetic algorithms: a comparative study[J]. European Journal of Operational Research, 2002,141(3): 480-494
    [10] Bagajewicz M. J. A review of recent design procedures for water networks in refineries and process plants[J]. Comput. Chem. Eng., 2000, 24(10): 2093-2113
    [11] Bagajewicz M. J., Rivas M., Savelski M. J. A Robust Method to Obtain Optimal and Sub-optimal Design and Retrofit Solution of Water Utilization System with Multiple Contaminants in Process Plants[J]. Comp. Chem. Eng., 2000, 24(7): 1461-1466
    [12] Bagajewicz M., Savelski M. On the use of linear models for the design of water utilization systems in process plants with a single contaminant[J]. Transactions of the Institute of Chemical Engineers Part A, 2001, 79: 600-610
    [13] Beasley J. E., Jornsten. K. Enhancing an Algorithm for Set Covering Problems[J]. European Journal of Operational Research, 1992, 58: 293-300
    [14] Beasley J. E., Chu P. C. A genetic algorithm for the set covering problem[J]. European Journal of Operational Research, 1996, 94: 392-404
    [15] Benedict J. Three hierarchical objective models which incorporate the concept of excess coverage for locating EMS vehicles or Hospital. M. Sc. Thesis, Northwestern University, Evanston Ⅱ, 1983
    [16] Berman O. The p maximal cover: p partial center problem on networks[J]. European Journal of Operation Research, 1994, 72: 432-442
    [17] Berman O. Dmitry Krass. The generalized maximal covering location problem[J]. Computers & Operations Research, 2002, 29: 563-581
    [18] Berman O., Dmitry Krass, Zvi Drezner. The gradual covering decay location problem on a network[J]. European Journal of Operational Reseach, 2003, 151: 474-480
    [19] Berman O., Drezner Z., Wesolowsky G. O. Locating service facilities whose reliability is distance[J]. Computers and Operations Research, 2003, 30(11): 1683-1695
    [20] Berman O., Kalcsics J., Krass D., et al. The Ordered Gradual Covering Location Problem on a Network[J]. Fraunhofer-Institut f(?)r Techno-und Wirtschaftsmathematik Bericht, 2008,138
    [21] Berman O., Simchi-Levi D. Minisum location of a raveling salesman[J]. Networks, 1986,16: 239-254
    [22] Berman O., Simchi-Levi D. Finding the optimal a priori tour and location of a traveling salesman with nonhomoge- nous customers[J]. Transportation Science, 1988,22: 148-154
    [23] Brotcorne L., Laporte G., Semet F. Ambulance location and relocation models: invited review[J]. European Journal of Operational Research, 2003, 147: 451-463
    [24] Bruns A., Klose A., Stahly P. Restructuring of Swiss parcel delivery services[J]. OR Spektrum, 2000,22: 285-302
    [25] Burness R. C., White J. A. The traveling salesman location problem[J]. Transportation Science, 1976,10: 348-360
    [26] Caruso C., Colorni A., Paruccini M. The regional urban solid waste management system: A modeling approach[J]. European Journal of Operational Research, 1993, 70(1): 16-30
    [27] Castro P., Matos H., Femandes M. C., et al. Improvements for Mass Exchange Networks Design[J]. Chem. Engng Sei., 1999, 54(11): 1649-1665
    [28] Chan A. W., Francis R. L. A round-trip location problem on a tree graph[J]. Transportation Science, 1976,10: 35-51
    [29] Chan A. W., Hearn D. W. A rectilinear distance round-trip location problem[J]. Transportation Science, 1977, 11: 107-123
    [30] Chao I. M. A tabu search method for the truck and trailer routing problem[J]. Computers and Operations Research, 2002, 29: 33-51
    [31] Chen R., Handler G. Y. A Relaxation Method for the Solution of the Minimax Location-allocation Problem in Euclidean Space[J]. Naval Research Logistics Quarterly, 1987, 34:775-788
    [32] Church R. L., ReVelle C. Maximal covering location problem[J]. Papers of the Regional Science Association, 1974(32): 101-118
    [33] Clerc, Maurice. Discrete Particle Swarm Optimization[M]. New Optimization Techniques in Engineering, Springer Verlag, 2004
    [34] Coetzer D., Stanley C., Kumana J. Systemic reduction of industrial water use and wastewater generation[C]. Houston, 1997
    [35] Curry G. L., R. W. Skeith. A dynamic programming algorithm for facility location and allocation[J]. American Institute of Industrial Engineers Transactions, 1969, 1: 133-138
    [36] Daskin M. S. A maximum expected covering location problem: formulation, properties, and Heuristic Solution[J]. Transportation Science, 1983, 17: 48-70
    [37] Daskin M. S. Network and disctete location: Models, Algorithms, and Applications. New York, Wiley Interscience, 1995
    [38] Deng C., Feng X., Bai J. Graphically based analysis of water system with zero liquid discharge[J]. Chemical Engineering Research and Design, 2008, 86(2): 165-171
    [39] Dhole V. R., Ramchandani N., Tainsh R. A., et al. Pinch technology can be harnessed to minimize raw-water demand and wastewater generation alike[J]. Chem. Eng., Jan, 1996,103(1): 100-103
    [40] Dorigo M., Maniezzo V., Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B, 1996,26(1): 29-41
    [41] Du J., Yu H. M., Fan X. S., et al. Intergration of Mass and Energy in Network Design[C]. 8~(th) International Symposium on Process systems Engineering (PSE2003), Kunming, 2003: 796-801
    [42] Drezner Z., Wesolowsky G. O. A New Method for the Multifacility Minimax Location Problem[J]. Journal of the operational research society, 1978, 24: 1507-1514
    [43] Drezner Z. On the Conditional p-Median Problem[J]. Computers and Operations Research, 1995, 22(4): 525-530
    [44] El-Halwagi M. M., Manousiouthakis V. Automatic synthesis of mass-exchange networks with single component targets[J]. Chem. Eng. Sci., 1990, 45(9): 2813-2831
    [45] El-Halwagi M. M., Srinivas B. K., Dunn R. F. Synthesis of optimal heat-induced separation networks[J]. Chem. Eng. Sci., 1995, 50(1): 81-97
    [46] Erkut E., Neuman S. Analytical models for locating undesirable facilities[J]. European Journal of Operational Research, 1989, 40: 275-291
    [47] Erkut E., Neuman S. A multi-objective model for locating undesirable facilities[J]. Annals of Operational Research, 1992,40: 209-227
    [48] Feng X., Bai J., Zheng X. On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems[J]. Chemical Engineering Science, 2007, 62(8): 2127-2138
    [49] Feng X., Chu K. H. Cost optimisation of industrial wastewater reuse systems[J]. Trans. IChemE., Part B Process Saf. Environ Prot., 2004, 82(B3): 249-255
    [50] Fernando Y. Chiyoshi, Roberto D. Galvao, Reinaldo Morabito. A note on solutions to the maximal expected covering location problem[J]. Computers & Operation Research, 2002, 30: 87-96
    [51] Fisher M. L., Kedia P. Optimal Soluteion of Set Covering/Partitioning Problems Using Dual Heuristics[J]. Management Sience, 1990, 36: 674-688
    [52] Fleihmann M. Quantitative models for reverse logistics[M]. Berlin: Springer·Verlag, 2001
    [53] Foo D. C. Y. Flowrate targeting for threshold problems and plant-wide integration for water network synthesis[J]. Journal of Environmental Management, 2008, 88(2): 253-274
    [54] G(?)bor N., Sa(?)d S. Location-routing: Issues, models and methods[J]. European Journal of Operational Research, 2007,177: 649-672
    [55] Geoffrion A. M., Graves G. W. Multicommodity distribution system design by benders decomposition[J]. Management Science, 1974, 20: 822-844
    [56] Gerdessen J. C. Vehicle routing problem with trailers[J]. European Journal of Operational Research, 1996, 93: 135-147
    [57] Giovanni R. A double annealing algorithm for discrete location allocation problems[J]. European Journal of Operational Research, 1995, 86: 452-468
    [58] Goldman A. J. Optimal center location in simple networks[J]. Transportation Science, 1971(5): 212-221
    [59] Gomes H. P., De Tarso Marques Bezerra S., Srinivasan V S. An iterative optimisation procedure for the rehabilitation of water-supply pipe networks[J]. Water SA, 2008, 34(2): 225-235
    [60] Gomes J. F. S., Queiroz E. M., Pessoa F. L. P. Design procedure for water/wastewater minimization: single contaminant[J]. J. Cleaner Prod., 2007, 15(5): 474-485
    [61] Goodchild M. F. Spatial choice in location-allocation problems: the role of endogenous attraction. Geographical Analysis, 1978, 10: 65-72
    [62] Goodchild M. F. The aggregation problem in location-allocation. Geographical Analysis, 1979, 11:240-255
    [63] Gunaratnam M., Alva-Argaez A., Kokossis A., et al. Automated design of total water systems[J]. Industrial and Engineering Chemistry Research, 2005, 44(3): 588-599
    [64] Gupta A., Manousiouthakis V. Variable target mass-exchange network synthesis through linear programming[J]. AIChE J, 1996, 42(5): 1326-1340
    [65] Grossman T., Wool A. Computational experience with approximation algorithms for the set covering problem[J]. European Journal of Operational Research, 1997, 101(1): 81-92
    [66] Hakimi S. L. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph[J]. Operations Research, 1964, 12:450-459
    [67] Hakimi S. L. P-median Theorems for Competitive Location[J]. Annals of Operations Research, 1986, 5(1): 79-88
    [68] Hallale N. A new graphical targeting method for water minimization[J]. Adv. Environ. Res., 2002, 6(3): 377-90
    [69] Hallale N., Fraser D. M. Capital cost targets for mass exchange networks[J]. Chem. Eng. Sci., 1998, 53(2): 293-313
    [70] Hassin R., Levin A., Morad D. Lexicographic local search and thepcenterproblem[J]. European Joumal of Operational Research, 2003, 151: 265-279
    [71] Higgins A., Archer A., Hajkowicz S. A stochastic non-linear programming model for a multi-period water resource allocation with multiple objectives[J]. Water Resources Management, 2008, 22(10): 1445-1460
    [72] Hodson M. J. Toward morerealistic allocation in locaton-allocation models: An interaction approach[J]. Environment and Planning, 1993 a, A(10): 1273-1285
    [73] Hodson M. J., Rosing K. E., Schrnulevitz F. A Review of locaton-allocation applications literature[J]. Studies in Locational Analysis, 1993b, 5:3-29
    [74] Huang C. H., Chang C. T., Ling H. C., et al. A mathematical programming model for water usage and treatment network design[J]. Industrial and Engineering Chemistry Research, 1999, 38(2): 2666-26679
    [75] Hu Y. D. (胡仰栋), XU D. M. (徐冬梅), Han F. Y. (韩方煜) et. al. Step by step linear programming method for wastewater minimization(逐步线性规划法求解废水最小化问题)[J]. J Chem Ind and Eng (China)(化工学报), 2002, 53(1): 66-71
    [76] Hu X., Eberhart R. C., Shi Y. Engineering Optimization with Particle Swarm[A]. IEEE Swarm Intelligence Sysmposium[C], Indianapolis, USA, 2003: 53-57
    [77] Hsieh K. H., Tien F. C. Self-organizing feature maps for solving location-allocation problems with rectilinear distances[J]. Computers & Operations Research, 2004, 31: 1017-1031
    [78] Iancu P., Plesu V., Lavric V. Regeneration of internal streams as an effective tool for wastewater network optimization[J]. Computers and Chemical Engineering, 2009, 33(3): 731-742
    [79] Izquierdo J., Montalvo I., Perez R., et al. Design optimization of wastewater collection networks by PSO[J]. Computers and Mathematics with Applications, 2008, doi:-1429999913-0
    [80] Jacobsen S. K., Madsen O. B. G. A comparative study of heuristics for a two-level routing-location problem[J]. European Journal of the Operational Research Society, 1980,45: 1316-1323
    [81] Jasenka Rakas, Dusan Teodorovic, Taehyung Kim. Multi-objective Modeling for Determining Location of Undesirable Facilities[J]. Transportation Research Part D, 2004,9:125-138
    [82] Jayaraman V., Guide J. V., Srivastava R. A closed loop logistics model for remanufacturing[J]. Journal of the operational research society, 1999, 50: 497-508
    [83] Jodicke G., Fischer U., Hungerbuhler K. Wastewater reuse: a new approach to screen for designs with minimal total costs[J]. Computersand Chemical Engineering, 2001,25:203-215
    [84] Jose A., Moreno P. J., Marcos M. V. Variable neighborhood tabu search and its application to the median cycle problem[J]. European Journal of Operational Research, 2003, 151: 365-378
    [85] Karp R. M. Reducibility among Combinatorial Problems, in: R. E. Miller and J. W. Thatcher (eds.), Complexity of Computer Computations. Plenium Press, New York, 1972
    [86] Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[A]. Proc. 1999 IEEE Congress Evolutionary Computation[C]. Piscataway, NJ: IEEE Press, 1999: 1931-1938
    [87] Kennedy J. Improving Particle Swarm Performance with Cluster Analysis[A]. Proceeding of the IEEE Conference on Evolutionary Computation[C]. California: IEEE, 2000,1507-1512
    [88] Kennedy J., Eberhart R. C. Particle swarm optimization proc[A]. In: IEEE Service Center ed. IEEE International Conference on Neural Networks[C]. Perth, Australia, 1995. Piscataway: IEEE Press, 1995: 1942-1948
    [89] Kennedy J., Eberhart R. C. Discrete binary version of the particle swarm algorithm[A]. Proceeding of the IEEE International Conference on Systems[C]. Man, Cybernetics, Orlando, IEEE Press, 1997: 4104-4108
    [90] Kennedy J., Eberhart R. C., Shi Y. Swarm Intelligence[M]. San Francisco: Morgan Kaufman Publishers, 2001
    [91] Koppol A. P. R., Bagajewicz M. J., Dericks B. J., et al. 2003. On zero water discharge solutions in the process industry[J]. Advances in Environmental Research, 2003,8: 151-171
    [92] Kuo W. C. J., Smith R. Design for the interactions between water-use and effluent treatment[J]. Trans IChemE, 1998, 76(A): 287-301
    [93] Laporte G., Louveaux F., Mercure H. Models and exact solutions for a class of stochastic location-routing problems[J]. European Journal of Operational Research, 1989, 39: 71-78
    [94] Laporte G., Nobert Y. An exact algorithm for minimizing routing and operating costs in depot location[J]. European Journal of Operational Research, 1981, 6: 224-226
    [95] Laporte G., Nobert Y., Pelletier P. Hamiltonianlocation problems[J]. European Journal of Operational Research, 1983,12: 82-89
    [96] Lavric V., Iancu P., Plesu V. Genetic algorithm optimisation of water consumption and wastewater network topology[J]. Journal of Cleaner Production, 2005, 13: 1405-1414
    [97] Lavric V., Iancu P., Plesu V. Cost-based design of wastewater network optimal topology[J]. Resources, Conservation and Recycling, 2007, 50: 186-201
    [98] Leewongtanawit B., Kim J. K. Synthesis and optimisation of heat integrated multiple-contaminant water systems[J]. Chemical Engineering and Processing: Process Intensification, 2008,47(4): 670-694
    [99] Li Y., Du J., Yao P. J. Wastewater minimization through the combination of process integration techniques and multi-objective optimization[C]. 8~(th) International Symposium on Process systems Engineering (PSE2003), Kunming, 2003: 922-927
    [100] Li Y. G., Han F. Y., Zhen S. Q., et al. An Automatic Approach to Design Water Utilization Network[C]. 8~(th) International Symposium on Process systems Engineering (PSE2003), Kunming, 2003: 928-933
    [101] Liu Y. A., Lucas B., Mann J. Up-to-date tools for water-system optimization[J]. Chemical Engineering Magazine, 2004,111(1): 30-41
    [102] Liu S. C., Lee S. B. A two-phase heuristic method for the multi-depot location routing problem taking inventory control decisions into considerations[J]. International Journal of Advanced Manufacturing Technology, 2003,22: 941-950
    [103] List G., Mirchandani P. An integrated network/planar multi-objective model for routing and siting of hazardous materials and wastes[J]. Transportation Science, 1991,25: 146-156
    [104] Lorena L. A. N., Senne E. L. F. A Column generation approach to capacitated p-median problem[J]. Computers and Operations Research, 2004, 31(6): 863-876
    [105] Luiz A. N. Lorena, Edson L. F. Senne. A column generation approach to capacitated p-median problems[J]. Computers & Operations Research, 2004, 31: 863-876
    [106] Manan Z. A., Tan Y. L., Foo D. C. Y. Targeting the minimum water flowrate using water cascade analysis technique[J]. AIChE Journal, 2004, 50(12): 3169-3183
    [107] Mann J. G., Liu Y. A. Industrial water reuse and wastewater minimization[M]. New-York: McGraw-Hill, 1999
    [108] Marcos Alminana, Jesus T. Pastor. An Adaptation of SH Heuristic to the Location Set Covering Problem[J]. European Journal of Operational Research, 1997, 100: 586-593
    [109] Marianov V., Serra D. Location-allocation of multiple-server service centers with constrained queues or waiting times[J]. Annals of Operations Research, 2002, 111: 35-50
    [110] Mariano-Romero C. E., Alcocer-Yamanaka V. H., Morales E. F. Multi-objective optimization of water-using systems[J]. European Journal of Operational Research, 2007,181(3): 1691-1707
    [111] Masuyama S., Ibaraki T., Hasegawa T. The computational complexity of the m-center problems on the plane. The Transactions of the institute of Electronics and Communication Engineers of Japan, 1981,64E: 57-64
    [112] Mataric M. Designing and Understanding Adaptive Group Behavior[J]. Adaptive Behavior, 1995,4(1): 51-80
    [113] Megiddo N., Supowit K. On the complexity of some common geometric location problems[J]. SIAM Journal on Computing, 1984,13: 182-196
    [114] Melechovsk(?) J., Prins C, Wolfler C. R. A metaheuristic to solve a location-routing problem with non-linear costsfJ]. Journal of Heuristics. 2005,11: 375-391
    [115] Mohan R., Akella R. B., Eric M. Base station location and channel allocation in a cellular network with emergency coverage requirements[J]. European Journal of Operational Research, 2005,164: 301-323
    [116] Mohais A. S., Mendes R., Ward C., et al. Neighborhood re-structuring in particle swarm optimization[J]. Lecture Notes in Artificial Intelligent, 2005, 3809: 776-785
    [117] Moshe E. C., Abraham M., Markovich G. Capacitated location allocation problems on a line[J]. Computers & Operations Research, 2002,29: 459-470
    [118] Nagy G., Salhi S. The many-to-many location-routing problem[J]. TOP, 1998, 6: 261-275
    [119] Nambiar J. M., Gelders L. F., Van Wassenhove L. N. Plant location and vehicle routing in the Malaysian rubber smallholder sector: A case study[J]. European Journal of Operational Research, 1989, 38: 14-26
    [120] Necati A., Deniz A., Ayse G. T. Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles[J]. European Journal of Operational Research, 2008,191(3): 1223-1240
    [121] Olesen S. G., Polley G. T. A Simple Methdology for the Design of Water Network Handling Single Contaminants[J]. Tran. IChemE, 1997, 75(A): 420-426
    [122] Orhan Karasakal, Esra K. Karasakal. A maximal covering location model in the presence of partial coverage[J]. Computers & Operations Research, 2004, 31: 1515-1526
    [123] Papaalexandri K. P., Pistikopoulos E. N. Generalized modular representation framework for process synthesis[J]. AIChE J, 1996,42(4): 1010-1032
    [124] Polley G. T., Polley H. L. Design better water networks[J]. Chemical Engineering Progress, 2000, 96(2): 47-52
    [125] Prakash R., Shenoy U. V. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chemical Engineering Science, 2005, 60 (1): 255-268
    [126] Raducan O., Lavric V., Woinaroschy A. Time optimal control of batch reactors through genetic algorithm[J]. Revista de Chimie, 2004, 55(4): 638-642
    [127] Rahman M., Kuby M. A multi-objective model for locating solid-waste transfer facilities using an empirical opposition function. INFOR, 1995, 33: 34-49
    [128] Ratick S., White A. A Risk-Sharing Model for Locating Noxious Facilities[J]. Envrionment and Planning B, 1988, 15: 165-179
    [129] Riverol C., Pilipovik M. V., Carosi C. Assessing the water requirements in refineries using possibilistic programming[J]. Chem. Eng. Process, 2006, 45(7): 533-537
    [130] Roth R. Computer Solutions to Minimum Cover Problems. Operation Research, 1969(17): 455-465
    [131] Salhi S., Nagy G. Consistency and robustness in location-routing[J]. Studies in Locational Analysis, 1999, 13: 3-19
    [132] Salmen A., Ahmad I., Al-Madani S. Particle Swarm Optimization for task assignment problem[J]. Microprocessor and Microsystems, 2002, 26(8): 363-371
    [133] Sanjay M., Mark S. D. An integrated model of facility location and transportation network design[J]. Transportation Research Part A, 2001, 35: 515-538
    [134] Savelski M. J., Bagajewicz M. J. On the optimality conditions of water utilization systems in process plants with single contaminants[J]. Chem. Eng. Sci., 2000, 55(21): 5035-5048
    [135] Savelski M., Bagajewicz M. J. Algorithmic procedure to design water utilization systems featuring a single contaminant in process plant[J]. Chemical Engineering Science, 2001, 56(5): 1897-1911
    [136] Savelski M. J., Bagajewicz M. J. On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants[J]. Chem. Eng. Sci., 2003, 58(7): 5349-5362
    [137] Scott A. J. Dynamic location-allocation systems: Some basic planning strategies[J]. Environment and Planning, 1971, 3: 73-82
    [138] Semet F., Taillard E. Solving real-life vehicle routing problems efficiently using tabu search. Annals of Operations Research 1993,41: 469-488
    [139] Shi Y. F., Eberhart R. C. A modified particle swarm optimizer[C]. IEEE International Conference on Evolutionary Computation, 1998: 69-73
    [140] Simchi-Levi D. The capacitated traveling salesman location problem[J]. Transportation Science, 1991,25: 9-18
    [141] Suganthan P. N. Particle Swarm Optimiser with Neighborhood Operator[A]. Proceeding of the IEEE Congress of Evolutionary Computation[C]. IEEE Piscataway, 1999: 1958-1962
    [142] Suh M. H., Lee T. Y. Robust optimal design of wastewater reuse network of plating processes[J]. J. Chem. Eng. Jpn., 2002, 35(11): 863-873
    [143] Swamee P. K. Design of Sewer Line[J]. Journal of Environmental Engineering, 2001,127(9): 776-781
    [144] Sydney C. K., Lisa C. A modeling framework for hospital location and service allocation[J]. International Transactions in Operational Research, 2000, 7: 539-568
    [145] Takama N., Kuriyama T., Shiroko K., et al. Optimal Water Allocation in a Petroleum Refinery[J]. Comp. Chem. Eng., 1980,4(4): 251-258
    [146] Tan Y. L., Manan Z. A., Foo D. C. Y. Retrofit of water network with optimization of existing regeneration units[J]. Industrial and Engineering Chemistry Research, 2006,45(22): 7592-7602
    [147] Tapiero C. S. Transportation-location-allocation problems over time[J]. Journal of Regional Science, 1971, 11(3): 377-384
    [148] Thevendiraraj S., Kleme(?)s J., Paz D., et al. Water and wastewater minimisation on a citrus plant, resources[J]. Conserv. Recy., 2003, 37(3): 227-250
    [149] Topcuoglua H., Coruta F., Ermisb M. Solving the uncapacitated hub location problem using genetic algorithms[J]. Computers & Operations Research, 2005, 32: 967-984
    [150] Toregas C, Swain R., ReVelle C, et al. The location of emergency service facilities[J]. Operations Research, 1971,19: 1363-1373
    [151] Tripathi P. Pinch Tehnology Reduces Wastewater[J]. Chem. Eng., 1996,11: 87-90
    [152] Wan Alwi S. R., Manan Z. A., Samingin M. H., et al. A holistic framework for design of cost-effective minimum water utilization network[J]. Journal of Environmental Management, 2008, 88(2): 219-252
    [153] Wang B., Feng X., Zhang Z. X. A design methodology for multiple-contaminant water networks with single internal water main[J]. Computers and Chemical Engineering, 2003, 27(7): 903-911
    [154] Wang W., Wu B. Particle Swarm Optimization for Open Vehicle Routing Problem[J]. Lecture Notes in Artificial Intelligence, 2006, 41(14): 999-1007
    [155] Wang Y. P., Smith R. Wastewater minimization[J]. Chem. Eng. Sci, 1994a, 49(7): 981-1006
    [156] Wang Y. P., Smith R. Design of Distributed Effluent Treatment Systems[J]. Chem. Eng. Sei., 1994b, 49(18): 3127-3145
    [157] Wang Y. P., Smith R. Wasterwater Minimisation with Flowrate Constraints[J]. TransInd. Chem. Engng., 1995a, 73(A): 889-904
    [158] Wang Y. P., Smith R. Time Pinch Analysis[J]. Trans IChE, 1995b, V73(A): 905-914
    [159] Wasner M., Z(?)pfel G. An integrated multi-depot hub- location vehicle routing model for network planning of parcel service[J]. International Journal of Production Economics, 2004, 90: 403-419
    [160] Wayman M. M., Kuby M. Proactive optimization: general framework and a case study using a toxic waste Location model with technology choice. International Symposium on Locational Decisions, ISOLDEVI, Lesvos and Chios, Greecel, 1994
    [161] Wesolowsky G. O., Truscott W. G The multiperiod location-allocation problem with relocation of facilities[J]. Management Science, 1975, 22(1): 57-65
    [162] Wesolowsky G. O., Truscott W. G. The Multiperiod Location-allocation Problem with Relocation of Facilities. Management Science, 1976, 22(1): 57-65
    [163] White D. W., Masanet E., Rosen C. M., et al. Product recoverywith some byte: an overview of management challenges and environmental consequences in reverse manufacturing for the computer industry[J]. Journal of Cleaner Production, 2003, 11(3): 445-458
    [164] Xu D. M. (徐冬梅), Hu Y. D. (胡仰栋), Hua B. (华贲) et al. Minimization of the flowrate of fresh water and correspondong regenerated water in water-using system with regeneration reuse[J]. Chinese J Chem Eng, 2003, 11 (3): 257-263
    [165] Yang Y. H., Lou H. H., Huang Y. L. Synthesis of an optimal wastewater reuse network[J]. Waste Manage, 2003, 20:311-319
    [166] Yuri L., Adi B. I. A heuristic method for large-scale multi-facility location problems. Computers & Operations Research, 2004, 31:257-272
    [167] Zhang H., Li X. D., Li H., et al. Particle swarm optimization-based schemes for resource-constrained project scheduling[J]. Automation in Consctuction, 2005, 14(3): 393-404
    [168] 车永亮.物流配送车辆路线求解算法.交通运输工程学报,2006,6(2):83-87
    [169] 达庆利,黄祖庆,张钦.逆向物流系统结构研究的现状及展望[J].中国管理科学,2004,12(1):131-138
    [170] 何波.废弃物处理站选址问题及多目标演化算法求解[J].系统工程理论与实践,2007a,27(11):72-78
    [171] 何波.废弃物回收的多层逆向物流网络优化设计问题研究[J].中国管理科学,2007b,15(3):61-67
    [172] 洪剑明.生态旅游规划设计[M].北京:中国林业出版社,2006:120-120
    [173] 黄春雨.基于供应的LRP模型研究[D].华中科技的大学,2003
    [174] 康建雄,闵海华,李静等.城市生活垃圾卫生填埋场选址研究[J].环境科学与技术,2004,27(3):70-72
    [175] 李季,孙秀霞,李士波等.基于遗传交叉因子的改进粒子群优化算法[J].计算机工程,2008,34(2):181-183
    [176] 李英,姚平经.水夹点分析与数学规划法相结合的用水网络优化设计[J].化工学报,2004,55(2):220-225
    [177] 刘晶晶,吴传生.一种带交叉算子的改进的粒子群优化算法[J].青岛科技大学学报(自然科学版),2008,29(1):77-79
    [178] 刘丽芳.粒子群算法的改进及应用[D].太原理工大学,2008
    [179] 吕新福.废弃物回收物流中的选址-路径问题[J].系统工程理论与实践,2005,25(5):89-94
    [180] 马祖军,代颖.产品回收逆向物流网络优化设计模型[J].管理工程学报,2005,19(4):114-117
    [181] 彭鸽威,闫光绪,董君.基于单一杂质水网络优化技术的应用研究[J].现代化工,2007,增刊(2):459-462
    [182] 乔治·乔巴诺格劳斯.固体废弃物管理手册[M].第二版.北京:化学工业出版社,2006:133-133
    [183] 唐贤伦.混沌粒子群优化算法理论及应用[D].重庆大学,2007
    [184] 吴斌.车辆路径问题的粒子群算法研究与应用[D].浙江工业大学,2007
    [185] 吴继敏.生态旅游及其承载力研究[M].华东师范大学,2008
    [186] 文杰.求解TSP问题的遗传算法[M].南京航空航天大学,2003
    [187] 闻轶,何世伟.基于随机相关机会目标规划的LRP模型研究.中国储运,2007,2:114-116
    [188] 夏蔚军,吴智铭,张伟等.微粒群优化在Job-shop调度中的应用[J].上海交通大学学报,2005,39(3):381-385
    [189] 徐冬梅.用水网络优化设计的研究[D].中国海洋大学,2004
    [190] 郑雪松,冯霄,沈人杰.具有最简结构水回用网络的优化[J].高校化学工程学报,2006,4(20):622-627
    [191] 周根贵,曹振字.遗传算法在逆向物流网络选址问题中的应用研究[J].中国管理科学,2005,13(1):42-47
    [192] 左永生,苍大强,李素芹等.水夹点技术与废水减量[J].中国环保产业,2007a,2:18-21
    [193] 左永生,李素芹,苍大强.水夹点分析与用水网络优化设计方法[J].工业水处理,2007b,27(5):79-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700