用户名: 密码: 验证码:
带楔块装置的钢结构露出型柱脚抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
露出型钢柱脚在普通钢结构和轻型钢结构中得到广泛应用。本文针对传统普通露出型钢柱脚节点在反复加载条件下其恢复力特性表现为滑移型且柱脚耗能不足的特点,研究了一种带楔块的无滑移型露出型钢柱脚,其抗震性能明显改善。结合国家自然科学基金资助项目“汶川地震灾害分析和救灾措施的研究”(50848008)和国家高技术研究发展计划(863项目)“再生混凝土和新型钢结构建筑材料关键技术与应用”(2009AA032304),对这种新型钢结构柱脚节点的力学性能进行了理论分析、试验研究与数值模拟,并对新型柱脚钢框架的动力性能开展研究。本文的主要工作和成果如下:
     考虑锚杆、钢柱底板、混凝土底座、垫圈及螺帽等变形的影响,推导了露出型钢柱脚的变形及转动刚度计算公式;研究了带楔块装置钢柱脚和普通钢柱脚的工作机理、力学性能,得出了带楔块装置柱脚恢复力模型表现为无滑移型,普通露出型柱脚恢复力模型表现为滑移型。对带楔块新型柱脚和普通柱脚试件分别进行了低周往复循环加载试验,并考虑不同螺栓数及柱轴压力等情况,得出了各自的恢复力特性;验证了本文所推导的柱脚计算公式和所得到的恢复力模型是实用有效的;带楔块露出型柱脚由于弹簧的推动,楔块的切入,消除了由于螺栓杆塑性变形产生的柱脚底板与基础的缝隙,柱脚始终不松动;与普通螺栓连接柱脚相比,新型柱脚刚度退化减慢,延性和耗能能力明显提高,表现出良好的抗震性能。
     考虑材料非线性、接触非线性以及螺栓数量及排列对柱脚受力和抗震性能的影响,对各柱脚建立三维有限元模型进行了数值模拟。有限元分析结果与试验结果吻合较好,滞回曲线和骨架曲线的变化趋势与试验结果相同,在试件屈服前曲线基本为线性,屈服后出现明显的非线性,轴力的增加在一定范围内对柱脚弯矩承载力的提高是有益的,但同时柱脚的耗能能力也有所降低;节点域对柱有较强的约束作用,从而导致骨架曲线在塑性区的试验值较有限元分析值稍大;螺栓的增加对柱脚在承载力和刚度方面都较有利。
     提出了用ANSYS的Link8单元和拉型Link10单元串联起来再与压型Link10单元并联模拟滑移型柱脚锚杆,用压型Link10单元来模拟滑移型柱脚底座在低周反复荷载作用下的简化数值模拟技术;用ANSYS的Link8单元并结合单元的生死技术及APDL语言开发技术来模拟无滑移型柱脚底座在低周反复荷载作用下的简化数值模拟技术。经与试验结果对比,本文所提出的柱脚数值模拟技术效果良好,实用可靠。
     提出了用ANSYS的Combin39单元与压型Link10单元并联设置,用前者来模拟柱脚锚杆、用后者来模拟柱脚底座,并利用Combin39单元可自定义力-位移输入曲线来定义其本构关系的特性,通过分别输入不同的力-位移曲线来实现有滑移型与无滑移型柱脚在随机地震激励下的数值模拟技术,对框架结构的耗能特性以及在地震激励作用下的动力响应进行了研究。新型带楔块弹簧减震装置可以有效控制结构层间位移、减小结构地震反应,更好的耗散地震能量,使带楔块柱脚结构表现出更好的抗震性能。
     总之,论文基于试验、理论推导及有限元分析,研究了一种新型带楔块的无滑移型露出型钢柱脚的抗震性能;且同时推导出了传统普通有滑移露出型钢柱脚及新型带楔块弹簧减震装置无滑移型钢柱脚的理论计算公式,并在数值模拟技术上有成功突破,为这种新型无滑移露出型钢柱脚的推广提供了可靠的依据。
In the field of normal steel structure and light-weight steel structure, the exposed-type steel column base is widely used. The restoring force characteristics of conventional exposed-type column bases are slip-type under low cyclic load, and the energy dissipation ability is not fully performed. To resolve the above problem, a non-slip-type steel column base with wedge spring damping devices is studied. The new type column base shows significantly improved seismic performance. Sponsored by the National Natural Science Foundation project "the research on disaster analysis and relief measures of Wenchuan earthquake"(50848008) and the National High Technology Research and Development Program "the key technology and application of the recycled concrete and new steel structural building materials"(2009AA032304), the mechanical behavior of the new steel column base is studied by theoretical analysis, cyclic loading test and numerical simulation. Also, the dynamic properties of steel frame with the new column base are studied. The main research achievements are summarized as follows:
     With the deformation influences of bolt, steel column plate, concrete base, washer and nut taken into account, formulas of deformation and rotational stiffness of exposed-type steel column bases are derived. The working mechanism and mechanical properties of the column base with wedge devices and the conventional column base are studied. The results show that the restoring force model of the exposed-type column base with wedge devices is non-slip-type, and the restoring force model of the common exposed-type steel column base is slip-type. The new column bases with wedge devices and common column bases are tested separately under low cyclic load, with the influence of different bolt numbers and column axial force taken into account. Thus, the restoring force characteristics of these column bases are deduced. Through experimental study, the derived formulas and restoring force models in the thesis are proved to be practical and effective. For column base with wedge devices, the gap between base plate and foundation produced by deformation of column base bolt is eliminated by use of the wedge spring devices, and the column base is fastened all the time. Compared with the ordinary column base, the new column base shows improved seismic performance, slower rigidity degeneration, improved ductility and energy dissipation capacity.
     The three-dimensional finite element model is established for numerical simulation, given the influence of material nonlinearity, contact nonlinearity, bolt number and arrangement on the bearing force and seismic performance of column bases. The finite element analysis results agree well with the test results. Hysteretic curve and skeleton curve have the same changing tendency as the test results. The curve is approximately linear before the specimen yield, but after the yield, the curve is obviously nonlinear. The increase of axial force is beneficial to the improvement of the bearing capacity in a certain range, but the capability of energy consumption is also reduced. The joint area has strong constraint on column, which results in the larger experimental value of skeleton curve in plastic zone compared with the finite element analysis. The increase of the bolt number is favorable to the bearing capacity and stiffness of column base.
     The simplified numerical simulation technology of slip-type column base is presented under low cyclic load, by using Link8unit in ANSYS in series with Link10tension type unit, and then in parallel with Link10pressure type unit to simulate the bolt of column base, and using Link10pressure type unit to simulate the base plate of column base. The simulation technology of non-slip-type column base is also proposed under low cyclic load, by using APDL language and the unidirectional displacement technology of Link8unit to simulate the base plate of column base. By comparison with the test results, the numerical simulation technology on column base presented in the thesis shows a good, practical and reliable effect.
     The Combin39unit in ANSYS and pressure type Link10unit are arranged in parallel, by using the former to simulate the bolt of column base and the latter to simulate the pedestal base. The characteristics of the constitutive relation of Combin39unit can be defined by inputting force-displacement curve. The numerical simulation technology of slip-type and non-slip-type column base is realized by inputting the different force-displacement curve. The energy consumption characteristics and the dynamic response of frame structure are studied under the seismic excitation. The new type wedge spring damping device can effectively control inter-story displacement of structure, reduce the seismic response of structure, and effectively dissipate the seismic energy. Thus, the structure of the new column bases with wedge spring devices shows an improved seismic performance.
     In summary, the seismic performance of a new non-slip-type steel column base with wedge spring devices is studied based on the test, theoretical research and finite element analysis. Meanwhile, the theoretical calculation formulas of the conventional slip-type exposed column base and the new non-slip-type exposed column base with wedge spring devices are derived. Then, the numerical simulation technology is also proposed. The work provides a reliable basis for the application of the new non-slip-type exposed column base.
引文
[1]Federal Emergency Management Agency. Learn about the types of disasters. http://www.fema.gov/hazard/types.shtm,2006-08-25
    [2]Mohamed G H. Facets and scope of large-scale disasters. Natural Hazards Review,2010,11(1):1-6
    [3]胥卫平,肖凯灵,张亘稼.城市地震灾害风险损失评价研究综述.西安石油大学学报(社会科学版),2010,19(2):32-37
    [4]Federal Emergency Management Agency. Fast facts about Earthquakes. http://www.fema.gov/hazard/earthquake/facts.shtm,2012-06-15
    [5]赵荣国,李卫平,刘一鸣.2008年世界地震灾害综述.国际地震动态,2009,31(1):20-23
    [6]郑通彦,李洋,侯建盛等.2008年中国大陆地震灾害损失述评.灾害学,2010,25(2):112-118
    [7]本书编委会.汶川大地震抗震救灾十日志(2008.5.12-5.21珍藏纪念版).北京:团结出版社,2008,3-4
    [8]郑磊,袁竞峰,朱磊.汶川地震灾害对工程建设的启示.建筑技术,2009,40(3):264-266
    [9]沈毅,庞俊韬.关于减少地震灾害损失的思考.广西城镇建设,2009,8(5):48-50
    [10]张忠霞.美地震专家认为短期临震预报是世界性难题.新华网,http://news.xinhuanet.com/tech/2008-05/20/content_8218666.htm,2008-05-20
    [11]清华大学、西南交通大学、北京交通大学土木工程结构专家组.汶川地震建筑震害分析.建筑结构学报,2008,29(4):1-9
    [12]赵西安.从汶川地震震害看重建技术对策.城市住宅,2008,15(7):30-33
    [13]姚兵.以抗震救灾的精神扎实推广钢结构建筑.中国建筑金属结构,2009,9(7):31-35
    [14]申明.抗震救灾一线专家呼吁钢结构应成为重建家园最佳选择.科技日报,2008-05-30
    [15]Nakashima M, Inoue M, Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Engineering Structures, 1998,20(4-6):271-281
    [16]Duane K M. Lessons learned from the Northrideg earthquake. Engineering Structures,1998,20(4-6):249-260
    [17]John L G. A connection model for the seismic analysis of welded steel moment frames. Engineering Structures,1998,20(4-6):390-397
    [18]Mohammed R. B, Archibald N S. Behavior of eight-bolt large capacity endplate connections. Computers and Structures,2000,72(3):315-325
    [19]Tsai K C, Egor P P. Cyclic behavior of end-plate moment connections. Journal of Structural Engineering,1990,116(11):2917-2930
    [20]Adey B T, Grondin G Y, Cheng J R. Cyclic loading of end plate moment connections. Canadian Journal of Civil Engineering,2000,27(3):683-701
    [21]Yorgun C, Bayramoglu G. Cyclic tests for welded-plate sections with end-plate connections. Journal of Constructional Steel Research,2001,57(9):1309-1320
    [22]Popov E P, Yang T S, Chang S P. Design of steel MRF connections before and after 1994 Northridge earthquake. Engineering Structures,1998,20(12): 1030-1038
    [23]Whittaker A, Gilani A, Bertero V. Evaluation of Pre-Northridge Steel Moment-Resisting Frame Joints. The Structural Design of Tall Buildings,1998, 7(2):263-283
    [24]Chi W M, Gregory G, Deierlein P E, et al. Fracture toughness demands in welded beam-column moment connections. Journal of Structural Engineering, 2000,126(1):88-97
    [25]Charles W R. General issues influencing connection performance. Journal of Structural Engineering,2002,128(4):420-428
    [26]James M R, Changshi M, Lu L W, et al. Inelastic cyclic testing of welded unreinforced moment connections. Journal of Structural Engineering,2002, 128(4):429-440
    [27]Matos C G, Dodds R H. Modeling the effects of residual stresses on defects in welds of steel frame connections. Engineering Structures.2000,22(12): 1103-1120
    [28]Lim J B, Nethercot D A. Stiffness prediction for bolted moment-connections between cold-formed steel members. Journal of Constructional Steel Research, 2004,60(2):85-107
    [29]Yao G C, Huo L X, Zhang Y F, et al. Numerical stress analysis of crack at welded beam-to-column connection. China Welding,2000,9(2):121-126
    [30]Citipitioglu A M, Haj R M, White D W. Refined 3D finite element modeling of partially-restrained connections including slip. Journal of Constructional Steel Research,2002,58(3):995-1013
    [31]Wong M F, Chung K F. Structural behavior of bolted moment connections in cold-formed steel beam-column sub-frames. Journal of Constructional Steel Research,2002,58(2):253-274
    [32]Lim J B P, Nethercot D A. Ultimate strength of bolted moment-connections between cold-formed steel members. Thin-Walled Structures,2003,41(7): 1019-1039
    [33]中国建筑技术研究院.高层民用建筑钢结构技术规程(JGJ99-98).北京:中国建筑工业出版社,1988,26-43
    [34]姚国春,霍立兴,张玉凤等.带人工裂纹的焊接钢结构梁柱节点有限元应力分析.机械强度,2001,23(1):47-49
    [35]黄第云,王立君,张俊宝.钢结构加腋型梁柱焊接节点抗震性能的探讨.建筑结构,2004,34(6):49-50
    [36]刘坤,王士奇,王玉华.钢结构梁柱栓焊混合连接节点的设计方法.钢结构,2008,23(7):20-22
    [37]张俊宝,王立君.提高钢结构梁柱焊接节点抗震性能的探讨.电焊机,2003,33(12):6-9
    [38]樊宝锋.钢结构梁柱端板连接节点的有限元分析:[北京交通大学硕士学位论文].北京:北京交通大学,2006,2-10
    [39]徐凌,李晓龙.钢结构半刚性节点连接试验与性能分析.辽宁工程技术大学学报,2006,25(1):66-69
    [40]姜学诗.钢结构房屋中框架梁柱刚性连接节点的设计.建筑结构,2006,36(1):11-14
    [41]张莉.钢结构刚性梁柱节点抗震性能的研究:[天津大学博士学位论文].天津:天津大学,2004,2-13
    [42]赵建昌,陈全红.基于钢柱、底板、基础相互作用的钢柱底板的简化设计.特种结构,2009,26(3):28-31
    [43]蔡益燕.高层钢结构柱脚的抗震设计.建筑结构,1997,27(6):3-8
    [44]胡安吉,李启才,刘刚.钢结构拼接节点的耗能性能分析.苏州科技学院学报(工程技术版),2009,22(1):19-22
    [45]宋晨雪.多层钢结构住宅标准节点库的研发:[太原理工大学硕士学位论文].太原:太原理工大学,2004,42-82
    [46]Mikami A, Sawada T. Simultaneous identification of time and space variant dynamic soil properties during the 1995 Hyogoken-Nanbu earthquake. Soil Dynamics and Earthquake Engineering,2005,25(1):69-77
    [47]夏军武,吴渭,谢伟.钢结构外露式刚接柱脚耗能特性的试验研究.中国矿业大学学报,2008,37(4):433-438
    [48]李国强.多高层建筑钢结构设计.北京:中国建筑工业出版社,2004,253-258
    [49]Bertero V V, Anderson J C, Krawinkler H. Performance of steel building structures during the Northridge earthquake. Engineering Journal,1994,31(9): 160-169
    [50]Watanabe E, Sugiura K, Nagata K, et al. Performances and damages to steel structures during the 1995 Hyogoken-Nanbu earthquake. Engineering Structures, 1998,22(3):282-290
    [51]Salmon C G, Shenker L, Johnston B G, et al. Moment-rotation characteristics of column anchorages. Transactions,1977,12(2):132-154
    [52]Maitra N. Graphical aid for design of base plate subjected to moment. Engineering Journal,1998,15(2):50-53
    [53]Dewolf J T, Sarisley E F. Column base plates with axial loads and moments. Journal of Structural Engineering,1980,106(11):2167-2184
    [54]DeWolf J T. Column base plates. Structural Engineering Practice,1982,11(1): 39-51
    [55]Astaneh A, Bergsma G, Shen J H. Behavior and design of base plates for gravity, wind and seismic loads. In:Proceedings of National Steel Construction Conference. Las Vegas,1992,89-97
    [56]Kim J K, Choi H H. Displacement-based design of supplemental dampers for seismic retrofit of a framed structure. Journal of Structural Engineering,2006, 132(6):873-883
    [57]Kim J K, Choi H H, Min K W. Performance-based design of added viscous dampers using capacity spectrum method. Journal of Earthquake Engineering, 2003,7(1):1-24
    [58]Galambos T V. Influence of partial base fixity on frame stability. Journal of Structural Engineering,1960,86(5):85-117
    [59]Watwood V B. Gable frame design considerations. Journal of Structural Engineering,1985,111(7):1543-1558
    [60]Picard B, Beaulieu D. Behavior of a simple column base connection. Canadian Journal of Civil Engineering,1985,12(1):126-136
    [61]Hon K K, Melchers R E. Moment-rotation curves for pinned column-bases. Journal of Structural Engineering,1987,113(3):54-59
    [62]Penserini P, Colson A. Ultimate limit strength of columnbase connections. Journal of Constructional Steel Research,1989,14(2):301-320
    [63]Melcher R E. Column-base response under applied moment. Journal of Constructional Steel Research,1992,23(1):127-143
    [64]Myersa A T, Kanvindeb A M, Deierleina G G, et al. Effect of weld details on the ductility of steel column baseplate connections. Journal of Constructional Steel Research,2009,65(6):1366-1373
    [65]Taylor D P, Constantinou M C. Fluid dampers for applications of seismic energy dissipation and seismic isolation. In:Proceedings of the 11th World Conference on Earthquake Engineering. Acapulco,1996,42-48
    [66]Picard A, Beaulieu D. Behavior of simple column base connection. Candian Journal of Civil Engineering,1985,112(1):126-136
    [67]Hon K K, Melchers C. Behaviour of pinned steel column base plates. Candian Journal of Civil Engineering,1986,113(3):147-152
    [68]Lin K C, Lin C J, Chen J Y, et al. Seismic reliability of steel framed buildings. Structural Safety,2010,32(3):174-182
    [69]Stamatopoulosa G N, Ermopoulosb J C. Experimental and analytical investigation of steel column bases. Journal of Constructional Steel Research, 2011,67(9):1341-1357
    [70]Samoa L D, Peccea M R, Fabbrocinob G. Inelastic response of composite steel and concrete base column connections. Journal of Constructional Steel Research, 2007,63(6):819-832
    [71]Drake R M, Elkin S J. Beam-column base plate design-LRFD method. Engineering Journal,1999,36(1):29-38
    [72]Kovacs N, Calado L, Dunai L. Experimental and analytical studies on the cyclic behavior of end-plate joints of composite structural elements. Journal of Constructional Steel Research,2008,64(2):202-213
    [73]Geramia M, Saberia H, Saberia V, et al. Cyclic behavior of bolted connections with different arrangement of bolts. Journal of Constructional Steel Research, 2011,67(4):690-705
    [74]Soifer H. Design of base plates and anchor bolts with simple assumptions. Civil Engineering,1966,36(4):63-72
    [75]Lim J B P, Ben Y. Effects of elevated temperatures on bolted moment-connections between cold-formed steel members. Engineering Structures,2007,29(10):2419-2427
    [76]Piluso V, Rizzano G. Experimental analysis and modeling of bolted T-stubs under cyclic loads. Journal of Constructional Steel Research,2008,64(6): 655-669
    [77]Inoue K, Kuwahara S. Optimum strength ratio of hysteretic damper. Earthquake Engineering and Structural Dynamics,1998,27(6):577-88
    [78]Tham D P, Param P. Base plates under axial loads and moments. Journal of Structural Engineering,1986,112(5):1166-1181
    [79]Tremblay R. Inelastic seismic response of steel bracing members. Journal of Constructional Steel Research,2002,58(5):665-701
    [80]William C H, Derek W. Practical design and detailing of steel column base plates. Forell Elsesser Engineers,1999,27(7):59-67
    [81]Kovacs N, Calado L, Dunai L. Behaviour of bolted composite joints: experimental study. Journal of Constructional Steel Research,2004,60(3): 725-738
    [82]Lee D Y, Subhash C G, Bozidar S. Exposed column-base plate connections bending about weak axis I:Numerical parametric study. Steel Structures,2008, 8(1):11-27
    [83]Fahmy M. Seismic Behavior of moment-resisting steel column bases: [dissertation]. Ann Arbor:University of Michigan,1999,86-89
    [84]Kontoleon M J, Mistakidis E S, Baniotopoulos C C, et al. Parametric analysis of the structural response of steel base plate connections. Computers and Structures, 1999,71(1):87-103
    [85]Lee D, Goel S C, Stojadinovic B. Relative strength effects on seismic behavior of column-base plate connections under weak axis bending. In:Proceedings of the Seventh United States National Conference on Earthquake Engineering. Boston,2002,122-137
    [86]Lee D Y, Goel S C, Stojadinovic B. Exposed column-base plate connections bending about weak axis II:Experimental study. International Journal of Steel Structures,2007,5(3):139-148
    [87]Ciampi V, Angelis M D, Paolacci F. Design of yielding or friction-based dissipative bracings for seismic protection of buildings. Engineering Structure, 1995,17(5):381-91
    [88]Jorge Camacho. Seismic performance of exposed column base plates. Steel Structures,2009,7(1):1-10
    [89]Jaswant N A, Murty C V. Performance of column-foundation sub-assemblies under monotonic lateral load. In:13th World Conference on Earthquake Engineering. Vancouver,2004,634-639
    [90]Ermopoulos J C, Stamatopoulos G N, Owens G W. Influence of support conditions on the behaviour of steel frames. In:Steel Structures-Euro steel 95 Kounadis education. Rotterdam,1995,211-217
    [91]Kwon S O, Nakata N. A framework for multi-site distributed simulation and application to complex structural systems. Journal of Earthquake Engineering, 2005,9(5):741-753
    [92]Jean-Pierre Jaspart, Frantisek Wald, Klaus Weynand, et al. Steel column base classification. Journal of Structural Engineering,2007,133(6):1269-1286
    [93]Mulas M G. A structural model for panel zones in non linear seismic analysis of steel moment-resisting frames. Engineering Structures,2004,26(3):363-380
    [94]Murat Eroz, Donald White, Reginald DesRoches. Direct analysis and design of steel frames accounting for partially restrained column base conditions. Journal of Structural Engineering,2008,134(9):1508-1571
    [95]Arlekar J N, Murty N. P-V-M interaction curves for seismic design of column base connections. Journal of Structural Engineering,2002,128(1):154-165
    [96]Kasai K, Popov E P. Cyclic web buckling control for shear link beams. Journal of Structural Engineering,1986,112(3):505-523
    [97]Nakashima M. Strain-hardening behavior of shear panels made of low-yield steel. Journal of Structural Engineering,1995,121(12):1742-1759
    [98]Wald F, Sokol Z, Steenhuis M, et al. Component method for steel column bases. Journal of Structural Engineering,2008,134(3):1207-1226
    [99]Sarno L D, Pecce M R, Fabbrocino G. Inelastic response of composite steel and concrete base column connections. Journal of Constructional Steel Research, 2007,63(3):819-832
    [100]Hoseok Chi, Judy Liu, Maria Garlock. Design and Analytical Validation of Post-tensioned Column Bases. In:Structures Congress 2008. Orlando,2008, 23-31
    [101]Takamatsu T, Tamai H. Non-slip-type restoring force characteristics of an exposed-type column base. Journal of Constructional Steel Research,2005, 61(3):942-961
    [102]Akiyam H, Kurosawa M, Wakuni N, et al. Strength and Deformation of Exposed Type of Steel Column Bases. Journal of Structural and construction Engineering,2004,34(2):46-54
    [103]Yoshimori K, Nakashima S. Mechanical behavior of steel column bases with small degree of fixity. Journal of Constructional Steel Research,1998,54(5): 509-510
    [104]Yoshizumi T, Korekoda W. Elasto-plastic behavior of exposed-type steel column base with anchor bolt yielding. Journal of Constructional Steel Research,2005,57(3):949-952
    [105]Takamatsu T, Douki H, Nakamura S. Experimental study on restoring force characteristics of exposed-type column base. Journal of Constructional Steel, 2001,9(3):415-422
    [106]Takamatsu T, Douki H, Nakamura S. A study on restoring force characteristics of steel exposed-type column base. Journal of Constructional Steel,2002,10(5): 499-506
    [107]Takamatsu T, Douki H, Nakamura S. A study on exposed-type column base with improved restoring force characteristics. Journal of Constructional Steel, 2003,11(3):563-570
    [108]Takamatsu T, Tamai H, Yamanishi T, et al. Models of restoring force characteristics for exposed column base with wedge device. In:Proceedings of 3rd International Symposium on Steel Structures. Hiroshima,2005,497-504
    [109]Takamatsu T, Tamai H, Yamanishi T, et al. A study on self-centering performance of non-slip-type exposed column base. Journal of Constructional Steel,2005,13(11):193-196
    [110]Takamatsu T, Tamai H, Sako T, et al. Influence of base concrete failure on restoring force charasteristics of exposed column base. Journal of Constructional Steel,2005,13(2):189-196
    [111]Takamatsu T, Tamai H, Yamanishi T. Models of restoring force characteristics of non-slip-type exposed column bases. Journal of Constructional Steel,2005, 13(1):51-56
    [112]Tamai H, Takamatsu T, Komochi H. Hysteresis characteristics and energy absorption capacity of non-compression braces. Journal of Constructional Steel, 2003,11(11):129-136
    [113]Takamatsu T, Tamai H, Kobata H, et al. Rehabilitation for H-shaped beam-to-column connection by means of non-compression knee-braces. Journal of Constructional Steel,2005,13(3):215-222
    [114]Takamatsu T, Tamai H, Yamanishi T, et al. Rehabilitation technique of exposed-type column bases in an existing gymnasium by use of wedge device. In:IABSE Symposium 2005. Lisbon,2005,166-174
    [115]Takamatsu T, Tamai H, Yamanishi T, et al. Restoring force characteristics of exposed-type column bases in an existing gymnasium. Journal of Constructional Steel,2004,12(11):213-216
    [116]Tamai H, Takamatsu T, Kumamoto K, et al. On rehabilitated RC frame using hysteretic damper installed in beam lower space. Journal of Constructional Steel,2005,13(5):385-392
    [117]李德滋.钢柱柱脚锚栓的应力分析和设计.工业建筑,1983,13(10):30-36
    [118]童根树,吴光美.钢柱脚单个锚栓的承载力设计.建筑结构,2004,34(2):10-14
    [119]童根树,吴光美.钢柱脚锚栓的设计方法.建筑钢结构进展,2005,7(1):27-36
    [120]刘沈如,张其林,倪建公等.单个锚栓抗拉承载力试验研究与有限元分析.建筑结构,2008,38(10):102-105
    [121]刘沈如,张其林.轴心受拉柱脚节点受力性能有限元分析.建筑钢结构进展,2008,10(4):50-65
    [122]于安林,永毓栋,郭在田等.露出型钢柱脚抗剪性能的研究(Ⅰ).工业建筑,1992,22(3):24-26
    [123]于安林,永毓栋,郭在田等.露出型钢柱脚抗剪性能的研究(Ⅱ).工业建筑,1992,22(5):29-33
    [124]于安麟,永毓栋,郭在田.钢柱脚在不同弯剪比时的抗剪性能研究.工业建筑,1994,24(1):23-27
    [125]张安国,吴昌栋.钢结构厂房高位锚栓柱脚抗剪承载力的试验研究.工业建筑,1997,27(5):28-31
    [126]马人乐,柳胜华,姚金满.门式刚架轻型钢结构工业厂房柱脚抗剪试验研究与理论分析.建筑结构学报,2004,25(2):15-18
    [127]王新华,管昌生.锅炉钢架柱底板设计与数值模拟比较研究.国外建材科技,2004,25(3):103-112
    [128]朱亮.锅炉钢架柱底板计算方法优化方法研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2005,1-53
    [129]严奉婷,陈晖.锅炉钢架柱底板厚度设计方法的比较.钢结构,2005,20(4):88-104
    [130]刘春波,隋殿勇.钢结构平板铰接柱脚的有限元分析.科技创新导报,2009,3(9):96-98
    [131]赵建昌,陈全红.基于钢柱、底板、基础相互作用的钢柱脚底板的简化设计.特种结构,2009,26(3):28-31
    [132]黄庆辉.高层建筑钢管混凝土新型柱脚节点与墙柱节点的试验研究:[华南理工大学硕士学位论文].广州:华南理工大学,2001,1-60
    [133]黄庆辉,梁启智.钢管混凝土柱新型柱脚节点的试验研究.建筑结构,2003,33(9):63-65
    [134]夏军武,吴渭,谢伟.钢结构外露式刚接柱脚耗能特性的试验研究.中国矿业大学学报,2008,37(4):433-438
    [135]卢学松,雷劲松,李洪碧等.露出型钢柱脚力学性能的有限元分析.华中科技大学学报(城市科学版),2008,25(4):290-297
    [136]雷劲松,姚勇,卢学松等.带楔块装置钢柱脚恢复力特性试验.建筑结构,2011,41(8):81-86
    [137]Lei Jinsong, Zou Yinsheng, Wang Yali, et al. Nonlinear dynamic response analysis of the braced steel frame with wedge devices. In:4th International Conference on Technology of Architecture and Structure. Xi'an,2011,368-373
    [138]雷劲松,王汝恒,杨东升等.非滑动型连接钢框架抗冲击性能.解放军理工大学学报(自然科学版),2007,8(6):669-673
    [139]陈小荣,雷劲松,罗景润等.基于积分均值法的钢框架减震体系复位性分析.西南科技大学学报,2009,24(1):1-6
    [140]古松,雷劲松,高松隆夫等.新型单向受拉支撑钢框架的低周反复荷载试验研究.工业建筑,2008,38(7):92-94
    [141]朱华.简单露出型刚接柱脚变形的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学,2006,49-55
    [142]Hon K, Melcher R E. Experimental behavior of steel column bases. Construct Steel Research,1988,9(2):35-50
    [143]王金,曹万林,王立长等.不同埋深的钢管混凝土柱脚-基础锚固试验研究.世界地震工程,2010,26(1):69-74
    [144]秦蓬军.铸钢柱脚的性能研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学,2005,1-45
    [145]Wong M F, Chung K F. Structural behaviour of bolted moment connections in cold-formed steel beam-column. Journal of Constructional Steel Research,2002, 58(3):253-274
    [146]许本安,李秀治.材料力学.上海:上海交通大学出版社,1988,20-25
    [147]陈仲颐,周景星.土力学.北京:清华大学出版社,1994,127-143
    [148]姚谦峰.土木工程结构试验.北京:中国建筑工业出版社,2005,221-222
    [149]中国建筑科学研究院.建筑抗震试验方法规程(JGJ101-96).北京:中国建筑工业出版社,1996,15-20
    [150]陈杰,苏明周,申林等.钢结构焊接翼缘板加强式梁柱刚性连接滞回性能试验研究.建筑结构学报,2007,28(3):1-7
    [151]王勖成.有限单元法.北京:清华大学出版社,2003:63-78
    [152]王新敏.ANSYS工程结构数值分析.北京:人民交通出版社,2007,113-127
    [153]王焕定,吴德伦.有限单元法及计算程序.北京:中国建筑工业出版社,1997,333-343
    [154]郭秉山.钢框架梁柱腹板连接在循环荷载作用下的滞回性能及抗震设计对策:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学,2004,25-29
    [155]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995,35-56
    [156]王仁.塑性力学基础.北京:科学出版社,1982,144-148
    [157]张磊,艾文超,童根树.钢柱脚锚栓连接抗剪性能的试验研究.中国科技论文在线精品论文,2012,5(14):1312-1325
    [158]王元清,章军,石永久等.锚栓预紧力对柱脚抗剪设计的影响分析Ⅰ:铰接柱脚.低温建筑技术,2005,14(2):27-29
    [159]胡晓轮,陈艾荣.ANSYS路径映射技术在结构分析中的应用.交通与计算机,2004,18(22):86-89
    [160]杨其伟,范源,王献云等.型钢混凝土短肢剪力墙抗震性能的试验研究.世界地震工程,2009,25(2):105-110
    [161]陈宏.钢框架梁柱节点恢复力模型的研究.工业建筑,2002,32(6):64-66
    [162]姚振纲,刘祖华.建筑结构试验.上海:同济大学出版社,1996,136-152
    [163]王新玲.新型复合结构拟静力试验的变形和裂缝.东南大学学报(自然科学版),2007,37(6):1036-1040
    [164]中国建筑科学研究院.建筑抗震设计规范(GB50011-2010).北京:中国建筑工业出版社,2010,31-334
    [165]包世华.结构动力学.武汉:武汉理工大学出版社,2005,156-181
    [166]唐友刚.高等结构动力学.天津:天津大学出版社,2002,84-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700