用户名: 密码: 验证码:
微电网电能质量主动控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效解决分布式电源的接入给电网带来的影响,微电网概念被提出。为保证微电网高效可靠运行,满足客户对高质量电能的需求,微电网电能质量控制技术成为微电网的关键技术之一。与配电网不同,由于微电网中多数微电源接口采用电力电子变流器,使得采用适当的控制策略实现微电网电能质量主动控制成为可能,在微电网中主要通过实现微电源接口微网变流器的复合控制,以及采用相应的控制策略提高微网变流器运行性能来实现电能质量主动控制。本文以微电网为研究对象,对微电网的电能质量主动控制,包括实现储能电源接口变流器复合电能质量补偿功能的多目标控制策略、储能电源接口双四桥臂变流器电能质量控制策略、非理想电压条件下提高微网变流器运行性能的控制策略等问题展开研究。
     论文首先针对微电网的网络构造、运行特点以及负荷特性,分析微电网结构及其控制方法,指出由于储能微网变流器与电能质量治理装置有相同的拓扑结构,因此具备电能质量主动控制条件;然后分析比较现有三种微电网PQ控制策略,指出由于受到滤波电感误差或电网感抗的影响导致系统性能降低,为改善性能采用功率、电流完全解耦的微网变流器PQ控制策略;最后建立了基于PQ控制微网变流器诺顿等效电路的微电网等效模型,以此为基础深入分析微电网电压波动原因和微电网与配电网间谐波谐振交互机理。
     为有效抑制电压不平衡、谐波畸变干扰,采用基于自适应陷波器(Adaptive Notch Filter, ANF)的正负序分量分解方法提取电网电压基波正、负序分量,从而实现补偿电流检测和参考电流计算。为充分利用储能电源接口变流器冗余容量,实现电能质量主动补偿,研究具有微电网电能质量主动治理功能的储能微网变流器多目标控制策略。该控制策略可以使储能系统平抑微电网功率波动,同时在全补偿控制方式下实现谐波、无功和不平衡电流的全频段范围补偿,在分频选择补偿控制方式下基于比例矢量比例积分(Proportional Vector Proportional-integral, PVPI)控制还可实现对谐波、无功和不平衡电流有选择的分频进行补偿。两种多目标控制策略可以有效利用储能系统,提高微电网电能质量,减小对配电网的影响。
     在储能微网变流器多目标控制的基础上,为进一步解决配电网与微电网之间电能质量交互影响,对具有灵活接入方式的超级电容(Super Capacitor, SC)储能电源双四桥臂变流器(Microgrid Power Quality Controller, MGPQC)的控制策略进行研究。在串-并联接入方式下,为补偿公共连接点(Point of Common Coupling, PCC)电压跌落,根据SC的剩余容量(SC-SOC),提出一种电压跌落协调补偿策略,通过微电源、SC和普通负荷切除之间的协调控制使得PCC电压始终维持在正常水平;在串联接入方式下,分析了电网电压不平衡、谐波畸变对MGPQC传输功率的影响,采用SC储能平抑MGPQC中间直流侧功率波动,提高微电网电能质量,避免配电网对微电网的影响。为实现变流器正、负序电流统一控制,采用多谐振PVPI控制器实现电流内环控制。上述方法提高了微电网电能质量,增强了微电网并网运行能力。
     为提高电网电压不平衡、谐波畸变条件下LCL滤波微网变流器的运行性能,结合电容电流反馈有源阻尼和电网电压前馈控制,提出基于PVPI控制的非理想电压条件下微电网变流器PQ控制策略,控制策略不需要锁相环和对电流进行正负序分离,计算量小,简化了系统控制结构,并可以改善微网变流器输出电能质量,提高非理想电压条件下微网变流器运行性能;针对电流闭环系统由于结构复杂、参数较多导致的系统参数设计困难,以及通过参数设计提高系统鲁棒性的设计要求,提出一种提高系统鲁棒性的简化电流闭环参数设计方法,采用频率法分析电容电流反馈系数和PVPI控制器各参数对电流环性能的影响,根据稳定性、幅值裕度和相位裕度要求,分别设计电容电流反馈系数、PVPI控制器的相对谐振增益系数和比例系数。该方法采用解析计算,简化了参数设计,提高了系统的稳定性、鲁棒性和动态响应性能。
Microgrid is proposed to solve the problems caused by distributed generation on grid effectively. In order to ensure the efficient and reliable operation of microgrid and meet the higher power quality of the customer demand, power quality control becomes one of the key techniques in microgrid research. As a result of the widely use of power electronic-interfaced microsources, microgrid is quite different from distribution grid. By adopting proper control strategy, power quality active control becomes possible, so microgrid can realize the active control on power quality mainly by composite power quality control and improving the operation performance of microgrid converter. This thesis takes microgrid as the research object to conduct research on power quality active control strategies, including multi-objective control strategy of energy storage interface converter for power quality compensation, microgrid power quality control strategy based on energy storage interface double four-leg converter, and control strategy of microgrid converter for better performance under non-ideal grid voltage conditions.
     Firstly, for the topology, operating characteristics and load characteristics, the structure and control strategy of microgrid are analyzed. The analysis indicates that energy storage microgrid converter has the same topological structure as power quality management equipment, so it can also be used in power quality active control. Secondly, by analyzing and comparing the three microgrid PQ control strategies, the existing problems are pointed out. The analysis indicates that inductance parameter error and grid impedance cause reduction of system performance. In order to improve performance, the thesis proposes a novel microgrid PQ control strategy to realize decoupled control of the power and current separately. Finally, the norton equivalent circuit of the microgrid converter using the PQ control strategy is established. Based on the norton equivalent circuit, a equivalent model of microgrid is established to analyse the reasons of voltage fluctuation and the harmonic resonance mechanism in detail.
     In order to realize compensative current detection and reference current calculation, the decomposition method of positive and negative sequence components based on adaptive notch filter(ANF) is used to extract the fundamental positive and negative components of grid voltage, which can effectively restrain the voltage unbalance and harmonic interference. To improve energy storage utilization efficiency and achieve active compensative function of power quality, the multi-objective control strategy of microgrid energy storage converter with active power quality management functions is researched. With the proposed control strategy, the energy storage system can not only smooth the power fluctuations, but also compensate current harmonics, reactive power and current unbalance under the control mode of all compensation, and selectively compensate current harmonics, reactive power and current unbalance under the control mode of selective frequency-division compensation based on proportional vector PI (PVPI) control. Adopting the proposed two control strategies, the utilized rate of energy storage system can be enhanced effectively, resulting in the improvement of microgrid power quality and the suppression of its impact on distribution grid.
     Furthermore, based on research results of the multi-objective control for microgrid energy storage converter, the control strategies of super capacitor(SC) energy storage double four-leg converter(Microgrid Power Quality Controller, MGPQC) are studied to solve interactive influence of the power quality between distribution grid and microgrid. In order to compensate grid voltage sags at the point of common coupling(PCC), a coordinated control strategy based on SC-SOC is proposed to when MGPQC working in series-parallel mode. The proposed control strategy keeps the normal level of grid voltage at the PCC through coordinated microsources, SC and load shedding. In series mode, the influences of voltage unbalance and distortion on the power transmission characteristic of MGPQC is analyzed. In order to improve microgrid power quality and avoid the influence of distribution grid on microgrid, a control scheme using SC energy storage to supress the DC-link power fluctuation is proposed. In the current inner loop, a multi-resonant proportional resonant PVPI controller is adopted to realize the unified positive-and negative-sequence current control. Based on the above methods, power quality of microgrid is improved, and the operation ability connected with grid is elevated effectively.
     In order to enhance the operation performance of microgrid converter using LCL filter under the unbalanced and harmonic distorted grid conditions, combined with the capacitor-current-feedback active damping and grid-voltage-feedforward control, a microgrid converter PQ control strategy is proposed based on PVPI controller. With the proposed control strategies, neither phase-locked loop nor extraction of positive/negative sequence current feedback signal is needed, simplifying the control structure, improving the power quality of output current and enhancing the operation performance of microgrid converter under non-ideal voltage situations. The system is of high order, many parameters and complicated. Besides, the proper parameter design method should be used to meet the design requirements that enhance the robustness of system. Therefore considering these factors, a simplified parameters design method which can realize better robustness is proposed. The effects of the capacitor-current-feedback coefficient and the parameters of PVPI controller on the current-loop performance are investigated with frequency characteristics analysis, i.e. the stability, phase and amplitude margins. According to the requests of the stability, phase and amplitude margins, the capacitor-current-feedback coefficient, the relative resonant gain factor and the proportional factors could be designed separately. The proposed method simplifies the parameters design procedure using analytic calculation and further improves stability, highly robustness, fast transient response performance of the microgrid converter.
引文
[1] Mohamed Gabbasa,Kamaruzzaman Sopian,Zahira Yaakob.Review of the energysupply status for sustainable development in the organization of islamicconference [J].Renewable and Sustainable Energy Reviews,2013,28(12):18-28.
    [2] Jinpeng Liu,Dongxiao Niu,Xiaohua Song.The energy supply and demand patternof China:A review of evolution and sustainable development [J].Renewable andSustainable Energy Reviews,2013,25(9):220-228.
    [3]程明.可再生能源发电技术[M].北京:机械工业出版社,2012:4-6.
    [4]陈雅琳,高吉喜,李咏红.中国化石能源以生物质能源替代的潜力及环境效应研究[J].中国环境科学,2010,30(10):1425-1431.
    [5]罗奕,王钢,汪隆君.微网可靠性评估指标研究[J].电力系统自动化,2013,37(5):9-14.
    [6] Hatziargyriou N,Asand H,Iravani,et al.Microgrids[J].IEEE Power and EnergyMagazine,2007,5(4):78-94.
    [7] Driesen J, Katiraei F. Design for distributed energy resources[J].IEEE Power andEnergy Magazine,2008,6(3):30-40.
    [8] Barnes M,VentakaramananG,Kondoh J,et al. Real-world micro-grids-anoverview[C].IEEE International Conference on System of Systems Engineering,San Antonio,TX,USA,2007:1-8.
    [9] Piagi P,Lasseter R H.Autonomous control of microgrids[C].Proc.IEEE PESMeeting,Montreal,2006:1-8.
    [10]王晨晨,杜秋平.日本仙台微电网示范工程在地震中的运行情况[J].华北电力技术,2013(8):56-60.
    [11] Guo Li,Liu Wenjian,Cai Jiejin,et al.A two-stage optimal planning and designmethod for combined cooling,heat and power microgrid system[J].EnergyConversion and Management,2013,74:433-445.
    [12] Wang S,Li Z,Wu L,et al.New metrics for assessing the reliability and economicsof microgrids in distribution system[J].IEEE Transactions on Power Systems,2013,28(3):2852-2861.
    [13] Katiraei F,Iravani R,Hatziargyriou N,et al.Microgrids management[J].IEEEPower and Energy Magazine,2008,6(3):54-65.
    [14] IEEE standards association.IEEE std1547.4-2011-IEEE guide for design,operation,and integration of distributed resource island systems with electricpower systems [S].New York:IEEE,2011.
    [15] Loh P C,Li D,Chai Y K,et al.Hybrid AC-DC microgrids with Energy Storagesand progressive energy flow tuning[J].IEEE Transactions on Power Electronics,2013,28(4):1533-1543.
    [16] Lasseter R H.Microgrids and distributed generation[J].Journal of EnergyEngineering,2007,133(3):144-149.
    [17] Ali B,Ali D.Hierarchical Structure of microgrids control system[J].IEEETransactions on Smart Grid,2012,3(4):1963-1974.
    [18] Lasseter R H.Smart distribution:coupled microgrids[J].Proceedings of the IEEE,2011,99(6):1074-1082.
    [19] Yasser ARIM,Amr A R.Hierarchical control system for robust microgridoperation and seamless mode transfer in active distribution systems[J].IEEETransactions on Smart Grid,2011,2(2):352-362.
    [20] Lasseter R H,Eto J H,Schenkman B,et al.CERTS microgrid laboratory testbed[J]. IEEE Transactions on Power Delivery,2011,26(1):325-332.
    [21] Nagaraju P,Milan P,Timothy C G.Modeling analysis and testing of autonomousoperation for an inverter-based microgrid[J].IEEE Transactions on PowerElectronics,2007,22(2):613-625.
    [22] Gueerero J M,Vasquez J C,Matas J,et al.Hierachical control of droop-controlledAC and DC microngrids-a general approach toward standardization[J].IEEETransactions on Industrial Electroics,2011,58(1):158-172.
    [23] Rikos E,Tselepis E,Hoyer-Klick C,et al.Stability and power quality issues inmicrogrids under weather disturbances study of photovoltaic integration[J].IEEEJournal of Selected Topics in Applied Earth Observation Sand Remote Sensing,2008,1(3):170-180.
    [24] Majumder R,Chakrabarti S,Ledwich G,et al.Control of battery storage toimprove voltage profile in autonomous microgrid[C].Power and Energy SocietyGeneral Meeting,Michigan,USA,2011:1-8.
    [25]丁明,张颖媛,茆美琴,等.包含钠硫电池储能的微网系统经济运行优化[J].中国电机工程学报,2011,31(4):7-14.
    [26] Kim J Y,Jeon J Y,Kim S K,et al.Cooperative control strategy of energy storagesystem and microsources for stabilizing the microgrid during islandedoperation[J].IEEE Transactions on Power Electronics,2010,25(12):3037-3048.
    [27] Xue Y,Divya K C,Griepentrog G,et al.Towards next generation photovoltaicinverters[C].IEEE Energy Conversion Congress and Exposition,Phoenix,USA,2011:2467-2474.
    [28] Manfred W,Gekele.A novel topology of soft switching three-level inverters forhighest efficiency rates [J].Proceedings of the CSEE,2013,33(21):1-8.
    [29]肖华锋,杨晨,谢少军.基于改进型全桥电路的非隔离光伏并网逆变器[J].中国电机工程学报,2011,31(3):40-46.
    [30]曾正,杨欢,赵荣祥.多功能并网逆变器研究综述[J].电力自动化设备,2012,32(8):5-15.
    [31] Zheng Zeng,Huan Yang,Rongxiang Zhao,et al.Topologies and control strategiesof multi-functional grid-connected inverters for power quality enhancement:Acomprehensive review[J].Renewable and Sustainable Energy Reviews,2013,24(8):223-270.
    [32]姚致清,于飞,赵倩,等.基于模块化多电平换流器的大型光伏并网系统仿真研究[J].中国电机工程学报,2013,33(36):27-33.
    [33]季振东,赵剑锋,孙毅超,等.零序和负序电压注入的级联型并网逆变器直流侧电压平衡控制[J].中国电机工程学报,2013,33(21):9-17.
    [34] Bonaldo J P,Braga F N,Antenor Pomilio J.Single-phase multifunctional gridinterface converter without grid sincronization[C].International Conference onClean Electrical Power,Alghero,Italy,2013:306-312.
    [35]耿乙文,伍小杰,周德佳,等.基于改进型比例谐振控制器的三相四线制光伏发电和有源滤波器系统[J].电工技术学报,2013,28(8):142-148.
    [36] Xiaoxiao Yu,Khambadkone A M.Multi-functional power converter buildingblock to facilitate the connection of micro-grid[C].11th Workshop on Control andModeling for Power Electronics,Zurich,Switzerland,2008:1-6.
    [37]吴理博,赵争鸣,刘建政.具有无功补偿功能的单级式三相光伏并网系统[J].电工技术学报,2006,26(1):28-32.
    [38]王正仕,陈辉明.具有无功和谐波补偿功能的并网逆变器设计[J].电力系统自动化,2007,31(13):67-71.
    [39] Wu T F,Nien H S,Hsieh H M,et al.PV power injection and active power filteringwith amplitude-clamping and amplitude-scaling algorithms[J].IEEE Transactionson Industry Applications,2007,43(3):731-741.
    [40]张国荣,张铁良,丁明,等.具有光伏并网发电功能的统一电能质量调节器仿真[J].中国电机工程学报,2007,27(14):82-86.
    [41]曾正,杨欢,赵荣祥.多功能并网逆变器及其在微电网中的应用[J].电力系统自动化,2012,36(4):28-34.
    [42] Ritwik Majumder,Gerard Ledwich,Arindam Ghosh,et al.Droop control ofconverter-interfaced micros-ources in rural distributed generation[J].IEEETransactions on Power Delivery,2010,25(4):2768-2778.
    [43] Vasquez J C,Mastromauro R A,Guerrero J M,et al.Voltage support providedby a droop-controlled multifunctional inverter[J].IEEE Transactions on IndustrialElectronics,2009,56(11):4510-4519.
    [44]王成山,肖朝霞,王守相.微网中分布式电源逆变器的P-f和Q-V多环反馈控制策略研究[J].电工技术学报,2009,24(2):100-107.
    [45] Vasquez J C,Guerrero J M,Luna A,et al.Adaptive droop control applied tovoltage-source inverters operating in grid-connected and islanded modes[J].IEEETransactions on Industrial Electronics,2009,56(10):4088-4096.
    [46] Yun Wei Li,Chingnan Kao.An accurate power control strategy forpower-electronics-interfaced distributed generation units operating in alow-voltage multibus microgrid[J].IEEE Transactions on Power Electronics,2009,24(12):2977-2988.
    [47] Rocabert J,Luna A,Blaabjerg,et al.Control of power converters in ACmicrogrids[J].IEEE Transactions on Power Electronics,2012,27(11):4734-4749.
    [48]姚玮,陈敏,牟善科,等.基于改进下垂法的微电网逆变器并联控制技术[J].电力系统自动化,2009,33(6):77-80.
    [49]郑永伟,陈民铀,李闯,等.自适应调节下垂系数的微电网控制策略[J].电力系统自动化,2013,37(7):6-11.
    [50]时珊珊,鲁宗相,闵勇,等.无差调频过程中微电源功率分配策略设计[J].电力系统自动化,2011,35(19):23-27.
    [51]杨志淳,刘开培,乐健.孤岛运行微电网中模糊PID下垂控制器设计[J].电力系统自动化,2013,37(12):19-23.
    [52]程军照,李澎森,吴在军,等.微电网下垂控制中虚拟电抗的功率解耦机理分析[J].电力系统自动化,2012,36(7):27-32.
    [53]吴威.单相光伏并网逆变器控制策略的比较研究[J].电网与清洁能源,2013,(8):75-78.
    [54] Mukhtiar Singh,Vinod Khadkikar,Ambrish Chandra,et al.Grid interconnectionof renewable energy sources at the distribution level with power-qualityimprovement features[J].IEEE Transactions on Power Delivery,2011,26(1):307-313.
    [55] Song H,Nam K.Dual current control scheme for PWM converter underunbalanced input voltage conditions[J].Transactions on Industrial Electronics,1999,46(5):953-959.
    [56] Yuan X M, Merk W H,et al.Stationary-frame generalized integrators for currentcontrol of active power filters with zero steady-state error for current harmonics ofconcern under unbalanced and distorted operating conditions[J].IEEETransactions on Industry Applications,2002,38(2):523-532.
    [57]刘斌,谢积锦,李俊.基于自适应比例谐振的新型并网电流控制策略[J].电工技术学报,2013,28(9):186-195.
    [58]杭丽君,李宾,黄龙.一种可再生能源并网逆变器的多谐振PR电流控制技术[J].中国电机工程学报,2012,32(12):51-58.
    [59]杨勇,赵春江.分布式发电系统中并网逆变器比例谐振控制[J].电力自动化设备,2011,31(11):51-54.
    [60]刘波,杨旭.三相光伏并网逆变器控制策略[J].电工技术学报,2012,27(8):64-70.
    [61]章玮,王宏胜,任远.不对称电网电压条件下三相并网型逆变器的控制[J].电工技术学报,2010,25(12):103-110.
    [62]霍群海,孔力,唐西胜.微源逆变器不平衡非线性混合负载的控制[J].中国电机工程学报,2010,30(15):10-15.
    [63] Lascu C,Asiminoaei L,Boleda I,et al.High performance current controller forselective harmonic compensation in active power flters[J].IEEE Transactions onPower Electronics,2007,22(5):1826-1835.
    [64] Yepes A,Freijedo F,Doval-Gandoy J.Effects of discretization methods on theperformance of resonant controllers[J].IEEE Transactions on Power Electronics,2010,25(7):1692-1712.
    [65] Yepes A,Francisco D,Freijedo F,et al.High performance digital resonantcontrollers implemented with two integrators[J].IEEE Transactions on PowerElectronics,2011,26(2):563-576.
    [66] Daniel Nahum Zmood,Donald Grahame Holmes.Stationary frame currentregulation of PWM inverters with zero steady-state error[J].IEEE Transactions onPower Electronics,2003,18(3):814-821.
    [67]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [68]杨仁增,张光先.单级式光伏并网逆变器的非线性控制[J].电工技术学报,2013,28(8):204-211.
    [69] Jyung T Y, Baek Y S, Kim Y G.Improvement of a power quality of microgridsystem interconnected to distribution system in emergency condition[C].Transmission&Distribution Conference&Exposition:Asia and Pacific,Seoul,Korea.2009:1-4.
    [70] Gao Xiaozhi,Li Linchuan,Chen Wenyan.Power quality improvement formircrogrid in islanded[J].Mode Procedia Engineering,2011,23:174-179.
    [71]李国庆,王鹤,张慧杰.微电网中基于逆变电源控制的重要节点电能质量管理方法[J].电工技术学报,2014,29(2):177-184.
    [72]鲍薇,胡学浩,李光辉,等.提高负荷功率均分和电能质量的微电网分层控制[J].中国电机工程学报,2013,33(34):106-114.
    [73] Fei Wang,Jorge L,Duarte.Reconfiguring grid-interfacing converters for powerquality improvement[J].IEEE Transactions on Power Electronics,2011,26(12):3501-3513.
    [74] Acuna P,Moran L,Rivera M,et al.Improved active power filter performance forrenewable power generation systems[J].IEEE Transactions on Power Electronics,2014,29(2):687-694.
    [75]李晓亮,夏明超,毛彦辉,等.基于改进型统一电能质量调节器结构的微电网控制策略[J].电力系统自动化,2013,37(22):22-27.
    [76] Ghosh Arindam,Majumder Ritwik,Ledwic Gerard F,et al.Power qualityenhanced operation and control of a microgrid based custom power park.7th IEEEInternational Conference on Control&Automation[C].Christchurch,NewZealand,2009:1669-1674.
    [77] Majumder R,Ghosh A,Ledwich G.Load sharing and power quality enhancedoperation of a distributed microgrid[J].IET Renewable Power Generation,2009,3(2):109-119.
    [78] Xiangjun Li,Yu-Jin Song,Soo-Bin Han.Study on power quality control inmultiple renewable energy hybrid microgrid system[C].IEEE Proceedings PowerTechnology,Lausanne,Switzerland,2007:2000-2005.
    [79] Prodanovic M,Green T C.High-quality power generation through distributedcontrol of a power park microgrid[J].IEEE Transactions on Industrial Electronics,2006,53(5):1471-1482.
    [80]杨新法,苏剑,吕志鹏,等.微电网技术综述[J].中国电机工程学报,2014,34(1):57-70.
    [81] Ribeiro P F,Johnson,B K,Crow M L,et al.Energy storage systems for advancedpower applications[J].Proceedings of the IEEE,2001,89(21):1744-1756.
    [82] Xingguo Tan,Qingmin Li,Hui Wang.Advances and trends of energy storagetechnology in Microgrid[J].International Journal of Electrical Power&EnergySystems,2013,44(1):179-191.
    [83]陈伟,石晶,任丽,等.微网中的多元复合储能技术应用[J].电力系统自动化,2010,34(1):112-115.
    [84] Paquette A D,Divan D M.Design considerations for microgrids with energystorage[C].Energy Conversion Congress and Exposition (ECCE),Raleigh NC,USA,2012:1966-1973.
    [85] Ross M,Hidalgo R,Abbey C.Energy storage system scheduling for an isolatedmicrogrid[J].IET Renewable Power Generation,2011,5(2):117-123.
    [86] Haisheng Chen,Thang Ngoc Cong,Wei Yang,et al.Progress in electrical energystorage system:A critical review.Progress in Nature Science,2009,19(3):291-321.
    [87]赵艳雷,李海东,张磊,等.基于快速储能的风电潮流优化控制系统[J].中国电机工程学报,2012,32(13):21-28.
    [88]张坤,毛承雄,陆继明,等.基于储能的直驱风力发电系统的功率控制[J].电工技术学报,2011,26(7):7-14.
    [89]毕大强,葛宝明,王文亮,等.基于钒电池储能系统的风电场并网功率控制[J].电力系统自动化,2010,34(13):73-78.
    [90]张野,郭力,贾宏杰,王成山.基于平滑控制的混合储能系统能量管理方法[J],电力系统自动化,2012,36(16):36-41.
    [91]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [92] Jongyul Kim,Jinhong Jeon,et al.Cooperative control strategy of energy storagesystem and microsources for stabilizing the microgrid during islandedoperation[J].IEEE Transactions on Power Electronics,2010,25(12):3037-3048.
    [93] Haihua Zhou,Bhattacharya T,Duong Tran,et al.Composite energy storagesystem involving battery and ultracapacitor with dynamic energy management inmicrogrid applications[J].IEEE Transactions on Power Electronics,2011,26(3):923-930.
    [94]张国驹,唐西胜,齐智平.平抑间歇式电源功率波动的混合储能系统设计[J].电力系统自动化,2011,35(20):24-28.
    [95]李蓓,郭剑波.平抑风电功率的电池储能系统控制策略[J].电网技术,2012,36(8):38-43.
    [96]唐西胜,齐智平.应用于微电网的储能及其控制技术[J].太阳能学报,2012,33(3):99-108.
    [97] He Jinwei,Li Yunwei,Dubravko B,et al.Investigation and active damping ofmultiple resonances in a parallel-inverter-based microgrid[J].IEEE Transactionson Power Electronics,2013,28(1):234-246.
    [98] Yazdani D,Mojiri M,Bakhshai A,et al.A fast and accurate synchronizationtechnique for extraction of symmetrical components[J].IEEE Transactions onPower Electronics,2009,24(3):674-684.
    [99]徐海亮,章伟,胡家兵,等.电网电压不平衡及谐波畸变时基波电压同步信号的检测[J].电力系统自动化,2012,36(5):28-34.
    [100]R odriguez P,Luna A,Candela I,et al.Multiresonant frequency-locked loop forgrid synchronization of power converters under distorted grid conditions[J].IEEETransactions on Industrial Electronics,2011,58(1):127-138.
    [101]周林,张凤.三相四线制任意次谐波电流的无锁相环ip-iq检测新方法[J].继电器,2006,34(20):57-62.
    [102]孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐波电流的检测[J].中国电机工程学报,2003,23(12):43-48.
    [103]陈东华,谢少军,周波.用于有源电力滤波器谐波和无功电流检测的一种改进同步参考坐标法[J].中国电机工程学报,2005,25(20):62-67.
    [104]A kagi H,Wa E H,aredes M.Instantaneous power theory and applications topower conditioning [M].New York,USA:John Wisley and Sons Inc,2007:42-53.
    [105]陈永军.磷酸铁锂电池建模及SOC算法研究[D].哈尔滨:哈尔滨工业大学,2011.
    [106]周柯,王凯.一种改进型并联混合有源电力滤波器及其控制[J].中国电机工程学报,2012,32(30):67-72.
    [107]M ajumder R,Ghosh A,Ledwich G,et al.Power management and power flowcontrol with back-to-back converters in a utility connected microgrid[J].IEEETransactions on Power Systems,2010,25(2):821-834.
    [108]S ofla M A,King R.Control method for multi-microgrid systems in smart gridenvironment-Stability,optimization and smart demand participation[C].2012IEEE PES Innovative Smart Grid Technologies (ISGT),Washington,DC,USA,2012:1-5.
    [109]G uerrero J M,Chandorkar M,Lee T,et al.Advanced control architectures forintelligent microgrids-part I:decentralized and hierarchical control[J].IEEETransactions on Industrial Electronics,2013,60(4):1254-1262.
    [110] Guerrero J M,Chandorkar M,Lee T,et al.Advanced control architectures forintelligent microgrids-part II:Power quality,energy storage,and AC/DCmicrogrids[J].IEEE Transactions on Industrial Electronics,2013,60(4):1263-1270.
    [111]徐海亮,章玮,陈建生,等.电网电压不平衡且谐波畸变时双馈风电机组转矩波动抑制[J].电力系统自动化,2013,37(7):12-17.
    [112]金鹏,艾欣,孙英云,等.平抑功率脉动的微电网PQ控制策略优化设计[J].电力系统自动化,2013,37(13):30-35.
    [113] Twining E,Holmes D G.Grid current regulation of a three-phase voltage sourceinverter with an LCL input filter[J].IEEE Transactions Power Electronics,2003,18(3):888-895.
    [114]刘计龙,马伟明,肖飞,等.一种LCL滤波器有源阻尼策略与设计方法[J].电机与控制学报,2013,17(5):22-27.
    [115] Chenlei Bao,Xinbo Ruan,Xuehua Wang,et al.Design of injected grid currentregulator and capacitor-current-feedback active-damping for LCL-typegrid-connected inverter[C].IEEE Energy Conversion Congress and Exposition,2012:579-586.
    [116]王广雄,何朕.控制系统设计[M].北京:机械工业出版社,2008:78-80.
    [117] Gene F Franklin,J Dav.动态系统的反馈控制(第四版)[M].北京:电子工业出版社,2004:299-305.
    [118]张学广,刘义成,王瑞,徐殿国.一种新型的PWM变换器LCL滤波器有源阻尼控制策略[J].电工技术学报,2011,26(10):188-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700