用户名: 密码: 验证码:
船用钢海水腐蚀与检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋环境是一种非常严酷的腐蚀环境,各种材料在使用过程中始终面临着恶劣的海洋腐蚀环境,由海水腐蚀所引发事故的经济损失所占的比例相当高。目前对船用钢耐蚀性能的评价方法主要是实海挂片试验,该方法的优点是实验环境条件真实,操作简单,结果比较可靠。但是该试验方法还存在以下不足:试验周期长,一般最短试验周期为1年;环境因素无法控制;试验结果的重现性较差;由于试样丢失而造成试验失败的风险较高。这些不足是制约新材料新工艺快速应用的主要问题。
     本文主要研究三种典型船用钢A、B、C在不同实验环境条件下的耐蚀性能。通过电化学试验,探讨了不同的实验环境条件对材料的腐蚀的影响,得到了材料在不同实验条件下的腐蚀规律,并从数学的角度,找出不同试验条件下的腐蚀速度随时间变化的函数关系,得到了适合于所选材料在本地区海水环境腐蚀的模拟公式。本文的主要结论如下:
     1.通过实海腐蚀电位监测,B的稳定电位最正,C次之,A最负。其结果与室内模拟静水条件下得到的结果有差别。
     2.分别对实海全浸的试样进行了线性极化以及交流阻抗测试,得到瞬时腐蚀速度(i_(corr))和极化电阻(R_P)随浸泡时间的变化,表明其变化是表面锈层的堆积与海水温度变化所带来的影响的共同作用的结果。
     3.采用四种阻抗模型对EIS数据进行了拟和,表明全浸可分为四个阶段,浸泡初期,等效电路仅由双电层电容(C_(dl))和电荷转移电阻(R_t)构成。随时间延长,等效电路中出现了反映界面性质的腐蚀产物层电容(C_f)和电阻(R_f)。随时间的进一步延长,阻抗模型中出现了由于微生物而导致的电容及电阻,通过C_(dl)和R_t随浸泡时间的变化表征了材料的腐蚀行为。
     4.对腐蚀产物进行激光拉曼分析,得到腐蚀产物的结构成分,外层腐蚀产物主要由γ-FeOOH构成,并有少量α-Fe_2O_3,内锈层主要由α-Fe_2O_3、Fe_3O_4构成,其中也伴有少量γ-FeOOH。
     5.室内模拟充气搅拌条件下,材料的稳定电位排序与实海全浸一致,并且其瞬时腐蚀速度(icorr)和极化电阻(RP)随浸泡时间的变化也与实海一致,这说明室内充气搅拌条件得到的实验结果可以很好的重现实海条件下的实验结果。
     6.两种室内模拟方法得到的交流阻抗结果与实海有较大差别,原因可能是海水中微生物的影响不同,实海中微生物的影响较强,室内模拟较弱。
     7.通过积分拟合的方法分别得到三种实验条件下的腐蚀速度随时间变化的数学公式,通过与失重方法得到的数学公式相对比,可以看出室内充气搅拌实验结果与相应条件下的失重实验结果较好的吻合,说明由电化学方法得到的积分拟合值来计算腐蚀速度的方法完全可以替代失重挂片实验方法。
     8.本文的研究表明,由室内模拟充气条件下的电化学实验得到的腐蚀速度完全可以预测材料的腐蚀速度,从而可以替代挂片失重实验。但监测频率要更为密集,才能保证结果的准确性。
Marine environmental is a rigorous corrosion environmental, materials in the process of using is confronted with badly ocean corrosion circumstance all the time. The proportion of accident’s economic loss caused by seawater corrosion is quite high.
     At present, the method which appraise the anti-corrode performance of vessel steel is loss weight in natural seawater. The measurement’s merit is experiment condition’s reality, operation simple and result credibility. While there are many shortages in the measurement. For example, the periods of experiment are very long, usually, the shortest experiment periods are one year; the circumstance factors are out of control; consequential the recurrence is bad; the risk caused by losing sample in the process of experiment is high. All shortages above, are mostly issues which restrict the use of new material, new craftwork.
     This paper mostly research the anti-corrode performance of three representative vessel steel: A, B, C in different experiment circumstances. Through electrochemistry experiment, we probe into the influence of different experiment circumstances with the corrosion of material, find material corrosion disciplinarian in different experiment circumstances, the function relation between corrosion rate and time in different experiment circumstances from mathematical view and simulation formula which simulate material corrosion in this region. The conclusions of this paper are as follows:
     1) Through monitoring corrosion potential in natural seawater, we find that the stabilization potential of B is most positive, the second is C, and A is most negative. While the result gained by natural seawater is different from the conclusion gained by indoor static seawater.
     2) Linear polarization test and AC impedance test have been separately carried out on samples immersing entirely in natural seawater, and it give us the change of instantaneous corrosion rate(i_(corr)) vs. immersing time and polarization resistance(R_P) vs. immersing time, it dedicates that the changes are the result caused by the accumulation of surface rust layer and seawater temperature’s change together.
     3) Four kinds of impedance models are adopted to fit EIS plot which represent four different stages. At the early stage, the equivalent circuit only includes double electricity layer capacitance (C_(dl)) and charge transfer resistance(R_t). Following the time’s fluid, rust layer capacitance (C_f) and rust layer resistance (R_f) appear in equivalent circuit. And then, as time’s more prolonging, there are capacitance and resistance caused by microorganism. And the corrosion behaviour of rust-layer/metal system is characterized by the changing trend of Cdl and Rct on time.
     4) The corrosion production has been analysed by laser Raman technology and it gives us that the structure and component of corrosion production, while the outer corrosion production is mostlyγ-FeOOH and smackα-Fe_2O_3 and inner corrosion production is mostlyα-Fe_2O_3, Fe_3O_4 and littleγ-FeOOH.
     5) The order of stabilization potential tested by indoor aerated seawater condition is consistent with that in natural seawater circumstance. And that the instantaneous corrosion rate(i_(corr)) and polarization resistance(R_P) vs. immersing time are as same as that in natural seawater. The result gained by indoor aerated seawater experiment can recure the result of natural seawater experiment.
     6) There are more difference between two indoor experiment and natural seawater experiment. The reason of above issue may be the difference influence of microorganism. The microorganism influence made by natural seawater is strong, and the other is less.
     7) Through integral fit, we find the mathematics formulas between corrosion rate and immersing time in three corrode circumstance separately and then contrast them with the mathematics formulas gained by weight loss experiment in three different corrode circumstance. After that, only indoor aerated condition, we find out the result gained by integral fit is inosculating with that gained by weight loss. It shows the method that forecasting corrosion rate gained by integral fit the data of electrochemical test can substitute the method of weight loss’s.
     8) The research of this paper show that the integral fit corrosion rate gained by indoor aerated condition can forecast material’s corrosion rate and thereby substitute weight loss experiment. But only the frequency of monitoring is more coarctation, can we assure the veracity of forecasting result.
引文
[1]莱因哈特.金属和合金在不同海洋深度下的腐蚀[M].见:舒马赫编.李大超等译.海水腐蚀手册.北京:国防工业出版社,1985.265
    [2]Dexter S C, Culberson C. Global Variability of Natural Sea Water. Materials Performance[M].1980,19(9):16-28
    [3]门智,渡边常安.低合金钢の海水腐蚀[M].防食技术,1976,25(3):173-190
    [4]陈鸿海.金属腐蚀学[M].北京.北京理工大学出版社,1995.12第一版1-10
    [5]陈瓒立.台湾腐蚀研究及防蚀技术发展概况.第三届海峡两岸材料腐蚀与防护研讨会论文集‘腐蚀与控制’,化学工业出版社,2002,18
    [6]中国工业与自然环境腐蚀调查项目组.中国工业与自然环境腐蚀问题调查与对策[M].2002,6-7
    [7]化学工业部化工机械研究院主编.腐蚀与防护手册-腐蚀理论实验及检测[M].化学工业出版社,1989,164-174
    [8]侯保荣等.海洋腐蚀与防护[M].科学出版社,1997, 3-6
    [9]曹楚南.中国材料的自然环境腐蚀[M].北京,化学工业出版社,2005,253
    [10]中国科学院吉林应用化学研究所金属腐蚀组.一种相对评比低合金钢在海水中的局部腐蚀性能的方法[M].金属腐蚀与防护,1976,1:9
    [11]吴荫顺,方智等著.腐蚀实验方法预防腐蚀检测技术[M].北京,化学工业出版社,1996年3月第一版19-64
    [12]S.G.Millard, D.Law, J.H.Bungey and J.Cairns. Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete, NDT&E International, Volume 34,Issue 6,September 2001,Pages 409-417
    [13]R.Scott Lillard and Darryl P.Butt. A Method for Measuring the Corrosion Rate of Materials in Spallation Neutron Source Target/Blanket Cooling Loops, MaterialsCharacterization, Volume 43, Issues 2-3, August-September 1999, Pages 135-145
    [14]M.Yamashita, H.Nagano and R.A.Oriani. Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution, Corrosion Science, Volume 40,Issue 9,1 September 1998,Pages 1447-1453
    [15]R.Bandy. Measurement of corrosion rate using two electrodes, Electrochemical Acta, Volume 26, Issue 1, January 1981, Pages 149-159
    [16]宋诗哲著.腐蚀电化学研究方法[M].北京,化学工业出版社,1988年12月第一版,10-24
    [17] Ch. Cao, Ch Song and Y. Wang, Corrosion Science,45,99(1989)
    [18]穆振军,任润桃,黄淑珍等.金属材料及构件在厦门海域腐蚀规律分析[J].装备环境工程,2006,3(3)
    [19]王成章,汪学华,秦晓洲等.碳钢及低合金钢在重庆和万宁地区大气腐蚀规律研究[J].装备环境工程,2006,3(2)
    [20]赵月红,林乐耘,崔大为等.铝合金和铜合金在我国东西部水系统中暴露1年的腐蚀规律[J].腐蚀科学与防护技术,2005,17(5)
    [21]林乐耘,赵月红等.我国海域海水对防锈铝合金的腐蚀性及材料因素影响的规律[J].中国有色金属学报,2003,13(5)
    [22]丁元法,范矩琛等.低合金钢在海洋环境中的腐蚀规律[J].钢铁,1992,27(11)
    [23]王淑兰,杨慧,庄立军等.低碳铌微合金钢在海水中的腐蚀规律[J].钢铁研究学报,2007,19(1)
    [24]R.E. Melchers.Modelling immersion corrosion of structural steels in natural fresh and brackish waters.Corrosion Science,2006,48,4174-4201
    [25]T.Kamimura, S.Hara, H.Miyuki, M.Yamashita, H.Uchida. Composition and protective ability of rust layer formed on weathering steel exposed to variousenvironments.Corrosion Science,2006,48,2799-2812
    [26]David A.Shifler. Understanding material interactions in marine environments to promote extended structural life. Corrosion Science,2005,47,2335-2352
    [27]Ad Bakker,G.C.A.M.Janssen,Hans de Wit. Fatigue Crack Initiation Behavior of Welded AA5083 in a Seawater Environment. Journal of Engineering Materials and Technology,2004,126,199-203
    [28]Donald L.Johnson, Brent M.Wilson, James D.Carr, Matthew A.Russell, Larry E.Murphy, David L.Conlin. Corrosion of Steel Shipwrechs in the Marine Environment:USS Arizona-PartⅡ.Materials Selection & Design,2006,45(11),54-57
    [29]孙虎元,马士德,侯保荣,张经磊等.海洋环境下碳钢腐蚀规律的数学模拟[J].中国腐蚀与防护学报,2000,20(3)
    [30]刘学庆,王佳,王胜年,潘德强等.海水中3C钢腐蚀速度影响因素的灰色关联分析[J].腐蚀科学与防腐技术,2005,17(suppl)
    [31]Kong D Y。Hou G Y,Song S Z.Corrosion speed prediction and data management and administration system of mild steel an d low—alloy steel in seawater[A].The Fourth Scientific Seminar on Corrosion and Protection and the Sixth Scientific and Technological Thesis Comment Meeting[C].Shanghai,1999,28—31(孔德英,候国艳,宋诗哲,碳钢、低合金钢海水腐蚀速度预测及腐蚀数据咨询管理系统[A].第四届中国青年腐蚀与防护学会学术研讨会暨第六届全国青年腐蚀与防护科技论文讲评会会议论文[C].上海,1999,28—31)
    [32]Kong D Y,Hou G Y,Song S Z.The corrosion data management and prediction system of steel used in seawater[J] Corros.Sci.Prote.Techno1.2000,12(1):16—19孔德英,候国艳,宋诗哲.常用金属海水腐蚀数据管理及预测系统[J].腐蚀科学与防护技术,2000,12(1):16—19)
    [33]宋诗哲,王光雍,王守琰等.我国材料自然环境腐蚀数据处理研究进展[J].中国腐蚀与防护学报,2003,23(1)
    [34]Guo Z H.Jin M H,eta1.Neural network approach in research of metal corrosion in soil[J].Corros.Sci.Prote.Techno1.,1995.7(3):258—262(郭稚弧,金名惠等.神经网络在金属土壤腐蚀研究中的应用[J].腐蚀科学与防护技术,1995,7(3):258—262)
    [35]Dai M A,et a1.Prediction of seawater corrosion by artificial neural network[A] . A Critical Review in Corrosion Science and Anti—Corrosion Engineering Technology [C].Beijing :Chemical Industry Press,1999,10:283—285(戴明安,朱相荣等.人工神经网络预测海水腐蚀[A].腐蚀科学与防腐蚀工程技术新进展[C].北京:化学工业出版社,1999,10:283—285)
    [36]贾铮,戴长松,陈玲等.电化学测量方法[M].北京:化学工业出版社,2006,
    [37]林昌健,卓向东,杜荣归,田昭武.金属局部腐蚀研究中的空间分辨电化学技术[J].海峡两岸材料腐蚀与防护研讨会论文集,1998,99
    [38]Baek W.C.,Kang T.,Sohn H.J.,et al.In suit surface enhanced Raman spectroscopic study on the effect of dissolved oxygen on the corrosion film on low carbon steel in 0.01M NaCl solution[J].Electrochim.Acta.,2001,46:2321
    [39] GB5776—1989金属材料在表面海水中常规暴露腐蚀试验方法
    [40]曹楚南,张鉴清等.电化学阻抗谱导论[M].北京:科学出版社,2002
    [41]宋诗哲,雒娅楠等.海水腐蚀试验站碳钢低合金钢全浸试片的现场腐蚀检测[J].中国腐蚀与防护学报,2007,27(6)
    [42]唐晓.钢腐蚀速度软测量方法研究[D].中国科学院海洋研究所硕士论文.
    [43]张金涛,胡吉明,张鉴清,曹楚南等.LY12铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为[J].金属学报,2006,42(5):528-532
    [44]丁杰,林海潮,曹楚南. Hsn70-1B铜管在碱性NaCl溶液中的腐蚀行为[J].腐蚀科学与防护技术,2002,14(2):67-72
    [45]罗俊雄,饶正,陈桂清等.海生物附着对钢板管桩腐蚀之影响[J].海峡两岸腐蚀与防护研讨会论文集,2004,739-743
    [46]严川伟,余家康,林海潮,曹楚南,宋光铃.激光拉曼光谱在金属腐蚀研究中的应用[J].腐蚀科学与防护技术,1998,10(3):163-170.
    [47]过家驹,大塚俊明,佐藤教男.激光拉曼光谱在金属腐蚀研究中的应用[J].腐蚀与防护,1989,10(6):3-7.
    [48]Jing Gui , T. M. Devine. The influence of sulfate ions on the surface enhanced Raman Spectroscopy of passive films formed on iron [J].Corrosion Science, 1994,36(3):441-462.
    [49]J. Dünnwald , A. Otto. An investigation of phase transitions in rust layers using Raman Spectroscopy [J].Corrosion Science, 1989,29(9): 1167-1176.
    [50]李涛,秦颍,罗武干,滕建英,赵鹏,刘斌,王晓妮等.古代青铜器锈蚀产物的拉曼和红外光谱分析[J].有色金属,2008,60(2):146-152.
    [51]杨晓梅.钢大气腐蚀锈层的红外、拉曼光谱研究[J].光谱学与光谱分析,2006,26(12):2247-2250.
    [52]贾书君,刘清友,王向东,汪兵,陈红桔等.拉曼光谱法分析低碳钢模拟大气腐蚀锈层[J].腐蚀与防护,2006,27(12):620-623.
    [53]杨晓梅.钢大气腐蚀锈层的拉曼光谱研究[J].光散射学报,2007,19(2):134-137.
    [54]J. Dunnwald,A.Otto. An Investigation of Phase Transitions In Rust Layers Using Raman Spectroscopy [J].Corrosion Science,1989,29(10):1167-1176
    [55]JING Gui,T. M. Devine. The Influence of Sulfate Ions on The Surface Enhanced Raman Spectra of Passive Films Formed on Iron[J].Corrosion Science,1994,36(3):441-462
    [56]肖衍,汪崧,黄震中,林定一等.新型耐海水腐蚀低合金钢10CrCuSiV锈层分析研究报告[J].北京科技大学学报,1997,9(5):476-480.
    [57]李言涛,李延旭,侯保荣,张经磊等.低合金钢在海洋各腐蚀区带的锈层研究[J],海洋与湖沼,1998,29 (6): 651-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700