用户名: 密码: 验证码:
生物炭对稻田土壤镉生物有效性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国有效耕地面积日益缩小,重金属污染土壤面积却逐年扩大的严峻形势下,为明确生物炭治理镉污染土壤的应用价值,以生物炭理化性质分析与镉吸附-解吸动力学行为研究为基础,通过在镉污染稻田土壤上开展秸秆直接粉碎和炭化两种还田方式的比较研究,探讨了生物炭施入后对土壤镉赋存形态的影响及其相互关系,系统分析了生物炭结合土壤因子对镉胁迫条件下水稻生理、生化性状及镉吸收、分配、转运和积累的影响,以及不同还田方式与水稻品质及糙米镉含量的相互关系,以期为改良与修复重金属镉污染稻区土壤,消减农产品中可食用部位镉残留,并有效防止污染面继续扩散提供理论依据,研究结果表明:
     1.不同最高热解温度(HTT)生物炭理化性质分析结果表明,随着HTT升高,生物炭产率从60%降低到34%,灰分含量从12%升高到33%,挥发分下降到原材料稻壳的四分之一,在HTT400℃之前pH值急剧增大,上升至9以后开始放缓。HTT达到500℃时,生物炭的阳离子交换量、比表面积显著提高,较原材料增幅分别达到41%和85%。微观外表面结构逐渐清晰、规则,疏松多孔的结构增多,以上变化有助于提高生物炭的吸附能力。
     2.根据不同HTT生物炭对镉的吸附-解吸动力学行为特征差异及平衡时最大吸附、固持量与生物炭理化性质的关联分析,初步构建了适于生物炭的动力学拟合模型。结果表明:(1)稻壳和3种不同HTT条件下制成的生物炭的吸附量均随着初始镉离子浓度的升高而增加,HTT500℃在0.5mg/L镉溶液浓度的吸附效果最好,达到99.55%,并且随着HTT的升高,生物炭在增加了吸附量同时也相对缩短了吸附进程;(2)解吸过程中,吸附态镉离子的解吸量随振荡时间的延长而不断增加,高热解温度制备的生物炭最快到达解吸平衡,与Elovich方程拟合度最好;(3)能谱分析证实了生物炭对重金属镉离子存在吸附、固持作用,同时随HTT的升高,生物炭对镉离子的固持量增大,相对原子数量百分比值较原材料增幅达到3.4%;(4)通过相关分析表明生物炭酸碱度、阳离子交换量和比表面积对其固持镉离子能力有显著的正向作用。
     3.对生物炭施入土壤后镉赋存形态的分析结果表明,随着施炭量的增加金属可交换态镉所占土壤总镉含量比例出现减少趋势,各处理分别较CK降低3%、8%和11%。其它四种形态镉都不同程度的增加,其中毒性最小的残渣晶格结合态镉含量较对照提高了4到5个百分点。对土壤理化性质与有效态镉进行线性回归分析,pH值、电导率和阳离子交换量与有效态镉含量均呈显著负相关趋势,表明生物炭施入土壤带来的一系列的变化对降低土壤中有效态镉具有积极作用。
     4.随着镉胁迫的增大,水稻剑叶的游离脯氨酸、丙二醛含量呈现增加趋势。在土壤最大镉胁迫浓度下,添加生物炭的C1、C2处理与CK相比游离脯氨酸含量降幅达到24.7%和39.3%;同时丙二醛含量显著低于不施炭对照处理。但超氧化物歧化酶和过氧化氢酶活性呈现先降低后升高趋势,说明如果施炭量过大,保护酶活性继续增强,可能造成了水稻的另一种逆境胁迫,从而使酶活性出现了升高反复。
     5.生物炭的施入明显影响镉在水稻不同器官的积累,施炭量最大处理消减镉积累量最大,各器官(叶、茎,鞘、糙米)分别较CK降低21%、19%、26%和19%,均达到显著水平。通过水稻糙米镉积累量与产量性状指标的逐步回归分析得出生物炭的施入可以影响水稻库容量进而降低糙米内镉浓度水平。
     6.秸秆炭化还田与直接粉碎还田两种方式对比上年镉污染水稻处理糙米中镉含量都有大幅的降低,秸秆炭化还田降幅为56-60%,而秸秆直接粉碎还田降幅为52-57%,炭化还田消减糙米镉含量效果较优于秸秆直接粉碎还田。
     综上所述,生物炭施用于土壤后,不但可以通过抑制镉的运输量来消减水稻镉库器官糙米对镉的积累,还可以通过相对增加水稻籽粒镉库的容量进而使籽粒中镉含量下降。因此,秸秆炭化还田是一项兼顾碳封存与土壤重金属污染治理的双赢技术措施。
The contaminated area of heavy metal has expanded each year in China. In order to define the value of biochar for controlling contaminated soil of cadmium, physical, chemical properties and cadmium adsorption-desorption kinetics behavior of biochar were researched for base, difference of rice straw direct crushing and charring into paddy soil of cadmium were compared, influence of cadmium combined forms and their relationship of biochar combined with soil were investigated, effect of physiological, biochemical traits and cadmium absorption, distribution, transport and accumulation of rice under cadmium stress with different biochar application were analysed, and variation of different returning to field measures on the quality of rice and cadmium content of brown rice were also studied. Be hope to provide a theoretical basis for cutting the cadmium residues in agricultural products, repairing paddy soil with heavy metal cadmium contaminated, preventing the spread of polluted area. The main results are as follow:
     1. The chemical properties analysis of different HTT biochar showed that the production rate of biochar was reduced from60%to34%, ash content was increased from12%to33%, volatile down to a quarter of rice husk, pH value was increased rapidly before HTT reaching400℃. When the HTT reached500℃, the CEC and BET surface area were increased significantly; amplification of T-500compared with the raw materials reached41%and85%. Biochar's micro surface structure appeared clearly, ruly and porous structure was increased. Influence of physical and chemical properties in biochar was contributed to increase its adsorption properties.
     2. The kinetic fitting model suitable for biochar was built according maximum adsorption, solid retention capacity on balance and correlation analysis between physical and chemical properties of biochar. The main types are as follow:
     (1) Desorption of rice husk and biochars at three different pyrolysis temperatures were increased with the rising of initial Cd2+concentration. The adsorption effect of HTT500℃was the most, could reached99.55%in0.5mg/L Cd2+solution, and adsorption also shortened by biochar.(2) Cd2+desorption amount increased with the extension of the oscillation time, desorption of biochar at high pyrolysis temperature reached balance the fastest and was fitted with Elovich equations the best.(3) The energy spectrum analysis of biochar showed that they all had cadmium on the surface after desorbing. At the same time, the cadmium ions fixation of biochar increased with HTT.(4) Correlation analysis also showed that pH, CEC and BET surface area had a positive effect on adsorption-desorption ability of biochar.
     3. Analysis of cadmium combined forms in soils with different biochar treatments showed that the amount of exchangeable cadmium reduced3%,8%and11%respectively, although the other forms increased variedly. A significant negative correlation trend was showed on the linear regression analysis of physical and chemical properties with available cadmium in soil. It was found that the biochar application had a positive effect on reducing available cadmium in soil.
     4. Free proline and MDA content of rice flag leaf showed varying degrees of increase with the soil cadmium concentration rising. In biochar treatments, free proline content of C1and C2lower than that of CK relatively, and this effect was amplified by biochar application rate. Contents of SOD and POD down first and then increased, indicated that high biochar application ratio might cause another kind of stress and suppress the positive function on cadmium amelioration.
     5. The effect of cadmium accumulation was significantly in different organs of rice by biochar application. The cadmium accumulation of various organs (leaves, stems, sheath, brown rice) in different biochar application decreased by21%,19%,26%and19%compared with CK. Stepwise regression analysis of yield traits indicators and cadmium accumulation in brown rice showed that the biochar could affect the storage of the rice grain for reducing cadmium accumulation of brown rice.
     6. Cadmium content of brown rice with two ways of returning,(rice straw charring and crushing directly to field) had reduced significantly. The reductions were56-60%or52-57%for rice straw charring and crushing directly to field. The reduction of cadmium content in brown rice by straw charring to field was better than straw crushing directly to field.
     In summary, biochar could not only reduce the cadmium accumulation of brown rice by controlling the transport of cadmium, but also decreased cadmium content by increasing the storage of the rice grain. Therefore, it is a win-win measure to managing the heavy metal pollution of soil management and carbon sequestration.
引文
1.白篙,纪秀娥,白岩,等.2004.水体镉污染对水稻幼株生长及某些生理特性的影响[J].吉林农业大学学报,26(3):245-247.
    2.毕于运,寇建平,王道龙.2008.中国秸秆资源综合利用技术[M].北京:中国农业科技出版社,170-174.
    3. 曹仁林,霍文瑞,何宗兰,等.1992.在酸性土壤上不同改良剂抑制水稻吸收镉的研究[J].农业环境保护,11(5):195-198.
    4. 陈宏,陈玉成,杨学春.2003.石灰对土壤中Hg、Cd、Pb的作物可利用性的调控研究[J].农业环境科学学报,22(5):549-552.
    5. 陈怀满.1996.土壤-植物系统中的重金属污染[M].北京:科学出版社.
    6. 陈涛.1980.张士灌区镉土改良和水稻镉污染防治研究.环境科学[J].农业环境保护,1(5):7-11.
    7. 陈温福,张伟明,孟军,徐正进.2011.生物炭应用技术研究[J].中国工程科学,13(2):83-87.
    8. 程旺大,姚海根,张国平等.2005.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学,35(3):525-537.
    9. 慈敦伟,姜东,戴廷波,等.2005.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报,25(5):88-91.
    10.丁疆华,温琰茂,舒强.2001.土壤环境中镉、锌形态转化的探讨[J].城市环境与城市生态,14(2):47-49.
    11.杜志敏.2011.改良剂对铜镉复合污染土壤的原位修复研究[D]:南京农业大学.
    12.段苏然,施卫明,王俊儒.2006.过量表达pAPX基因提高水稻对锡胁迫的耐性[J].土壤学报,43(1):111-115.
    13.GB/T 12496.4-1999,1999.木质活性炭试验方法-灰分含量的测定[s].中华人民共和国国家标准:国家质量技术监督局.
    14.GB/T12496.4-1999,1999.木质活性炭试验方法-水分含量的测定[S].中华人民共和国国家标准:国家质量技术监督局.
    15.GB/T 2001-91,1999.焦炭工业分析测定方法-挥发分含量的测定[S].中华人民共和国国家标准:国家质量技术监督局.
    16.高山,陈建斌,王果.2003.淹水条件下有机物料对潮土外源镉形态及化学性质的影响[J].植物营养与肥料学报,9(1):102-105.
    17.葛才林,骆剑峰,刘冲,等.2005.重金属对水稻光合作用和同化物输配的影响[J].核农学报,19(3):214-218.
    18.葛才林,杨小勇,朱红霞,等.2006.重金属胁迫对水稻叶片过氧化氢酶活性和同功酶表达的影响 [J].核农学报,27(4):197-202.
    19.顾继光,林秋奇,胡韧,等.2005.土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,36(1):128-133.
    20.顾继光,周启星,王新,等.2003.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,11(2):143-151.
    21.郭利敏,艾绍英,唐明灯,等.2010.不同改良剂对镉污染土壤中小白菜吸收镉的影响[J].中国生态农业学报,18(3):654-658.
    22.HJ 491-2009.2009.土壤总镉的测定:火焰原子吸收分光光度法[S].北京:中国环境科学出版社.
    23.韩润平,陆雍森.2000.用植物消除土壤中的重金属[J].江苏环境科技,13(1):28-29.
    24.韩晓日,王颖,杨劲峰,等.2009.长期定位施肥对土壤中镉含量的影响及其时空变异研究[J].水土保持学报,23(1),107-110.
    25.郝蓉,彭少麟,宋艳暾,刘名茗.2010.不同温度对黑炭表面官能团的影响义[J].生态环境学报,25(3):66-68.
    26.何绪生,张树清.2011.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,27(15):16-25.
    27.胡新萍.2007.沈阳市郊蔬菜基地土壤中重金属污染状态[J].辽宁城乡环境科技,8(4):1-2.
    28.华珞,陈承慈,刘全义.1992.土壤污染的治理方法研究[J].农业工程学报,第8卷(增刊):90-99.
    29.华珞,白铃玉,韦东普,等.2002.有机肥-镉-锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学,22(4):346-350.
    30.黄亚军,屈明.2003.重金属环境化学行为与毒理学研究[J].环境卫生工程,12(2):80-82.
    31.贾乐,朱俊艳,苏德纯.2010.秸秆还田对镉污染农田土壤中镉生物有效性的影响[J].农业环境科学学报,29(10):1992-1998.
    32.蒋先军,骆永明,赵其国.2000.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,19(3):179-183.
    33.孔祥生,郭秀璞,张妙霞.1999.镉胁迫对玉米幼苗生长及生理生化的影响[J].华中农业大学学报,18(2):111-113.
    34.李德明,朱祝军,刘永华,等.镉对小白菜光合作用特性影响的研究[J].浙江大学学报(农业与生命科学版),2005,31(4):459-464.
    35.李合生,孙群,赵世杰,等.2000.植物生理生化实验技术与原理[M].北京:高等教育出版社.
    36.李花粉.2000.根际重金属污染[J].中国农业科技导报,2(4):54-59.
    37.李瑞美,王果,方玲.2003.石灰与有机物料配施对作物镉铅吸收的控制效果研究[J].农业环境科学学报,22(3):293-296.
    38.李一锟.2007.土壤-蔬菜系统重金属富集规律研究[J].沿海企业与科技,81(2):28-29.
    39.李瑛,张桂银,李洁,等.2005.Cd、Pb在根际与非根际土壤中的吸附解吸特点[J].生态环境,14(2):208-210.
    40.李宇庆,陈玲,仇雁翎,等.2004.上海化学工业区土壤重金属元素形态分析[J].生态环境,13(2):154-155.
    41.李兆君,马国瑞,徐建民,等.2004.作物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,35(2):234-238.
    42.郦逸根,薛生国,吴小勇.2004.重金属在土壤-水稻系统中的迁移转化规律研究[J].中国地质,31(8):87-92.
    43.廖敏,黄昌永,谢正苗.1999.pH对镉在土水系统中迁移和形态的影响[J].环境科学学报,19(1):81-86.
    44.廖自基.1989.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社.
    45.林爱军,张旭红,苏玉红,等.2007.骨炭修复重金属污染土壤和降低基因毒性的研究[J].环境科学,28(2):233-237.
    46.林栖凤,李冠一.2000.植物耐盐性研究进展[J].生物工程进展,(2):20-25.
    47.林琦,陈英旭,陈怀满.2001.有机酸对Pb、Cd的土壤化学行为和植株效应的影响[J].应用生态学报,12(4):619-622.
    48.林琦,郑春荣,陈怀满,等.1998.根系环境中镉的形态转化[J].土壤学报,35(4):461-467.
    49.刘定辉,蒲波,陈尚洪,朱钟麟,舒丽.2008.秸秆还田循环利用对土壤碳库的影响研究.西南农业学报,21(5):1316-1319.
    50.刘莉.2005.镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响[J].浙江农业学报,17(3):147-150.
    51.刘敏超,李花粉,夏立江等.2001.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J].生态学报,21(4):598-602.
    52.刘敏超,李花粉,夏立江,杨林书.2001.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J].生态学报,21(4):598-602
    53.刘玉学,刘微,吴伟祥,等.2009.土壤生物质炭环境行为与环境效应[J].应用生态学报,20(4):21-23.
    54.龙新宪,倪吾钟,杨肖娥.2002.菜园土壤锌的吸附-解吸特性研究[J].土壤通报,33(1):51-53.
    55.鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社,4-17.
    56.罗立新,孙铁珩,靳月华.1998.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,18(5):495-499.
    57.罗雪梅,陈新之,王侃,梁成华.2003.沈阳市蔬菜生产基地重金属污染及评价[J].环境与生态,118(29):43-45.
    58.孟令阳,辛术贞,苏德纯.2011.不同惰性有机碳物料对土壤镉赋存形态和生物有效性的影响[J].农业环境科学学报,30(8):1531-1538.
    59.莫争,王春霞,陈琴,等.2002.重金属Cu、Pb、Zn、Cr、Cd在水稻植株中的富集与分布[J].环境化学,21(2):110-116.
    60.穆晓慧,李世清,党蕊娟.2008.黄土高原不同土壤中Cd形态分级及其生物有效性研究[J].西北 农林科技大学学报(自然科学版),36(4):135-142.
    61.邵国胜,Muhammad Jaffar Hassan,等.2004.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,18(3):239-244.
    62.苏玲,张永松,林咸永,罗安程.2000.维管作物的镉毒和耐性机制[J].作物营养与肥料学报,6(1):106-112.
    63.孙波,周生路,赵其国.2003.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,22(2):248-251.
    64.孙卫红,王伟青,孟庆伟.2005.作物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J].作物生理学通讯,41(2):143-147.
    65.孙星,刘勤王德建,张斌.2008.长期秸秆还田对剖面土壤肥力质量的影响[J].中国生态农业学报,16(3):587-592.
    66.谭长银,岳振华,罗槐林,等.2000.菜园土对铅的吸持解吸特性研究[J].水土保持学报,14(2):88-91.
    67.唐丽蓉,黄彪,廖益强,等.2009.纤维素热解反应研究进展[J].广州化工,37(9):8-10.
    68.万云兵,仇荣亮,陈志良,等.2002.重金属污染土壤中提高植物提取修复功效的探讨[J].环境污染治理技术与设备,3(4):56-59.
    69.王芳,杨勇,张燕,等.2009.不同蔬菜对镉的吸收积累及亚细胞分布[J].农业环境科学学报,28(1):44-48.
    70.王桂仙,张启伟.2008.竹炭对水体中重金属离子的吸附规律研究[J].化学与生物工程,19(3):528-531.
    71.王果,李建超,杨佩玉,等.2000.有机物料影响下土壤溶液中镉形态及其有效性研究[J].环境科学学报,20(5);621-626.
    72.王汉卫,王玉军,陈杰华,等.2009.改性纳米碳黑用于重金属污染土壤改良的研究[J].中国环境科学,29(4):431-436.
    73.王宏镔,王焕校,文传浩,等.2002.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,22(4):523-528.
    74.王晶,张旭东,李彬,等.2002.腐殖酸对土壤中Cd形态的影响及利用研究[J].土壤通报,33(3):185-187.
    75.王凯荣,张玉烛,胡荣桂.2007.不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J].农业环境科学学报,(02):476-481.
    76.王凯荣,龚惠群.1996.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境保护,15(4):145-149
    77.王凯荣.1997.我国农田镉污染现状及其治理利用对策[J].农业环境保护,(06):35-39.
    78.王凯荣.2004.农田生态系统锅污染研究[D],华中农业大学博士学位论文.
    79.王凯荣.1996.镉对不同基因型水稻生长毒害影响的比较研究[J].农村生态环境,12(3):18-23.
    80.王亚平,鲍征宇,侯书恩,等.2000.尾矿库周围土壤中重金属存在形态特征研究[J].岩矿测试,19(1):7-13.
    81.王逸群,郑金贵,陈文列,等.2004.H+、Cd2+污染对水稻叶肉细胞伤害的超微观察[J].福建农业大学学报:自然科学版,33(4):409-413.
    82.王泽港,骆剑峰,刘冲,等.2004.单一重金属污染对水稻叶片光合特性的影响[J].上海环境科学,23(6):240-243.
    83.韦朝阳,陈同斌.2001.重金属超富集植物及植物修复技术研究进展[J].生态学报,21(7):1197-1203.
    84.吴成,张晓丽,李关宾.2007.黑炭制备的不同热解温度对其吸收菲的影响[J].中国环境科学,27(1):125-128.
    85.吴婕,朱钟麟,郑家国,姜心禄.2006.秸秆覆盖还田对土壤理化性质及作物产量的影响.西南农业学报,19(2):192-195.
    86.吴启堂,陈卢,王广寿.1999.水稻不同品种对Cd吸收积累的差异和机理研究[J].生态学报,19(1):104-107.
    87.吴燕玉,陈涛,孔庆新,等.1984.张士灌区镉污染及其改良途径[J].环境科学学报,4(3):275-282.
    88.肖美秀,林文雄,陈冬梅,等.2006.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响[J].中国生态农业学报,14(4):256-258.
    89.邢新会.2004.环境生物修复技术的研究进展[J].化工进展,23(6):579-584.
    90.熊礼明,鲁如坤.1992.几种物质对水稻吸收镉的影响及机理[J].土壤,24(4):197-200.
    91.熊礼明.1994.石灰对土壤吸附镉行为及有效性的影响[J].环境科学研究,7(1):35-38.141.
    92.徐红霞,翁晓燕,毛伟华;等.2005.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J].中国水稻科学[J].19(4):338-342.
    93.杨春刚,朱智伟,章秀福,等.2005.重金属镉对水稻生长影响和矿质元素代谢的关系[J].植物生理科学,21(11):176-192.
    94.杨海平,陈汉平,晏蓉,等.2007.温度对生物质热解产物有机机构的影响[J].太阳能学报,28(10):1152-1157.
    95.杨基峰,应光国,赵建亮,等.2008.黑炭对污染物环境地球化学过程的影响[J].生态环境,17(4):1685-1689.
    96.杨金燕,杨肖娥,何振立,等.2005.土壤中铅的吸附-解吸行为研究进展[J].生态环境,14(1):102-107.
    97.杨居荣,贺建群,蒋婉茹.1995.Cd污染对植物生理生化的影响[J].农业环境保护,14(5):193-197.
    98.杨居荣,许嘉琳.1995.灰钙土重金属生态基准[J].中国环境科学,6(3):109-112.
    99.杨科璧.2007.中国农田土壤重金属污染与其植物修复研究[J].世界农业,(8):58-61.
    100.杨世勇,王方,谢建春.2004.重金属对作物的毒害及作物的耐性机制[J].安徽师范大学学报,27(1):71-74.
    101.杨肖娥,杨明杰.1996.镉从农业土壤向人类食物链的迁移[J].广东微量元素科学,3(7):1-13.
    102.杨亚提,张一平,张卫华.1998.铜在土壤-溶液界面吸附-解吸特性的研究[J].西北农业学报,7(4):82-85.
    103.杨忠芳,陈岳龙,钱鑂镳,等.2005.土壤pH对镉存在形态影响的模拟实验研究[J].地学前缘,12(1):252-260.
    104.衣纯真,傅桂平.1996.不同钾肥对水稻吸收和运移的影响[J].中国农业大学学报,1(3):65-70.
    105.依艳丽,王义,张大庚,郭琳琳,亓鑫.2010.沈阳城市土壤-旱柳-降尘系统中铅、镉的分布迁移特征研究[J].土壤通报,41(6):1466-1470.
    106.余飞宇.2008.水稻幼苗对镉胁迫的反应极其与全生育期镉积累特性的关系[D].扬州:扬州大学.
    107.余贵芬,蒋新,和文祥,等.2002.腐殖酸对红壤中铅镉赋存形态及活性的影响[J].环境科学学报,22(4):508-513.
    108.俞慎.2003.重金属胁迫下土壤微生物和微生物过程研究进展[J].应用生态学报,14(4):618-621.
    109.张阿娇,潘根兴,李恋卿.2009.生物黑炭及其增汇减排与改良土壤意义[J].农业环境科学学报,28(12):2459-2463.
    110.张杰,梁永超,娄运生,等.2005.镉胁迫对两个水稻品种幼苗光合参数、可溶性搪和植株生长的影响[J].植物营养与肥料学报,11(6):774-780.
    111.张立军,樊金娟.2007.植物生理学实验教程[M].北京,中国农业大学出版社,8,98-99.
    112.张玲,王焕校.2002.镉胁迫下小麦根系分泌物的变化[J].生态学报,22(4),496-502.
    113.张伟锋,陈平.2004.镉对水稻幼苗叶片几种元素含量的影响[J].农业与技术,24(5):65-67.
    114.张兴梅,杨清伟,李扬.2010.土壤镉污染现状及修复研究进展[J].河北农业科学,14(1):79-81.
    115.张义贤.1997.重金属对大麦毒性的研究[J].环境科学学报,17(2):199-204.
    116.张增强,张一平,全林安,等.2000.镉在土壤中吸持等温线及模拟研究[J].西北农业大学学报,28(5):88-93.-851.
    117.张志良.2003.植物生理学实验指导[M].北京:高等教育出版社,55-63.
    118.章秀福,王丹英,储开富,等.2006.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J].中国水稻科学,20(2):194-198.
    119.赵步洪,张洪熙,奚岭林,等.2006.杂交水稻不同器宫镉浓度与累积量[J].中国水稻科学,20(3):306-312.
    120.中华人民共和国农业行业标准.2000.NY/T395-2000.农田土壤环境质量监测技术规范.
    121.中华人民共和国卫生部.2003.GB/T 5009.15-2003食品中镉的测定[S].北京:中国标准出版社.
    122.周国华,黄怀曾,何红蓼,等.2003.北京市东南郊自然土壤和模拟污染影响下Cd赋存形态及其变化[J].农业环境科学学报,22(1):25-27.
    123.周建斌,邓丛静,陈金林,等.2008.棉秆炭对镉污染土壤的修复效果[J].生态环境,17(5):1857-1860.
    124.周守标,徐礼生,吴龙华,等.2008.镉和锌在皖景天细胞内的分布及化学形态[J].应用生态学报,19(11):2515-2520.
    125.朱红霞,杨小勇,葛才林,等.2004.重金属对水稻过氧化物酶同功酶的影响[J].核农学报,18(3):233-236,169.
    126.朱永官.2003.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学学报,23(2):205-210.
    127. Aharoni C, Sparks D L, Levinson S.1991.Kinetics of soil chemical reactions:relationshiops between empirical equations and diffusionmodels [J]. SSS Am. J.55:1307-1313.
    128. Baker A J M, Reeves R D and McGrath S P.1991.In situdeconta-mination of heavy metal polluted soils using crops of metalaccumulating plants-afeasibility study. In:Olfenbuttel R F ed.In situBioreclamation. Boston[J].Butterworth-Heinemann,539-544.
    129. Baryla A, Carrier P, Franck F, et al.2001. Leaf chlorosis in oilseed rape plants (Brassica napes) grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth [J]. Planta, 212(5-6):696-709.
    130. Beligni M V, Lamattina L.1999.Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues [J]. Planta,208:337-344.
    131.Blaylock M J, Salt D E, Dushenkov S, et al.1997.Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents[J].Environ Sci Technol,31:860-865.
    132. Bridgwater A V, Peacocke G V C.2000.Fast pyrolysis processes for biomass [J]. Renewable and Sustainable Energy Reviews,4:1-73.
    133.CaoXD, Ma L N, Gao B, eta.2009.Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science and Technology,43(9):59-64.
    134. CHAOUI A, MAZHOUDI S, GHORBAL M H, et al.1997.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L) [J]. Plant Sci, 127(2):139-147.
    135. Clemens S.2001.Molecular mechanisms of plant metal tolerance and homeostasis [J]. Planta,212: 475-486.
    136. CLEMENS S.2006.Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants [J].Biochimie,88(11):1707-1719.
    137. Corticeiro S C, Lima A I G, Almeida Paula Figueira EM.2006.The importance of glutathione in oxidativestatus of Rhizobium leguminosarum biovar viciae under Cd exposure [J]. Enzyme Miceob Tech,40:132-137.
    138. CUYPERS A, SMEETS K, RUYTINX J, et al.2011. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings [J]. Journal of Plant Physiology, 168(4):309-316.
    139. Demirbas A.2002.Gaseous products from biomass by pyrolysis and gasification:effects of catalyst on hydrogen yield [J]. Energy Conversion and Management,43(7):897-909.
    140. Dhindsa R S.1981.Leaf Senescence Correlated with Increased Levels of Membrane Permeability and Lip id Peroxidation and Decreased Levels of a Superoxide Dismutase and Catalase [J]. J. Exp. Bot, (32):93-101.
    141. Dong J, Wu F B, Zhang G P.2005.Effect of cadmium on growth and photosynthesis of tomato seedlings [J]. Journal of Zhejiang University Science,10:974-980.
    142. Duchesne J, Laforest G2004.Evaluation of the degree of Cr ions immobilizationby different binders [J].Cement and Concrete Research,34(7):1173-1177.
    143.GARBISU C, ALKORTA 1.2001.Phytoextraction:a cost-effective plant-based technology for the removal ofmetals from the environment [J]. Bioresource Technology,77(3):229-236.
    144. Gerard Cornelissen, Zofia Kukulska, Stavros Kalaitzidis.2004.Relations between environmental black carbon sorption andgeochemical sorbent characteristics [J]. Environ.Sci.Technol,38 (13):3632-3640.
    145. GIRLING C A, PETERSON P J.1981.The Significance of the Cadmium Species in Uptake and Metabolism of Cadmium in Crop Plants [J]. Journal of Plant Nutrition,3(1-4):707-720.
    146. Glaser B, Haumaier L, Guggenberger G, et al.1998.Black carbon in soils:The use of benzene carboxylic acids as specific markers [J].Organic Geochemistry,29 (4).
    147. Glaser B, Lehmann J, Zech W.2002.Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:A review [J]. Biology and Fertility of Soils,35:219-230.
    148. GUERREIRO O, RAMIRO D A, MAZZAFERAP.2006.Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella [J]. J Chem Ecol,32(9):1977-1988.
    149. Hagemeyer J, Waisel Y.Uptake of Cd2+and Fe2+by excised roots of Tamarizaphylla [J].Physoil Plant, 1989,77:247-253.
    150. Hardiman R T, Jacoby B. Absorption and translocation of Cd inbush beans [J].Physi ol Plant,1984, 61:470-474.
    151. HENDNY G A F, BEKER A J M, WART C F E.1992.Cadmium to lerance and toxic ity:oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive of Holcus lanatusL[J].Acta Bol Necrl,41:271-281.
    152. Hinkle P M, Kinsella P A, Osterhoudt K. C. Cadmium uptake and toxicity via voltage-sensitive calcium channels [J]. Journal Biology Chemistry,1987,262:16333-16337.
    153.HuaL, Wu W X, Liu Y, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment [J]. Environmental Science and Pollution Research, 2009,16(1):1-9.
    154. Huang Y, Sun W J.2006.Changes intopsoil organic carbon of croplands in mainland China over the last two decades[J].Chinese Science Bulletin,51(7):760-763 (in Chinese)
    155. Indira C.2004.Phytotoxicity of cadmium and its effect on two genotypes of Brassicajuncea L [J]. Emirates Journal of Agricultur-al Sciences,16(2):1-8.
    156. Kahle H.1993.Response of roots of trees to heavy metals [J]. Envir Exp Bot,33:99-119.
    157. Keiluweit M, Kleber, M.2009.Molecular-level interactions in soils and sediments:the role of aromaticπ-systems [J]. Environmental Science and Technology,43(10):23-28.
    158. Kitagishi K, Yamane I.1981.Heavy metal pollution in soil of Japan. Japan Science Society Press[J], Tokyo, pp302.
    159. Knight B, Zhao F J, McGrath S P, et al.1997.Zinc and cadmium uptake by the hyperaccumulat or Thlaspicaerulescens in contaminated soils and its effect s on the concentration and chemical speciation of metals in soils solution [J]. Plant and Soil,197:71-78.
    160. Kramer R W, Kujawinski E B, Hatcher P G.2004.Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry [J]. Environ Sci Technol,38(12):3387-3395.
    161.Lageman R.1993.Electroreclamation application in the Netherlands [J].Environ Sci Technol, 27(13):2648-2650.
    162. LAMBA D T, MING H, MEGHARAJ M, et al.2009. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils [J]. Journal of Hazardous Materials,171(1-3):1150-1158.
    163. Lehmann J, da Silva J P, Steiner C, et al.2003.Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin:Fertilizer, manure and charcoal amendments [J]. Plant and Soil,249:343-357.
    164. Lehmann J, Ellenberger C, Hoffmann C.2011.Morpho-functional studies regarding the fertility prognosis of mares suffering from equine endometriosis[J].Theriogenology,76 (7):1326-1336.
    165. Lehmann J, Skjemstad J, Sohi S, et al.2008.Australian climate-carbon cycle feedback reduced by soil black carbon [J]. Nature Geoscience,1 (12):832-835.
    166. Lehmann J.2002.Bio-char (Black Carbon) stability and stabilization in soil [A]//Soil Science Confronting New Realities in the 21 st Century[J].In 7thWorld Congress of Soil Science.
    167. Lehmann J.2007.Bio-energy in the black [J]. The Ecological Society of America,5 (7).381-387.
    168. Liqiang Cui, Liangqing Li, Afeng Zhang, Jinwei Zheng, Jufeng Zheng, Xuhui Zhang, Xiaojun Han, Xinyan Yu.2011.Biochar in soil vs Cd in rice [J].Bioresources,6(3):2605-2618.
    169. Liu H, Jiang G M, Zhuang H Y, et al.2008.Distribution, utilization structure and potential of biomass resources in rural China:With special references of crop residues[J].Renewable and Sustainable Energy Reviews,12,1402-1418.
    170. Lohmann R, MacFarlane J K, Gschwend P M.2002.Importance of black carbon to sorption of native PAHs, PCBs and PCDDs in Boston and New York Harbor sediments [J]. Environ. Sci.Technol.,36 (19):4114-4119.
    171. Machida M, Kikuchi Y, Aikawa M, et al.2004.Kinetics of adsorption and desorption of Pb (Ⅱ) in aqueous solution onactivated carbon by two-site adsorption model [J].Colloids and SurfacesA: Physicochem.Eng.Aspects,240:179-183.
    172. MCBRIDE M.2002.Cadmium uptake by crops estimated from soilitotal Cd and pH [J]. Soil Sci, 167(1):62-67.
    173. NEDELKOSKA T V, DORAN P M.2000. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens [J]. Biotechnol Bioeng,67(5):607-615.
    174. Pena J M, Allen N S, Edge M, et al.2000.Analysis of radical content on carbon black pigments by electron spinresonance:Influence of functionality, thermal treatment and adsorption of acidic and basic probes [J].Polymer Degradation and Stability,71(1):153-170.
    175. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al.2002.Heavy metal toxicity:Cadmium permeates through calcium channels and disturbs the plant water status [J]. The Plant Journal,32:539-548.
    176. Prasad MNV.1995.Cadmium toxicity and tolerance in vascular Plants [J]. Envir. Exper. Botany, 35(4):525-545.
    177. PULFORD I D, WATSON C.2003.Phytoremediation of heavy metal-contaminated land by trees-a review [J].Environ Int,29(4):529-540.
    178. Qiu Y P, Ling F.2006.Role of surface functionality in the adsorption of anionic dyes on modified polymeric sorbents [J].Chemosphere,64(6):963-971.
    179. RAJAIEM, KARIMIAN N, MAFTOUNM.2006.Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time [J]. Geoderma,24 (5):9-17.
    180. Reddy C N, Patrick W H.1977.Effect of redox potential and pH on the uptake of cadmium and lead [J]. Environ Qual,6:259-262.
    181. S av H, Christopher J.1995.Intergrated in situ soil remediation technology:The Lasagna Process [J]. Environ Sci Technol,29:2528-2534.
    182. Sandalio L M, Dalurzo H C, Gomez M, et al.2001.Cadmium-induced changes in the growth and oxidative metabolism of pea plants [J]. Journal of Experimental Botany,364(52):2115-2126.
    183. SARRY J E, KUHN L, DUCRUIX C, et al.2006.The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses[J]. Proteomics,6(7): 2180-2198.
    184. Scheidegger A M, Sparks D L.1996.Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite [J]. ChemGeol,132:157-164.
    185. Schmidt M W I, Noack A G.2000.Black carbon in soils and sediments:Analysis, distribution, implications, and current challenges [J]. Global Biogeochemical Cycles,14(3):777-793.
    186. Schutsendubel ASchwanz P, Teichmann T et al.2001.Cadmium-induced changes it antioxidative systemshydrogen peroxide content and differentiation in Scots pine roots[J].Plant Phvsiol.127(3):887-898.
    187. Schiitzendubel A, Sc hwanz P, Teichmann T, et al.2001.Cadmiuminduced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots [J]. PlantPhysiol.127: 887-898.
    188. Serranoa S, Garridoa F, Campbell C G, et al.2005.Competitive sorption of cadmium and lead in acid soils of Central Spain [J]. Geoderma,124:91-104.
    189. Shah K, Kumar R G, Verma S, et al.2001.Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Sci.161: 1135-114.
    190. Shen Z G, Zhao F J, McGrath S P.1997.Uptake and transport of zinc in the hyperaccumulat or Thlaspicaerulescens andthe non-hyperaccumulator Thlaspiochrol eucum [J].Plant Cell and Environment,20:898-906
    191. Shuvasish C, Sanjib K P.2004. Role of salicylic acid in regulating cadmium induced oxidative stress inOryza sativaL. roots[J].Plant Physiology,30(3-4):95-110.
    192. SUD D, MAHAJAN G, KAUR M P, et al.2008.Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review [J]. Bioresource Technology,99: 6017-6027.
    193. Tack F M G, Verloo M G1995.Chemical speciation and fractionation in soil and sediment heavy metal analysis:areview [J].Intern J Anal Chem.59:225-238.
    194. Tapan Adhikari, M V, Singh.2003.Sorption characteristics of lead and cadmium in some soils of India [JJ.Geoderma,114:81-92.
    195. Terry N and Zayed A.1997.Remediation of selenium-contaminated soils and waters by phytovolatilization.In:Iskandar IK eds.Proc.Extended Abstr.4th Int.Conf.Biogeochemistry of Trace Elements[J].Washington DC:US Gov.Print.Off.651-65.
    196. TESSIER A.1979.Sequential extraction procedure for the speciation of particulate trace metals [J].Analytical Chemistry,51 (7):844-851.
    197. Theng B K, et al.1967.The humus and extradited by various reagents from a soil [J].soil sci. (812):349-363.
    198. TIPPING E, RJEUWERTS J, PAN G, et al.2003.The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales [J]. Environ Pollut,125(2):213-225.
    199. Tsai WT, Lee MK and Chang YM.2007.Fast pyrolysis of rice husk:product yields and composition. Bioresource Technology,9(8):569-576.
    200. Uchimaiya M, Lima IM, Klasson K T, et al.2010.Immobilization of heavy metal ions (Cu Ⅱ, Cd Ⅱ. NiⅡ, and PbⅡ)by broiler litter-derived biochars in water and soil [J]. Journal of Agricultural and Food Chemistry,58:5538-5544.
    201. Vangronsveld J, Colpaert J V and Tichelen K K V.1996.Reclamation of a bare industrial area contaminated by non-ferrous metals physichemical and biological evaluation of the durability of soil treatment and revegetation [J].Environ Poll,94:131-140.
    202. Vangronsveld J F, Assche V and Clijsters H.1995.Reclamation of abare industrial area contaminated by non-ferrous metals[J].In situmetal immobilization and revegetation.Environ Poll,87:51-59.
    203.VIG K, MEGHARAJ M, SETHUNATHAN N, et al.2003.Bioavailability and toxicity of cadmium tomicroorganisms and their activities in soil:a review [J]. Adv Environ Res,8(1):121-135.
    204. VIRKUTYTE J, SILLANP M, LATOSTENMAA P.2002.Electrokinetic soil remediation-critical overview [J].Sci Total Environ,289(13):97-121.
    205. Wagner G J.1993.Accumulation of cadmium in crop plants and its consequences to human health[J].Adv Agron,51:173-212.
    206. WAN NGAH W S, HANAFIAH MA.2008.Removal of heavy metal ions from waste water by chemically modified plant wastes as adsorbents:A review[J].Bioresource Technology,99(10): 3935-3948.
    207. Wang G X, Zhang Q W.2008.Adsorption Law of Bamboo-Charcaol for Hetal Ions in Aqueous Solution [J].Chemical and Biological Engineering.19(3),528-531.
    208. Wang X, Chen T, Liang R L, et al.2002. Effects of land utilization of sewage sludge on crops and soils [J]. Chinese Journal of Applied Ecology,13 (2):163-166.
    209. Wang Xin, Liu Yunguo, Zeng Guangming.2007.Subcellular distribution and chemical forms of cadmium in Bechmerianivea (L.) Gaud [J].Environmental and Experimental Botany, (1821):1-7.
    210. WARWICK P, HALLA, PASHLEY V, etal.1998.Zinc and cadmium mobility in sand:effects of pH, speciation, cation exchange capacity (CEC), humic acid and metal ions [J].Chemosphere,36 (10): 2283-2290.
    211. Washington J Braida, Joseph J Pignatello.2003.Sorption hystersis of benzene in charcoal particles [J]. Environ Sci Technol,37(2):409-417.
    212. Wu FB, Zhang GP.2003.Phytochelatin and its function in heavymetal tolerance of higher plants [J]. Chin J Appl Ecol,14 (4):632-636.
    213. Wu Fei bo, Dong Jing.2006.GenotyPic Difference in the Responses of Seedling Growth and Cd Toxieity in Rice (Oryzasativa L.) [J].Agricultural Sciences in China,5(1):68-76.
    214. XAN X.1989.Effect of chemical form Cadmium, Zinc, and Lead in polluted soils on their uptake by Cabbage plants [J].Plant and Soil,113 (2):257.
    215. Yang Yaning, Sheng Guanyao.2003.Enhanced pesticide sorption by soils containing particulate matter from crop residue burns [J].Environ. Sci. Technol.,37 (16):3635-3639.
    216. Zhang J B, Huang WN.2000.Advances on physiological and ecological effects of cadmium on plants [J]. Acta Ecologica Sinica,20(3):514-523.
    217. Zhang L, Li L, Pan G.2009.Variation of Cd, Zn and Se contents of polished rice and the potential health risk for subsistence-diet farmers form typical areas of South China [J].Environ Sci,30(9): 2792-2798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700