用户名: 密码: 验证码:
气象用太阳辐射计量仪表检定系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气象用太阳辐射计量仪表作为一种记录某区域地面接收太阳辐照量的监测设备,在全球地面辐射基准站网中得到了广泛应用。随着我国气象用观测水平的提高,对太阳辐射计量仪表的测量精度提出了更高的要求,新型气象用太阳辐射计量仪表检定系统的研究已迫在眉睫,气象用太阳辐射计量仪表是为全球气候变化提高准确数据、对气象做出准确预报不可缺少的重要设备。因此气象用太阳辐射计量仪表的检定问题是太阳辐射计量仪表研制和生产中啜待解决的难题。而我国检定设备的落后是制约我国研制和生产太阳辐射计量仪表的瓶颈。为此本文在对太阳辐射计量仪表检定的各种方法和解决途径的研究基础上,以提高检定精度和检定效率为目标,研制了一种新型多功能气象用太阳辐射计量仪表检定系统,以解决太阳辐射计量仪表投入使用前的等级检定难题,其可用于高等级太阳辐射计量仪表的室内检定,对我国研制和生产高等级太阳辐射计量仪表具有重要意义和应用价值。
     在对太阳辐射理论和太阳运动理论的研究基础上,采用太阳模拟器技术和多自由度工作台,提出了一种新型多功能气象用太阳辐射计量仪表检定系统的总体设计方案,实现了对待检仪表的灵敏度、非线性误差、方位响应误差、余弦响应误差和倾斜响应误差等各项参数的检定。气象用太阳辐射计量仪表检定系统主要由太阳模拟器和多维工作台组成。太阳模拟器为检定系统提供均匀稳定的模拟太阳光辐射;多维工作台能够为检定系统提供所需各种功能动作模拟不同的太阳角,两者集成共同实现了对气象用太阳辐射计量仪表的标定。
     为了获得均匀稳定并和太阳光谱相似的光辐射,设计了由短弧氙灯、氙灯光源、椭球面聚光镜、反射镜、光学积分器、准直物镜、光学滤光片和光学衰减片所组成的同轴准直式太阳模拟器光学系统。设计一种全光谱滤光片对氙灯光谱进行修正,以提高光谱匹配度;为了扩大输出辐照强度的调节范围,采用光学衰减片以弥补氙灯低功率调节下影响辐照稳定性的缺陷。并用Lighttools光学照明设计软件对光学系统建模仿真与分析,得出了光学元件相互位置关系对输出辐照均匀性的影响规律,对太阳模拟器光学系统的设计、安装和调试具有指导意义。
     依据已确定的光学系统并结合要完成的检定项目对气象用太阳辐射计量仪表检定系统的机械结构进行了设计。针对太阳模拟器工作时出现的热集中现象,确定了采用双风道强迫空气冷却手段,以提高太阳模拟器内外的热交换能力。在对太阳模拟器关键零部件进行有限元热分析的基础上,对结构进行了合理改进和优化。通过对聚光镜热分析发现,位于第一焦点附近热集中导致聚光镜出瞳产生缩口变形,为此在镜壁外侧增加散热片以提高散能力。经对积分器和视场光阑进行了热变形分析发现,光阑沿轴向发生缩口现象,影响光学系统的准直性;并且以散热量为条件函数,结构尺寸为目标函数,对积分器散热器进行了结构优化设计。为了更好地模拟出不同的太阳角高度角和太阳方位角,研制了一种由转臂机构、俯仰机构、升降机构和旋转机构所组成的,具有四个自由度运动的多功能工作台,并对关键零部件进行了刚度分析,进而制定条件函数和目标函数对主轴和转臂的结构进行了优化。
     从太阳模拟器和多维工作台两方面对检定系统的误差进行了理论分析,发现了影响太阳模拟器的光谱失配误差和均匀性误差的原因,在对三种太阳模拟器滤光片透射率曲线的测试发现,发现由于镀膜厚度匹配存使透射率曲线波谷向长波方向移动,将钛镧混合物H4每层厚度按比例缩减可有效对半波谷进行修正。为了获得更好的辐照均匀性,利用光学软件仿真分析了光学积分器的光轴一致性误差对辐照均匀性的关系。采用误差合成方法对多维工作台各个机构的运动误差进行了分析和计算,并给出了影响检定系统精度的误差因素。由此利用多体系动力学原理确定了多维工作台的拓扑结构,建立了工作台广义坐标系,分析了各构件间的相互转换关系,进而推导出工作台空间的实际位置与理想位置的特征矩阵。并根据光的直线传播定律建立了光路几何误差模型,由此求解出辐射中心入射点与旋转机构中心位置的偏心误差运动函数关系,绘制了误差运动曲线,由此得出最大偏心误差。
     对检定系统的测试方法理论研究基础上做了大量的测试工作,数据结果表明太阳模拟器工作可靠,各项指标均达到AM1.5标准中的3A等级:工作台能够完成各种功能动作,模拟出不同的太阳角,转动精度优于0.05。,满足技术指标要求,对气象用太阳辐射计量仪表进行检定。
     综上所述。本文研究的气象用太阳辐射计量仪表检定系统,具有精度高、检定功能多,自动化程度高,能够在室内对太阳辐射计量仪表的多个参数指标进行检定,对于提高我国太阳辐射计量仪表质量考核和生产水平都具有较高的实际应用价值,特别是在WMO世界气候研究计划下的地面辐射基准站网的建立中发挥重要作用。
Meteorological solar radiation measuring instrument used as a meteorological monitoring equipment which can record solar irradiation energy a regional ground receives, has been widely applied in the global terrestrial radiation reference station network system. Along with the increasing level of China's meteorological observation, a higher demand on the accuracy of the measurement of solar radiation measuring instruments has been put forward. For now it is imminent to develop a new meteorological solar radiation measuring instrument verification system, and it is an important and indispensable equipment to increase the accuracy data for global climate change and to make accurate prediction of meteorology. So, meteorological solar radiation measurement instruments'test sip is the problem to be resolved in the development and production of solar radiation measuring instruments. And the backwardness of our test equipment is the bottleneck restricting China's development and production on this problem. This paper is based on the study of a variety of methods and solutions for solar radiation measurement instruments'test, in order to improve test precision and test efficiency. Finally develop a new multi-function meteorological solar radiation measuring instrument verification system, to solve the problems of the level of verification of solar radiation measuring instrument before it is put into use. The system can be used for high-grade indoor solar radiation measuring instrument'test, it is significance and value of our development and production of high-grade solar radiation measuring instruments.
     Based on the study of the theory of solar radiation and solar motion theory, use a solar simulator technology and multi-degree of freedom table, put forward a kind of overall design of a new multi-function weather solar radiation measuring instrument verification system, achieve the tests for sensitivity, nonlinearity, orientation response error, the cosine response error and tilt response errors of the parameters. Meteorological measuring instrument verification system is composed with solar simulator and the multi-dimensional table. Solar simulator provides uniform and stable simulated sunlight radiation for the verification system to, multi-dimensional table provides motion simulation of the various functions required of different sun angle for the verification system. These two integrate together to achieve the calibration of meteorological solar radiation measuring instrument system.
     In order to obtain uniform, stable and solar spectrum similar to the light radiation, design a coaxial quasi-direct solar simulator optical system consisted of short-arc xenon lamp, xenon lamp source, ellipsoidal condenser mirror, optical integrator, collimating lens, optical filters and optical attenuator. Design a full-spectrum filter to amend the xenon lamp spectrum to improve the spectral matching. In order to expand the scope of the regulation to the output radiation intensity, use the optical attenuator to compensate the defects affect of the xenon lamp low power for the radiation stability in the regulation. Use Lighttools optical light designing software simulating and analyzing the optical system, obtain the relationship between the output irradiation and the optical components'mutual position, these are the guidance for the optical system design of Solar simulator, installation and commission.
     Design the mechanical structure of the solar radiation measuring instrument verification system based on the test project and the optical system. Aim to the phenomenon of thermal centralization, determine using the double duct forced air cooling means to increase the heat exchange capacity of the inside and outside. Based on the thermal analysis of finite element for the key components, improve and optimize the structure reasonably. Through the thermal analysis of the condenser, find that, heat concentration located near the first focus leads to a necking deformation of the exit pupil of the condenser, so add cooling plate outside the mirror wall to improve the ability of heat output. Through the thermal analysis of the integrator and the field stop, find that, diaphragm necking deformation occurs along the axial direction, influencing collimation of the optical system. Considering heat dissipation as condition function, structure size of the objective function, optimize the structure of integrator. In order to better simulate the different elevation and azimuth angle of the sun, developed a multi-function table with four degrees of freedom movement consisted of tumbler institutions, pitch institutions, elevating institutions and rotating mechanism. Analyze stiffness of key components, and then develop the condition function and objective function to optimize the structure of the spindle and the arm.
     Do a theoretical analysis of the test system for the solar simulator and the multi-dimensional table, discover the reason influenced the spectral mismatch error and the uniformity error. Though the test on three solar simulator filter transmission curve, find that, as the coating thickness matching the transmission curve trough to move to longer wavelengths, scale down the thickness of each layer of titanium lanthanum mixture H4can amend semi-trough effectively. In order to improve the irradiation uniformity, use optical simulation analyzing the relationship between the irradiation uniformity and the consistency error of optical axis of the optical integrator. Analyze and calculate the kinematic error of the multi-dimensional table by error synthesis, then give the factors affecting the accuracy of the verification system. Thus, use multi-system dynamics theory determining the topology structure of the multi-dimensional table, establishing table generalized coordinate system, analyzing conversion between the various components, and then derive the characteristic matrix of the actual location and an ideal location of the platform space. Establish a model of geometric optical path error according to the law of rectilinear propagation of light, thus solve the eccentric error motion function of radiation center point to the location of the rotating center, draw a curve of error motion, and finally receive the maximum eccentric error.
     Test a lot to the measuring method based on the verification system, the data shows that the solar simulator is reliable, the indicators have reached the3A grade in the AM1.5standard. Workbench can complete each function, simulate different sun angles, the rotation precision is better than0.05°and can meet the technical requirements as well as test the meteorological solar radiation measuring instruments.
     In summary, the meteorological solar radiation measuring instrument verification system studied in this article has a high precision, a multi-function test and a high degree of automation, can test multiple parameters of solar radiation measuring instrument indoor, has a high practical value for China's solar radiation measuring instrument quality assessment and production levels, particularly play an important role in the establishment of the base station network for ground radiation in the WMO World Climate Research Program.
引文
[1]张国玉.多功能气象用用辐射计量检测系统研制总结报告.长春理工大学,2010.
    [2]王炳忠.莫月琴.杨云.现代气象用用辐射测量技术[M].北京:气象用用出版社.2008.
    [3]温笃鸣.中国辐射气候[M].气象用用出版社,1997.46-140.
    [4]中华人民共和国国家计量检定规程(JJG458—96)总日射表[S].北京:中国计量出版社,1996.
    [5]王炳忠.太阳辐射能的测量与标准[M].北京:科学出版社,1983.
    [6]吕文华,莫月琴,王冬.总日射表性能的测试研究[J].太阳能学报,2002,23(3):313-316.
    [7]刘国新,马薇.总日射表的积分球校准[J].太阳能学报,1987.8(3):310-314.
    [8]Warld Meteorological Organization Technical Note No.172.Meteoralogical Aspeets of the Utilization of Solar Radiation as an Energy Souree,1981,pp.107-115.
    [9]宋成志.总日射表余弦响应误差的研究[J].太阳能学报,1996,17(1):98~105.
    [10]刘国新.太阳辐射测量国际标尺传递的试验研究[J].太阳能学报,1989.10(2):197-207.
    [11]ASTM E913-82.Standard Method for Calibration of Reference Pyranometers with Axix Vertical by the Shading Method[J].Annual Book of ASTM Standards,1983,pp:759-769.
    [12]Bernard Goldberg. Errors Associeted with Precision Pyranometer on a Tilted Surface[J].Solar Energy,1980.25: 285-286.
    [13]吕文华,莫月琴,杨云.太阳模拟器在辐射仪器检测中的应用.应用气象用用学报,2001.12(2):196~201.
    [14]张国玉.苏拾.王凌云等.准直式太阳模拟器在气象用用计量检定中的应用[C].经济发展方式转变与自主创新—第十二届中国科学技术协会年会(第二卷):1-5.
    [15]方荣生,项立成,李亭寒等.太阳能应用技术[M].北京:中国农业机械出版社,1985.
    [16]尉敏.太阳辐射全光谱模拟人工光源的实验研究[D].西安:西安建筑科技大学.2004.
    [17]安桂芳,张国玉等.气象用用探空仪试验用太阳模拟器研究[J].太阳气象用用学报,2011,32(9):1408-1412..
    [18]I.Powell.New concept for a system suitable for solar simulation[J].Applied Optics.1980,19(2):329-334.
    [19]K Emery, D. Myers,S. Rummel.S.Solar simulator problem andsolutions[J].Photovoltaic Specialists Conference[M]. 1988,No.2:1087-1091
    [20]R.Eddy. Design and construction of the JPL SS15B solar simulate[C]. Third Space Simulation conference.1968.7(9): 16-18.
    [21]Ross.S.Dennis. Thermal vacuum-UV solar simulator test system for assessing microbiological viability[J]. Silver Spring.1975.2(11):711-721.
    [22]F.Naggamine. New solar simulator for Muti-Junction solar cell measurements[C]. Proc. of the 23th IEEE PV Specialists Conf.1993:686-690.
    [23]C.Dominguez,I.Anton.G.Sala. M.Martinez. Characterization of a new solar simulator for concentrator PV modules[C]. Proc of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen. El Escorial, Spain (2007)
    [24]I Powell. New concept for a system suitable for solar simulation[J].Applied Optics,1980.19(2):329-334
    [25]张国玉.吕文华.贺晓雷等.太阳模拟器辐照均匀性分析[J].中国光学与应用光学.2009.2(2):41-45.
    [26]赵吉林,仲跻功,陈兴.TM-3000A1太阳模拟器的研究[J].太阳能学报.1981.2{4}:417-424.
    [27]仲跻功.太阳模拟器光学系统的几个问题[J].太阳能学报.1983.4(2):187-193.
    [28]高雁,刘洪波,王丽.太阳模拟技术[J].中国光学与应用光学,2010.3(2):104-111.
    [29]罗青青.宽光谱太阳模拟器的理论分析与整体设计[D].天津:天津大学.2009.
    [30]王俊.黄本城.万才大等.环境模拟技术[M].北京:国防工业出版社.1996.
    [31]柯受全.卫星环境工程和模拟试验[M].北京:宇航出版社.1993:264~299.
    [32]苏抬,徐熙平,张国玉等.太阳模拟器回转运动系统研究[J].长春理工大学学报.2011.34(2),24~27
    [33]W.Ley, E. Plescher, A. Freiburg, et.Sun Simulator Calibration in the Coordinated Test Centers.48th Internation Astronautical Conference.Italy.1997.IAF-97-U.2.06.
    [34]罗青青.宽光谱太阳模拟器的理论分析与整体设计[D].天津:天津大学,2009.
    [35]Louis C.Kilmer.The design of a more accurate.higher fidelity dual source air mass zero solar simulator.Proceedings of IEEE WCPEC.1994.2165-2168.
    [36]董良军.太阳模拟器设计及研究[D].北京:北京理工大学,1997.
    [37]杨志明.太阳模拟器光学系统的研究[D].长春:长春光学精密机械与物理研究所在.1993.
    [38]刘国新.马薇.金属卤化物镝灯太阳模拟器[J].太阳能学报,1986.7(4):437-442.
    [39]蒋永平.徐琴玉.高压短弧氙灯及其使用[J].现代电影技术.2007.2007.No 4:30-37
    [40]李丽.脉冲氙灯特性分析及应用[J].光电对抗与无源T扰.2001.1.42-47.
    [41]陈大华.氙灯的技术特件及其应用[J].光源与照明,2002.4(2):18-20.
    [42]邵若燕,林文正,刘建军等.连续氙灯在太阳模拟器中的应用研究[J].光源与照明.2008,(4):18-20.
    [43]Shogo Kohraku.A Fundamental Experiment for Discrete-Wavelength LED Solar Simulator.Solar Energy Materials and Solar Cells,2006:90:3364-3370.
    [44]丁毅,顾培夫.实现均匀照明的自由曲面反射器[J].光学学报,2007.27(3),540-544.
    [45]F Naggamine. New solar simulator for Muti-Junction solar cell measurements. Proc. of the 23th DEEE PV Specialists Conf,1993:686-690.
    [46]Shogo Kohraku. New Methods for Solar Cells Measurement by LED Solar Simulator[C].3rd World Conference on Photovoltaic Energy Conversion[C]. Osaka Japan:2003:1977-1980.
    [47]Shogo Kohraku. A Fundamental Experiment for Discrete-Wavelength LED Solar Simulator [J]. Solar Energy Materials and Solar Cells.2006,V90.3364-3370.
    [48]王素平.凌健博,刘立伟,左保军.一种应用于太阳仿真器的照明系统设计[J].光电工程.2006,33(9):32-34.
    [49]杨林华,闫达远.史瑞良.积分球太阳辐照模拟源的研制[J].航天器环境工程,2005.22(2):116-119.
    [50]张以谟.应用光学[M].北京:电子工业出版社.2008.
    [51]徐亮.月亮模拟器光学系统设计与辐照度均匀性分析[D].长春:长春理工大学.2009.
    [52]张国玉,吕文华,贺晓雷等.太阳模拟器辐照均匀性分析[J].中国光学与应用光学.2009.2(1):41-45.
    [53]仲跻功.光学积分器及其均匀化效果[J].仪器制造,1983,6:12~15
    [54]安桂芳,张国玉,苏拾.利用光学积分器提高太阳模拟器辐照均匀性的分析[J].长春理工大学学报.2010,33(1):1-3
    [55]苏拾,安志勇,张国玉等.自主导航试验用月亮模拟器研究[J].仪器仪表学报,2009,30(6):600-604
    [56]陈家奇,陈兰峰,王丽等.高准直太阳模拟器的设计与仿真[J].光机电信息,2011,28(11):68-74
    [57]徐林,崔容强,杨宏喜等.太阳模拟器中的光谱失配误差的研究[C]_21世纪太阳能新技术-2003年中国太阳能学会学术年会论文集.上海:上海交通大学出版社.2003:187-193.
    [58]彭小静,徐林,郭泽.A级太阳模拟器的光谱校正[J].太阳能学报,2008,29(11):1324-1327.
    [59]Hiroshi Amoh. Design for Multi-Solar Simulator[C]. The 3rd World Conference on Photovoltaic Conversion,2003 Japan,1977-1980.
    [60]M Bennett,R Podlesny. Tow Source Simulation For Improved Solar Simulation[C]. Proc. of the 21th IEEE PV Specialists Conf,1990:1438-1442
    [61]Yang Yiqiang. Liu Min. Test of Multi-junction Solar Cell for Astronautics and Dual Light Source Solar Simulator[C]. The Symposium Of The 8th Chinese Conference On Solar Photovoltaic
    [62]L.C.Kilmer. A more accurate, higher fidelity dual source AMO solar simulator design.Proc.4th-European Space Power Conf, September 1995. pp671-675.
    [63]孟嘉译,付秀华.王迪.太阳模拟器中.光谱修正滤光片的研制[J].光电工程,2010,37(2):50~53.
    [64]薛国良.非成像光学及其应用[J].物理通报.1995.4:1-3.
    [65]黄健.非成像光学系统设计方法及其在LED道路照明工程中的应用[D].浙江:浙江大学,2008.
    [66]薛鸣球.关于拉氏不变量[J].长春光学精密机械学院学报,1982,4:1-5
    [67]朱瑞,卢振武.刘华等.基于非成像原理设计的太阳能聚光镜[J].光子学报.2009,38(9):2251-2255.
    [68]吕勇,郑臻荣.方棒照明系统的光学扩展量传递分析[J].北京航空航天大学学报,2004.30(6):569~571
    [69]向艳红.张容,黄本诚KFTA太阳模拟器辐照均匀性仿真[J].航天器环境工程.2006.23(5):288-292.
    [70]钟民,张国玉.林子棋等.气象用用用太阳模拟器光学系统仿真[J].气象用用水文海洋仪器.2010,(4):1-4.
    [71]章熙民.传热学[M].北京:中国建筑工业出版社,2007.
    [72]姚海明,薛明德,丁勇.大型空间结构热诱发振动的有限元分析[J].清华大学学报,2002.42(11)::28-37.
    [73]齐宪林.基于热-结构耦合的光学系统尺寸稳定性分析[D].西安:电子科技大学,2009,1.
    [74]Banes W P.Jr. Some effects of aerospace thermal environment on higlracuity optical sysemd[J].Apll.Opt..1966,5(5): 971-975
    [75]EDDY R. Design and construction of JPL SSL5B solar simulator[R]. JPL internal document.1968-01.
    [76]D.Trujillo.C.Pappoff..A General Themnal Contract Resistance Finite Element. Finite Elements in Analysis and Design.2002,(38):263-276
    [77]H.Tsunoda,K.Nakajima and A.Miyasaka.Themnal Design Verification of a Deployable Antenna for a Communication Satellite[J].Journal of Spacecraft and Rockets.1992,29(2):271-278
    [78]张军.高明辉.真空应用太阳模拟灯的热分析方法[J].光学技术,2010,36(6):736-739.
    [79]苏克强.陈长征.任建岳.张军.李宪圣.真空罐内应用的太阳模拟灯阵热设计[J].中国光学与应用光学,2009.2(6):489-494.
    [80]向艳,红张容,于江.氙灯水平点燃太阳模拟器灯单元设计[J].航天器环境工程,2009,26(1):60~62.
    [81]张容.蒋山平,向艳红.太阳模拟器大功率短弧氙灯水平点燃的稳弧研究[J].航天器环境工程.2010.27(3):357~360.
    [82]向庆仁.关于超高压球形氙灯的正确使用与调整[J].电影技术.2004,05:59-60.
    [83]邵君.孙胜利.王成良.孙丽崴.张明军.球面反射镜镜面热变形的数值分析[J].光学技术,32:68~72.
    [84]贾阳.万强.张容.韩建军.太阳模拟器准直镜热设计方法[J].航天器环境工程.2004,21(2):29-38.
    [85]孙宁.1m口径主反射镜支撑系统的优化设计[J].中国光学与应用光学,2010,3(6):644-648
    [86]王洋.2m望远镜主镜支撑技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2009.
    [87]黎明.吴清文,余飞.基于热光学分析的光学窗口玻璃厚度的优化[J].光学学报.2010,30(1):210~213
    [88]Wei Liu,Long Ban,Min Lv, et al. The multi-wavelength operation of the tellurium dioxide acousto-optic tunable filters for network applications[A]. APOC'2004[C]. Beijing,2004.
    [89]陈飙松.热传导与结构耦合系统的灵敏度分析与优化设计[D].大连理工大学.2001.11
    [90]黄倏调.赵松年.机电一体化技术基础及应用[M].北京:机械工业出版社,1994.
    [91]王文斌等.机械设计手册(新版)[M].北京:机械工业出版社,2006.
    [92]章日普.机械零件的结构设计[M].北京:机械工业出版社,1987.
    [93]成大先.机械设计手册[M].北京:化学工业出版社,2008.
    [94]高稚允,高岳.光电检测技术[M]..北京:国防工业出版社.1990.
    [95]万仲平.费浦生.优化理论与方法[M].武汉,武汉大学出版社.2004.
    [96]刘小文.基于ANSYS的全陶瓷电主轴动态分析及振动性能测试[J].机电产品开发与创新.2010,4(2):452~456.
    [97]王世军,黄玉美.机床整机特性的有限元分析方法[J].机床与液压,20052(2):15~18
    [98]Dehong Huo,Kai Cheng.Frank Wardle.A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines[J]. International Journal of Machine Tools & Manufacture,2010.
    [99]T.Oiwa.Ultra-precision machine tool or coordinate measuring machine using hexapod-type measurement device for six degree-of-freedom relative motions between cutting tool/probe and workpiece[J].Japan,Shizuoka University.
    [100]浦广益Ansys Workbench12基础教程与实例详解[M].北京:中国水利水电出版社,2010.
    [101]毛英泰.误差理论与精度分析[M].北京:国防工业出版社,1998.218~233.
    [102]金泰义.精度理论与应用[M].中国科学技术大学出版社.2005.
    [103]马宏.王金波.误差理论与仪器精度[M].兵器上业出版社,2007,227~231.
    [104]丁晓东,王智平.郑见灵.经纬仪垂直轴系晃动误差的测量与分析[J].四川兵工学报,2010,31(6):138~141
    [105]姜文汉,凌宁.平面止推垂直轴系的精度问题[J].光学精密机械.1980(10):53~55.
    [106]李慧.沈湘衡.光电经纬仪轴系误差仿真计算的新方法[J].红外与激光工程.2008.37(2):134~137.
    [107]金光.王家骐,倪伟利用坐标变换推导经纬仪三轴误差[J].光学精密工程.1999.7(5):89~94.
    [108]武风华.轴系偏差对测量角影响的数学模型及改正方法[D].重庆:重庆大学自动化学院),2002.
    [109]杜俊峰,李正周.GD-220光电经纬仪轴系的精度分析[J].光学精密工程.2002,10(4):416~419.
    [110]李松.张立平.空间相机偏流调整旋转轴系的设计与精度分析[J].光学精密工程.2004.12(2):141~145.
    [111]王玉明.周兴义.测试转台轴线不正交对测量精度影响的分析[J].光学仪器.2008.30(1):11~14.
    [112]吴昭同,张鄂,蒋承蔚.齿轮精度标准与检验手册[M].北京:中国计量出版社.1994.
    [113]林长洪.朱家诚.齿轮传递误差计算的分析[J].机械.2011,38(8),10-13
    [113]李聚波,贺红姐.张洛平.齿轮传动精度的分析与计算[J].煤矿机械,2006,27(7):18-20
    [114]郑文学.齿轮机构精度计算方法[J].长春光学精密机械学院学报.1986,26(1):78~82
    [115]陈文华,朱海峰.樊晓燕.齿轮系统传动误差的蒙特卡洛模拟分析[J].仪器仪表学报,2004,25(4):435-444
    [116]吴鸿业.蜗轮蜗杆传动设计[M].北京:机械工业出版社,1986,69~98
    [117]Yeon-FuhJinag. Error anlysis of analytic coarse alignment methods[J].IEEE Transactionon Aerospace and Electronic System,1998.34(1):334-337.
    [118]You-CholLim.JoonL-you.An error compensation method for transfer alignment[C].Proceedings of IEEE Conferenceon Electrical and Electronic Technology.Singapore,2001:850-855.
    [119]姜燕平.编码器的发展与应用[J].现代制造.2006.29(2).:457-460.
    [120]张凌宇,周祖洋.扈光峰.安装误差角引起的加速度计旋转误差建模[J].中国惯性技术学报2007,15(5):509-511.
    [121]刘文魁.石建玲.光电旋转编码器在角度测量中的应用[J].现代制造工程,2006(11):45-49.
    [122]贾平,刘春明,徐璟等.光电编码器在齿轮传动误差中的应用[J].传感器与微统.2009.28(1):109-111.
    [123]赵建科,张周峰.轴角编码器测量中偏心带来的误差分析[J].光子学报.2007,36:249-252.
    [124]罗长洲,孙岩.胡晓东等.码盘偏心对处橱条纹信号相位的影响[J].光子学报,2003,32(10):1271-1273.
    [125]博嘉科技编著.有限元分析软件-ANSYS融会与贯通[M].北京:中国水利水电出版社.2002.
    [126]垄曙光主编ANSYS基础应用及范例[M].北京:机械工业出版社.2003.1
    [127]胡炜东,孙立.太阳姿控模拟转台的驱动系统[J].黑龙江自动化技术与应用,1995(3):34-39.
    [128]许波,李正明.殷春芳.精密转台伺服控制系统的研究[J].自动化技术与应用.2004,(10).
    [129]薛开,王平,王文斌,徐建安.基于多轴运动控制器的二轴转台控制系统[J].哈尔滨工程大学学报.2006,(04):24-28.
    [130]贺甲,田学光,张德龙等.基于休斯敦方法的机械手误差建模与分析[J].工程设计学报.2010,17(6):439-443.
    [131]李小力.数控机床综合几何误差的建模与补偿研究[D].武汉:华中科技大学,2005.
    [132]郭辰.五轴数控机床运动误差辨识及加工精度预测技术研究[D].大连:大连理工大学,2008.
    [133]章青.卢腾链,张志飞等.五坐标联动数控机床的误差建模及仿真[J].机械设计.2001.No.13-15.
    [134]Pradeep K.Nandam.Paresh C.SEN. Analog and Digital speed Control of DCDrivers Using Proporional-integral and Integral-Proportional Control Techniques [J].IEEE Transaotions on Industrial Electronics.1987.34(2):227-233.
    [135]Veldhuis S C-A strategy for the compensation of errors in five-axismachining[J]·Annals of the CIRP.1995.44(1): 373-377.
    [136]Xie Z X, Zhang Q M, Zhang G X.Modelling and Calibra tion of a Structured-Light-Sensor-Based Five-axis Scanning system[J].Measurement,2004.36:185-194.
    [137]FengH Y,LiuY X,XiF F.Analysis ofDigitizingErrors of a LaserScanning System[J].Precision Engineering,2001, 25(3):185-91.
    [138]郭辰.多功能数控铣床几何误差补偿技术的研究[D].沈阳:沈阳工业大学,2005.
    [139]曲智勇,陈维山,姚郁.导轨几何误差辨识方法的研究[J].机械工程学报,2006.42(4):201-205.
    [140]曲智勇,姚郁.仿真转台误差分析及误差建模[J].计算机仿真.2006,23(3):301-304.
    [141]曲智勇.陈维山,姚郁.某型六自由度运动系统误差建模[J].哈尔滨工业大学学报,2007,39(9):1345-1349.
    [142]何振亚.数控机床三维空间误差建模及补偿研究[D].浙江:浙江大学.2010.
    [143]刘又午.多体动力学的休斯敦方法及其发展[J].中国机械工程,2000,11(6):601-607
    [144]张智永,周晓尧.范大鹏.光电探测系统指向误差分析,建模与修正[J].航空学报.2011,32(25):1-11.
    [145]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].长沙:国防科学技术大学:2008..
    [146]金光.机载光电跟踪测量的目标定位误差分析和研究[D].长春:中国科学院长春光学精密机械与物理研究所,2001.
    [147]周晓尧.范大鹏,张智永.升降式光电探测平台定位原理与误差分析[J].宇航学报.2011,32(6):1416-1422.
    [148]彭艳,谢少荣,罗均.多轴激光加工机器人光路几何误差建模方法研究[J].仪器仪表学报.2010,31(9):2068-2074.
    [149]潘汉军,刘娅.光线反射过程的矩阵表达方法[J].应用光学.2004.25(4):9-13
    [150]辛立明.徐志刚,赵明扬.基于改进的多体系统误差建模理论的激光拼焊生产线运动误差模型[J].机械工程学报.2010.46(2):61-68.
    [151]中华人民共和国国家标准GB/T12637-1990.太阳模拟器通用规范[S].北京:中国标准出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700