用户名: 密码: 验证码:
纳米银/天然高聚物复合抗菌溶胶的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物对传统抗生素耐荮性日渐增强,人们对抗菌材料、抗菌制品的需求不断增加。纳米银无机抗菌剂具有抗菌力强、耐久性好、抗菌谱广、不易产生耐药性、安全性高等特点,因而作为一种长效、安全的高效无机抗菌剂,在生物医学领域中得到越来越广泛的应用。但纳米银粒子粒径小,表面活性高,在制备过程中极易团聚,导致应用时失去纳米颗粒应有的物性和功能。将纳米银(Ag)粒子与天然可降解生物高分子复合后制备的抗菌溶胶,既可保证纳米Ag粒子的均匀分散,又可提高纳米Ag粒子的抗菌稳定性,该溶胶具有天然、安全和可降解的优势,可拓宽其在生物医药领域中的应用。因此,本论文以硝酸银(AgNO3)为前驱体,壳聚糖(Chitosan,简写为CTS)和淀粉(Starch,简写为ST)作为稳定剂和保护剂,采用液相反应法和微波辅助加热法,通过不同的还原剂,制备了一系列纳米银/天然高分子复合抗菌溶胶。
     1.采用一种简单的液相化学反应法,以可溶性淀粉为保护剂,以硼氢化钠(NaBH4)为还原剂,在加热搅拌条件下,制备了纳米银/淀粉(Ag/ST)核壳复合颗粒及纳米Ag/ST复合溶胶;讨论了制备工艺如淀粉用量、还原剂浓度、反应温度、反应时间和pH值对形成的纳米Ag/ST溶胶的影响。结果表明:在ST用量为0.5%(质量比),NaBH4/Ag+离子的摩尔比为2:1,初始溶液的pH值为8.0的条件下,使用NaBH4强还原剂制备的纳米Ag/ST复合粒子的粒径小、分布均匀、稳定性好;该复合颗粒呈核壳结构,颗粒粒径为5-20nm, ST壳厚度为2nm。
     2.以绿色环保的葡萄糖为还原剂,淀粉为保护剂,用液相化学还原法制备了纳米Ag/ST的复合抗菌溶胶。结果表明初始溶液的pH值、葡萄糖用量是影响反应产物形貌的重要因素。较好的制备工艺是:AgNO3浓度为0.05-0.10mol/L,葡萄糖与AgNO3用量比为3:1,温度为70℃条件下反应120min。制备的纳米Ag/ST复合粒子仍呈球形核壳结构,平均粒径约为25nm,粒径分布均匀。但由于葡萄糖为弱还原剂,纳米Ag/ST的产率相对较低。
     3.以柠檬酸钠(Sodium Citrate简写为Citra)为还原剂,淀粉为保护剂,用液相化学还原法制备了纳米Ag/ST核壳结构的复合抗菌溶胶。结果表明:较好的制备工艺是Citra与AgNO3摩尔比为3:1,温度为70℃条件下反应120min。制备的纳米Ag/ST复合粒子大部分呈球形,少量为椭球形核壳结构,粒径约在30nm。
     4.利用CTS为稳定剂和柠檬酸钠为还原剂,在微波辐射条件下绿色合成纳米银/壳聚糖(Ag/CTS)复合溶胶。结果表明:CST/Ag+为3:1(摩尔比)、pH值为6-7、微波辐射功率为中火、辐照时间为25min左右时,所得球形银纳米粒子径小、粒径约30nm左右。
     5.以大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)为测试菌种,用抑菌圈法和最小抑菌浓度(MIC)研究了纳米Ag/ST和Ag/CTS复合溶胶的抗菌性能。结果表明:该复合溶胶具有优良的抗菌活性,银粒子的尺寸越小、分布越均匀,其抗菌活性也越强;通过化学还原法、微波法制备的纳米Ag/ST和Ag/CTS溶胶的MIC分别为125ppm和300ppm,两者的杀菌率均超过了99.9%;Ag/CTS复合抗菌剂具有比单一抗菌剂更高效的抗菌性能;探讨了Ag纳米粒子和CTS的复合抗菌机理,二者具有协同抗菌作用。
     综上所述,所制备的纳米Ag/ST和Ag/CTS复合溶胶作为一种天然无机抗菌材料,无毒,可降解,并具有优异的抗菌性能,可广泛应用于纺织品和生物医药领域。
Demands for antibacterial materials and products have been increased when the drug resistance of microorganism is wide-spreaded. Silver nanoparticles (Ag NPs) as an inorganic antimicrobial agent, widely used in biomedical fields, possess high antimicrobial activity, good durability, broad antibacterial spectrum, low drug resistance and security. However, Ag NPs easily aggregate because of the high surface activity, which finally leads to a functional loss of nanoparticles. The dispersity and stability of Ag NPs can be greatly improved by the coverage of polymers, which is bound to expand the application of Ag NPs in biomedical fields. In this study, a series of Ag NPs/polymer compounds were synthesized by using silver nitrate as precursor, chitosan (CTS) and starch (ST) as protective agents. Moreover, the liquid phase reaction method and microwave radiation were used to obtain the AgNPs/polymer compounds.
     1. Nano-Ag/ST core-shell particles and nano-Ag/ST sols were prepared through a simple chemical reaction method by using ST as protective agent and NaBH4as reductant. The formation of Ag/ST sols was influenced by ST dosage, concentration of reductants, temperature, reaction time and the pH value. The results showed that the Ag/ST particles with small size, narrow size distribution and high stability were obtained under the condition of ST dosage of0.5g, molar ratio of NaBH4/AgNO3in2:1and the pH value of7.0. The complex particles had core-shell structures in size of5-20nm, with2nm of ST shell.
     2. Nano-Ag/ST sols were prepared through liquid phase reaction method by using ST as protectant and glucose as reductant. The morphology of nano-Ag/ST was affected by the pH value and the glucose concentration. The results showed that the optimum reaction conditions were the concentration of AgNO3solution in0.05-0.10mol/L, the molar ratio of glucose to AgNO3in3:1, the reaction time of10minutes and the temperature of70℃. The prepared particles were in uniform core-shell structure with the mean size of25nm.
     3. Ag/ST sols are synthesized by liquid phase reduction method by using sodium citra (Citra) as reductant. The optimal synthesis parameters are the molar ratio of Citra to AgNO3in3:1, the reaction temperature of70℃for120min. The most prepared Ag/ST particles presented a spherical core-shell structure in mean size of30nm and few ones were ellipsoidal.
     4. Nano-Ag/CTS complex sols were synthesized by microwave heating using sodium citrate as reductant and CTS as protectant. The results showed that spherical Ag NPs in mean size of30nm were prepared under conditions of molar ratio of CST to Ag in3:1, the pH value of6.0and microwave heating time of25min under medium and low power.
     5. The antibacterial performances of Ag/ST and Ag/CTS were tested by inhibition zone method and minimal inhibitory concentration (MIC) method, and E.coli and S. Aureus were selected as experimental strains, respectviely. The inhibition zone test showed that both of the two compounds had a great antibacterial activity. Moreover, the smaller and the more uniform the particles were, the stronger the antimicrobial activity was. The MIC of Ag/ST and Ag/CTS sols prepared by chemical reduction method and microwave method were125ppm and300ppm, respectively, and the bactericidal rates of the two compounds were greater than99.9%, indicating excellent antibacterial activities of Ag/ST particles. Additionally, Ag/CTS compounds presented higher antibacterial performance than that of Ag NPs or CTS used alone. The antibacterial mechanisms of Ag NPs and CTS were studied. The great antibacterial activities of Ag/CTS sols were due to the synergistic action of Ag NPs and CTS.
     In summary, as natural inorganic antimicrobial materials, nano-Ag/ST and-Ag/CTS sols have advantages of great antibacterial activities, biodegradability and nontoxicity, which are favor of their application to textile and biomedical fields.
引文
[1]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料.1998,26(5):8-11
    [2]Young P. White house to expand response to infectious diseases. ASM News.1996,62: 450-451
    [3]江山.新型高分子抗菌剂及抗菌材料的研究[D].杭州,浙江大学,2003.
    [4]蔡政武,杨玲.新型无机抗菌剂[J].化工新型材料.2000,28(5):36-39
    [5]Roy D, Knapp J S, Guthrie J T, et al. Antibacterial cellulose fiber via RAFT surface graft polymerization[J]. Biomacromolecules,2008,9(1):91-99.
    [6]Zhou NL, Liu Y, Li L, et al. A new nanocomposite biomedical material of polymer/ Clay-Cts-Ag nanocomposites[J]. Current Applied Physics,2007,7(1):58-62.
    [7]季君晖,史维明编著,抗菌材料[M],北京:化学工业出版社,2003.
    [8]Kurita K. Chemistry and application of chitin and chitosan[J]. Polymer Degradation and Stability,1998,59(1-3):117-120.
    [9]Sarasam AR, Brown P, Khajotia SS, et al. Antibacterial activity of chitosan-based matrices on oral pathogens[J]. Journal of Materials Science:Materials in Medicine,2008, 19:1083-1090.
    [10]Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan[J]. Journal of Applied Polymer Science,2001,79(7):1324-1335.
    [11]Zhang LY, Zhu JF. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate Polymers,2003,54:527-530.
    [12]Rabea El, Badaw Y MET, Stevens CV, et al. Chitosan as antimicrobial agent: applications and mode of action[J]. Biomacromolecules,2003,4:1457-1465.
    [13]Dizman B, Elasri M O, Mathias L J. Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(20):5965-5973.
    [14]金宗哲,无机抗菌材料及应用[M],北京:化学工业出版社,2004年,P30-35.
    [15]Kawashita M, Tsuneyama S, Miyaji F, et al. Antibacterial silver-containing silica glass prepared by sol-gel method[J]. Biomaterials,2000,21:393-398.
    [16]王大全主编.无机抗菌新材料与技术[J].北京:化学工业出版社,2006.
    [17]高丽宽纪.无机系抗菌剂开发现状.防菌抗微.1996,7:509-512.
    [18]Jia HS, Hou WH, Wei LQ, et al. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials[J]. Dental Materials,2008,24:244-249.
    [19]侯文生.载银4A沸石抗菌剂及载银锌纳米Si02抗菌纤维的制备、结构与性能的研究[D].太原,太原理工大学,2007,6.
    [20]Kawashita M, Tsuneyama S, Miyaji F, et al. Antibacterial silver-containing silica glass prepared by sol-gel method[J]. Biomaterials,2000,21:393-398.
    [21]Ruxiong Cai, Kazuhito Hashimoto, etc. Photokilling of malignant cells with ultrafine TiO2 powder[J]. Bull Chem Soc Jpn,1991,64(4):1268-1273.
    [22]Angela G Rincon, Gesar Pulgarin, Nevenka Adler, etc. Interaction between E. coli and DBP-precursors-dihydroxybenzeneisomers-in the photocatalytic process of drinking-water disinfection with TiO2[J]. Journal of Photochemistry and Photohiology A: Chemistry,2001,139:233-241.
    [23]张文钲,张羽天.载银抗菌剂的改进[J].化工新型材料.1999,27(4):36-39.
    [24]冯乃谦,严建华.银型无机抗菌剂的发展及其应用[J].材料导报.1998,12(2).
    [25]丁浩,童忠良,杜高翔.纳米抗菌技术[M].北京:化学工业出版社,2008,12-13.
    [26]Richards R, Michael E, Trevor JT, et al. Antibacterial action of silver nitrate[J]. Micro Bios,1981,31:83-91.
    [27]夏金兰,王春,刘新星.抗菌剂及其抗菌机理[J].中南大学学报(自然科学版).2004,35(1):31-38.
    [28]Dibrov P, Dzioba J, Gosink K. K, et al. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in vibrio cholerae[J]. Antimicrobial Agent and Chemotherapy,2002, 46(8):2668-2670.
    [29]张文钲,王广文.纳米银抗菌材料研发现状[J].化工新型材料,2003,3 1(2):42-44.
    [30]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances,2009,27:76-83.
    [31]Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology,2005,16:2346-2353.
    [32]隆泉,郑保忠,周应揆,等.新型纳米无机抗菌剂的抗菌性能研究.1.对金黄色葡萄球菌和白色念珠菌的抗菌作用[J],功能材料,2006,2.
    [33]Kong HY, Jang JS. Antibacterial Properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles[J], Langmuir,2008,24(5):2051-2056.
    [34]Mandal S, Phadtare S, Sastry M. Interfacing biology with nanoparticles [J]. Current Applied Physics,2005,5,118-127.
    [35]安静.银/聚合物纳米复合材料的制备、结构和抗菌性能研究[D],天津大学,2009.
    [36]Kin J S, Kuk E. Antimicrobial effects of silver nanoparticles[J], Nanomedicine: nanotechnology, biology, and medicine,2007,3:95-110.
    [37]Elechiguerra J L, Burt J L. Interaction of Silver Nanoparticles with HIV-1 [J]. Nanobiotechnology,2005,3:6-12.
    [38]张志琨,崔作林.纳米技术与纳米材料[M],北京:国防工业出版社,2000.
    [39]Baker C, Pradhan A. Synthesis and antibacterial properties of silver banoparticles[J], J. of Nanoscience and Nanotechnology,2005,5:244-249.
    [40]Sanpui P, Murugadoss A, Durga-Prasad PV, et al. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite[J]. International Journal of Food Microbiology, 2008,124(2):142-146.
    [41]湛学军,熊远珍,柳吉,等.羧甲基壳聚糖银的合成及抑菌实验的研究,中国生化药物杂志,2001,22(3):142-144.
    [42]蒋挺大.壳聚糖(第二版)[M].化学工业出版社,2006.
    [43]Khor E, Lim LY. Implantable applications of chitin and chitosan[J]. Biomaterials,2003, 24 (13):2339-2349.
    [44]Zhang J, Xia W, Liu P, et al. Chitosan modification and pharmaceutical/biomedical applications[J]. Mar Drugs,2010,8(7):1962-1987.
    [45]Kulkarni AR, Kulkarni VH, Keshavayya J, et al. Antimicrobial activity and film characterization of thiazolidinone derivatives of chitosan[J]. Macromol Biosci,2005,5 (6):490-493.
    [46]孟桂花,吴建宁,但建明等.载银蛭石抗菌剂的制备及抗菌性能研究[J].无机盐工业,2012,44(7):22-24.
    [47]张文钲,张羽天.Zeomic抗菌剂及相关产品.化工新型材料.1999,27(7):18-19.
    [48]Furno F, Morley KS, Wong B, et al. Silver nanopartieles and polymeric medical devices: a new approach to prevention of infection [J]. Antimicrob Chemother,2004; 54 (6):1019.
    [49]Yang YW, Liu JL. Latest advances in the researches in and application of nanoparticle silver[J]. Industrial Catalysis,2003,11(12).
    [50]Mahendra Rai, Alka Yadav, Aniket Gade. Silver nanoparticles as a new generation of antimicrobials[J], J. Biotechnology Advances,2009,27:76-83.
    [51]Franck F, Kelly SM, Ben W, et al. Silver nanoparticles and polymeric medical devices:a new approach to prevention of infection[J]. Journal of Antimicrobial Chemotherapy, 2004,54:1019-1024.
    [52]Zhang ZT, Chen L, Ji JM, etc. Antibacterial properties of cotton fabrics treated with Chitosan[J]. Textile Research Journal.2003,73(12):1103-1106.
    [53]Hong IT, Koo CH. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Materials Science and Engineering A,2005,393(1):213-222.
    [54]赵亚群,周敬安,刘广涛,等.纳米银涂层尿管抗菌作用的临床对比研究[J].第四军医大学学报,2006,27(13):1182-1184.
    [55]Liedberg H, Lundeberg T, Ekman P. Refinements in the coating o f urethral catheters reduces the incidence of catheter-associated bacteriuria[J]. An Experimental and Clinical Study,1990,17(3):236-240.
    [56]Castellano JJ, ShafiiS M, KoF, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs [J]. International Wound Journal,2007,4 (2):114-22.
    [57]Chun NL, Chi MH, Rong C, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles[J], Journal of Proteome Research,2006,5(4):916-924.
    [58]中建.俄罗斯研制出纳米银杀菌涂料[J].建材工业信息,2003,2:49.
    [59]Alt V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity o f nanoparticulate silver bone cement[J]. Biomaterials,2004,25(18): 4383-4391.
    [60]Jain P, Praeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter[J]. Biotechnology and Bioengineering,2005,90(1):59-63.
    [61]Sybase S, Jana S, Pal TJ. Interaction of DNA bases with silver nanoparticles:Assembly quantified through SPRS and SERS[J]. Journal of Colloid and Interface Science,2008, 321,288-293.
    [62]徐光年,乔学亮,邱少林,等.纳米银制备研究进展[J].材料导报:综述篇,2010,24(11):139-143.
    [63]陈大鹏,纳米银的可控制备及其应用研究[D].武汉:华中科技大学,2010,5.
    [64]Zhang W, Qiao X, Chen J, et al. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles[J]. Journal of Colloid Interface Science,2006,302 (1):370-373.
    [65]Xu Guang-nian, QIAO Xue-liang, QIU Xiao-lin, etal. Preparation and charaeterization of stable monodisperse silver nanopartieles via photoreduetion[J]. Colloids and Surface A, 2008,320 (1-3):222-226.
    [66]Chou K S, Ren C Y. Synthesis of nanosized silver particles by chemical reduction method [J]. Materials Chemistry and Physics,2000,64(3):241-246.
    [67]Yakutik I M, Shevchenko G P. Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres[J]. Surface Science,2004,566:414-418.
    [68]Andersson M, Pedersen J S, Palmqvist A E C. Silver nanoparticle formation in microemulsions acting both as template and reducing agent[J], Langmuir,2005,21 (24): 11387-11396.
    [69]Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate[J]. Materials Chemistry and Physics,2008,108:421-424.
    [70]Zhou Y, YU S H, Wang CY, et al. A novel utraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J]. Advanced Materials,1999,11(10):850-852.
    [71]Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles:a green method [J]. Carbohydr. Res,2004,339:2627.
    [72]张天琦,崔献 张兆镗.微波加热原理、特性和技术优势RMCM,010,10-14.
    [73]吴正翠,邵明望,孙益民.微波辐照下聚苯乙烯/银核壳复合粒子的制备,安徽化工2001,27(5),36.
    [74]Hu S G, Jou C H, Yang M C. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyricacid-co-3-hydroxy-valeric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid [J]. Biomaterials,2003,24(16):2685-2693.
    [75]Hu Z G, Chan WL, Szeto YS. Nanocomposite of chitosan and silver oxideand its antibacterial property[J]. Journal of Applied Polymer Science,2008,108(1):52-56
    [76]Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water-Influence of laser intensity[J]. Chemistry Letters,2005,34 (4):476-477.
    [77]Prasad K, Mehta G, Meena R, et al. Hydrogel-forming agar graft-PVP and kappa-carrageena-graft-PVP blends:Rapid synthesis, and characterization[J]. Journal of Applied Polymer Science,2006,100:3654-3663.
    [78]Khanna PK, Singh N, Charan S, Mulik UP, et al. Synthesis and characterization of Ag/ PVA nanocomposite by chemical reduction method[J]. Materials Chemistry and Physics. 2005,93:117-121.
    [79]Raveendran P, Fu J, Wallen S L. Completely "green" synthesis and stabilization of metal nanoparticles[J]. J. Am. Chem. Soc,2003,125(46):13940-13941.
    [80]Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch[J].Carbohydrate Research,2006,341:2012-2018.
    [81]Raveendran P, Fu J, Wallen SL. A simple and "green" method for the synthesis of Au, Ag and Au-Ag alloy nanoparticles[J]. Green Chem.2006,8:34-38.
    [82]Vimala K S, Sivudu K, Raju K. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly (acrylamide) and carbohydrates:A rational methodology for antibacterial application[J]. Carbohydrate Polymers.2009,75:463-471.
    [83]Kvitek L, Panaeek A, Souku Pova J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanopartieles(NPs)[J]. Journal of Physics Chemistry C, 2008,112(15):5825-5834.
    [84]Thomas V, Namdeo M, Mohan YM, et al. Review on polymer, hydrogel and microgel metal nanocomposites:A facile nano-technological approach[J]. Journal of Macromolecular Science, Part A, Pure and Applied Chemistry,2008,45:1079-1119.
    [85]Bajpai KS, Mohan MY, Bajpai M, Tankhiwale R, Thomas V. Synthesis of polymer stabilized silver and gold nanostructures[J]. Journal of nanoscience and nanotechnology, 2007,7:2994-3010.
    [86]戈进杰.生物降解高分子材料及其应用[M].化学工业出版社,2002.12.
    [87]Chairam S, Perm Channarong P, Somsook E. Starch vermicelli template-assisted synthesis of size/shape-controlled nanoparticles. Carbohydrate Polymers[J].2009,75, 694-704.
    [88]Murali Mohan Y, Vimala K T, Bajpai S K, et al. Controlling of silver nanoparticles structure by hydrogel networks[J]. Journal of Colloid and Interface Science,2010,342: 73-82.
    [89]Esumi K, Suzuki A, Yamahira A, Torigoe K. Role of poly (amidoamine) dendrimers for preparing nano-particles of gold platinum and silver[J]. Langmuir,2000,16:2604-2608.
    [90]Gallant J D, Bouchet B, Maldwin P B. Microscopy of starch:evidence of a new level of granule organization[J]. Carbohydrate Polymers,1997,32:177-191.
    [91]Gidley M J. Quantification of the structural features of starch polysaccharides by NMR spectroscopy. Carbohydrate Research,1985,139:85-93.
    [92]Emanuela F, Antonio S, Alessandro B, Daniela M. Green synthesis of silver nanoparticles with sucrose and maltose:Morphological and structural characterization[J]. Journal of Non-Crystalline Solids.2010,356:344-350.
    [93]Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research,2000,52:662-668
    [94]Henglein A. Small-particle research-physicochemical properties of extremely small colloidal metal and demiconductor particles. Chemical Reviews,1989,89(8): 1861-1873.
    [95]Gogoi SK, Gopinath P, Paul A, et al. Green fluorescent protein-expressingEscherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir,2006,22:9322-9328.
    [96]王洪水.纳米银及载银抗菌材料的研究[D].华中科技大学,2006.
    [97]张万忠.纳米银的可控制备与形成机制研究[D].华中科技大学,2007
    [98]庄爱娟.纳米银溶胶的制备及其性能研究[M].青岛科技大学,2011.6.9
    [99]Duran N, Marcato P D, Souza G I H, et al. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol,2007,3:203-208.
    [100]Furno F, Morley KS, Wong B. et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J Antimicrob Chemother,2004,54 (6):1019-1024.
    [101]刘爱心.水溶性银纳米材料的制备及其抗菌性能[D].河南大学,2011.6
    [102]史玉立.贵金属银、金及其合金纳米颗粒的化学还原法制备研究[D].天津大学,2010.
    [103]俞丹密.天然高分子聚合物纳米颗粒的制备及应用研究[M].湖南大学,2007.
    [104]陈勇平.利用多糖制备无机纳米材料及其性能研究[M].南京航空航天大学,2007.
    [105]Ferns G Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J], Nature Phy Sci,1973,241:20-22.
    [1]Lu L, Kobayashi A, Tawa K, et al. Silver nanoplates with special shapes:controlled synthesis and their surface plasmon resonance and surface-enhancedRaman scattering properties[J]. Chemistry of Materials,2006,18(20):4894-4901.
    [2]Panigrahi S, Praharaj S, Basu S, et al. Self-assembly of silver nanoparticles:synthesis, stabilization, optical properties, and application in surface- enhanced Raman scattering[J]. Journal of Physical Chemistry B,2006,110 (27),13436-13444.
    [3]Sybase S J, Pande S, Pal T J. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS[J]. Journal of Colloid and Interface Science,2008,321,288-293.
    [4]Alivisatos P, The use of nanocrystals in biological detection[J], Nat. Biotechnol.2004, 22:47-52.
    [5]Malinsky M, Kelly K, Schatz G, et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver NPs chemically modified with alkanethiol self-assembled monolayers[J], J. Am. Chem. Soc.2001,123:1471-1482
    [6]Liu T, Lin L, Zhao H, et al. DNA and RNA sensor [J]. Science in China, Series B: Chemistry,2005,48(1):1-10.
    [7]Rai M, Yadav A, Gade A. Silver NPs as a new generation of antimicrobials, Biotechnol. Adv.2009,27:76-83.
    [8]王洪水.纳米银及载银纳米抗菌材料的研究[D].武汉:华中科技大学,2006.
    [9]张文钲,王广文.纳米银抗菌材料研发现状[J].化工新型材料,2003,31(2):42-44.
    [10]薄丽丽.银系纳米抗菌材料的制备与抗菌性能的研究[D].西安:西北师范大学,2008.
    [11]Zhou G, Lu M, Yang Z, et al. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach[J]. Journal of Crystal Growth, 2006,289(1):255-259.
    [12]Gao X, Wei L, Yan H, et al. Green synthesis and characteristic of core-shell structure silver/starch nanoparticles[J]. Materials Letters,2011,65:2963-2965.
    [13]Raveendran P, Fu J, Wallen S L. Completely "green" synthesis and stabilization of metal nanoparticles[J]. J. Am. Chem. Soc,2003,125(46):13940-13941.
    [14]Vigneshwaran N, Nachane R P, Balasubramanya R H, et al. A novel one-pot'green' synthesis of stable silver nanoparticles using soluble starch[J]. Carbohydrate Research, 2006,341(12):2012-2018.
    [15]Zhao Y, Jiang Y, Fang Y. Spectroscopy property of Ag nanoparticles[J]. Spectrochimica Acta Part A:Molecular Biomolecular Spectroscopy,2006,65(5):1003-1006.
    [16]Shirtcliffe N, Nickel U, Schneider S. Reproducible preparation of silver sols with small particle size using borohydride reduction:For use as nuclei for preparation of larger particles[J]. Journal of Colloid and Interface Science,1999,211(1):122-129.
    [19]Sun Y G, Xia Y N. Gold and silver nanoparticles:A class of chromophores with colors tunable in the range from 400 to 750nm[J]. Analyst,2003,128(6):686-691
    [20]He B L, Tan J. J, Kong Y. L., et al. Synthesis of size controlled Ag nanoparticles [J]. Journal of Molecular Catalysis A-Chemical,2004,221(1-2):121-126
    [21]Jin RC, Coa YW, MirkinCA.Photoindueed conversion of silver to nanoPrisms[J]. Seience,2001,294:1901-1903.
    [22]Libor Kvtek, Robert Prucek, Ales Panaek, et al. The Influence of Complexing Agent Concentration on Particles Size in the Process of SERS Active Silver Colloid Synthesis[J], J. Materials Chemistry,2005,15:1099-1105
    [23]Cheetham W, Norman H, Tao L P. Variationin Crystalline Type with Amylose Content in Maize Starch Granules:an X-ray Powder Diffraction Study[J], Carbohydrate Polymers, 1998,36,277.
    [24]Hutter E J,□ Fendler H. Exploitation of Localized Surface Plasmon Resonance[J], Adv. Mater.16 (2004) 1685-1706.
    [25]Patakfalvi R, Viranyi Z, Dekany I. Kinetics of silver nanoparticle growth in aqueous polymer solutions[J], Colloid Polym. Sci.2004,283:299-305.
    [26]吴青松.金、银纳米颗粒及其纳米壳层的制备、形成机理与光学性能研究[D].东北大学,2006.
    [27]朱万博.纳米银颗粒粒度与形状控制研究[M].东北大学,2008.
    [28]潘鹏.以淀粉为分散剂纳米氧化锌的制备[J].武汉科技学院学报,2008,21(12):1-4.
    [1]Hamal D B, Klabunde K J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2 [J]. Journal of Colloid and Interface Science,2007,311(2):514-522.
    [2]Baker C, Pradhan A, Pakstis L, et al. Synthesis and antibacterial properties of silver nanoparticles[J]. Nanosci Nanotechnol,2005,5 (2):244-249.
    [3]Nickel U, Castell A zu, Poppl K. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy [J]. Langmuir, 2000,16(23):9087-9091.
    [4]Avalos M, Babiano R. Greener Media in Chemical Synthesis and Processing [J]. Angewandte Chemic International Edition,2006,45:3904-3908.
    [5]Huang H. Z, Yang X R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles:a green method. Carbohyd Res,2004,339 (15):2627-2631.
    [6]Vigneshwaran N, Ashtaputre N M. Biological Synthesis of Silver Nanopartciles Using the Fungus Aspergillus flavus[J]. Materials Letters,2007,61:1413-1418.
    [7]Ale P, Libor K, Robert Prucek, et al. Silver Colloid Nanoparticles:Synthesis, Characerization, and Their Antibacterial Activity[J]. Physical Chemistry B,2006, 110(33):16248-16253.
    [8]Sanghi R, Verma P. Biomimetic synthesis and characterization of protein capped silver NPs, Bioresour. Technol[J].100 (2009):501-504.
    [9]Chen Meng, Wang Liyin, Han Jiantao, et al. Preparation and Study of Polyacryamide-Stabilized Silver Nanoparticles Through a One-Pot Process[J]. Physical Chemistry B, 2006,10(23):11224-11231.
    [10]Lu X, Cui S. Wool keratin-stabilized silver NPs[J]. Bioresour Technol,101 (2010): 4703-4707.
    [11]Raveendran P, Fu J, Wallen S L, Completely "green" synthesis and stabilization of n metal NPs[J]. Am. Chem; Soc.125 (2003):13940-13941.
    [12]Henglein A, Giersig M. Formation of colloidal silver nanoparticles:capping action of citrate [J]. PhysChem B,1999,103:9533-9539.
    [13]Ma X F, Jian R J, Chang P R, Yang J W, Yu J G. Fabrication and characterization of citric acid-modified starch NPs/plasticized-starch composites[J]. Biomacromol,9 2008: 3314-3320.
    [14]Kowshik M, Ashtaputre S, Kharrazi S, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3[J]. Nanotechnology,2003,14(1): 95-100.
    [15]Sun Y G, Xia Y N. Gold and silver nanoparticles:A class of chromophores with colors tunable in the range from 400 to 750 nm[J]. Analyst,2003,128(6):686-691.
    [16]Libor Kv tek, Robert Prucek, Ales Panaek, et al. The Influence of Complexing Agent Concentration on Particles Size in the Process of SERS Active Silver Colloid Synthesis[J]. Materials Chemistry,2005,15:1099-1105.
    [17]Zhao Y, Jiang Y, Fang Y. Spectroscopy property of Ag nanoparticles [J]. Spectrochimica Acta Part A:Molecular Biomolecular Spectroscopy,2006,65(5):1003-1006.
    [18]Hutter E. J, Fendler H. Exploitation of Localized Surface Plasmon Resonance [J]. Adv. Mater,2004,16:1685-1706.
    [19]Raveendran P, Fu J, Wallen S L. A simple and "green" method for the synthesis of Au, Ag and Au-Ag alloy nanoparticles[J]. Green Chem.2006,8:34-38.
    [20]Filippo E, Manno D, Serra A, Colloids Surf. A:Physicochem. Eng. Aspects 2009, 348-205.
    [21]Mallikarjuna N N, Varma R S. Cryst. Growth Des.2007,7:686.
    [22]Nersisyan H H, Lee J H, Son H T, et al. Mater. Res. Bull.2003,38:949.
    [23]Panigrahi S. Colloids Surf. A:Physicochem. Eng. Aspects 264 (2005) 133-138.
    [24]李秋玉.淀粉保护的银纳米粒子的合成及表征[J].辽宁师范大学学报,2007,
    [25]殷杰.纳米银粉的制备工艺及抗菌应用研究[学位论文],四川大学,2006年
    [26]庄爱娟.纳米银溶胶的制备及其性能研究[M].青岛科技大学,2011.6.
    [27]陈金花.利用淀粉制备碳保护金属Ni、Co纳米粒子[J].化工学报,2010.
    [28]王洪水.纳米银及载银抗菌材料的研究[D].华中科技大学,2006.
    [1]Anastas P T, Warner J C. Green Chemistry:Theory and Practice. Oxford University Press, New York,1998.
    [2]Qu L, Peng Z A, Peng X. Alternative routes toward high quality CdSe nanocrystals [J]. Nano Lett,2001,1:3334-3341.
    [3]Raveendran P, Fu J, Wallen S L. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles [J]. Z Am. Chem. Soc.2003,125:13940-13941.
    [4]Raveendran P, Fu J, Wallen S L. A simple and"green"method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles [J]. Green Chem,2006,8:34.3851.
    [5]Huang H, Yang X. Synthesis of polysaccharide·stabilized gold and silver nanoparticles a green method [J]. Carbohydr. Res,2004,339:2627.
    [6]Deirdre M, Ledwith D M, Ledwith, Whelan A M, Kelly J M. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles [J]. Mater Chem, 2007,17 (23):2459-2464.
    [7]Jin R C, Coa Y W, Mirkin C A. Photoindueed conversion of silver to nano Prisms [J],.Seience,2001,294:1901-1903.
    [8]Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrateion reduction method[J]. Phys Chem B,2004,108:945-951.
    [9]Hoang T. K. N, La V B, Deriemaeker L, et al. Ostwald ripening of alkane in water emulsions stabilized by sodium dodecyl benzene sulfonate. Langmuir,2002,18:10086-10090.
    [10]汪宝珍.水热法制备金属纳米颗粒研究[学位论文].兰州理工大学,2011.
    [11]洪利军.银纳/微米材料的制备及光学性能研究[M].西南大学,2008.
    [12]张万忠.纳米银的可控制备与形成机制研究[D].华中科技大学,2007
    [13]Pong B K, Elim H I, Chong J X, et al. New insights on the nanoparticle growth。 mechanism in the citrate reduction of gold(III) salt:formation of the Au nanowire intermediate and its nonlinear optical properties[J]. J. Phys. Chem. C,2007,111(7): 6281-6287.
    [14]Zhou G, Lu M, Yang Z, et al. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach [J]. Journal of Crystal Growth,2006,289(1):255-259.
    [15]He S, Yao J, Jiang P, et al. Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice[J]. Langmuir,2001,17(5):1571-1575.
    [16]刘爱心.水溶性银纳米材料的制备及其抗菌性能[D].河南大学,2011.6.
    [1]Zhou G, Lu M, Yang Z, et al. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach [J]. Journal of Crystal Growth,2006,289(1):255-259.
    [2]Li T, Park H G, Choi S H. y-irradiation induced preparation of Ag and Au nanoparticles and their characterizations [J]. Mater Chem Phys,2007,105(2-3):325-330.
    [3]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials [J]. Biotechnology Advances,2009,27:76-83.
    [4]Yuan Q, Venkatasubramanian R, Hein S, et al. A stimulus-responsive magnetic nanoparticle drug carrier:Magnetite encapsulated by chitosan- grafted- co- polymer [J]. Acta Biomater,2008,4(4):1024-1037.
    [5]蒋挺大.壳聚糖(第二版)[M].化学工业出版社,2006:55.
    [6]Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan[J]. Jouunal of Applied Polymer Science,2001,79 (7): 1324-1335.
    [7]Zheng L Y, Zhu J F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers,2003,54:527-530.
    [8]Rabea E I, Badawy M ET, Stevens C V, et al. Chitosan as antimicrobial agent: applications and mode of action[J]. Biomacromolecules,2003,4:1457-1465.
    [9]Kurita K. Chemistry and application of chitin and chitosan[J]. Polymer Degradation and Stability,1998,59(1-3):117-120.
    [10]姚素薇,刘恒权,张卫国,等.在线性壳聚糖膜内原位还原制备银纳米粒子及银单晶体[J].物理化学学报,2003,19(5):464-468.
    [11]湛学军,熊远珍,柳吉等,羧甲基壳聚糖银的合成及抑菌实验的研究[J],中国生化药物杂志,2001,22(3):142-144.
    [12]Donia A M, Atia A A, Elwakeel K Z. Recovery of gold(Ⅲ) and silver(Ⅰ) on a chemically modified chitosan with magnetic properties[J]. Hydrometallurgy,2007,87: 197-206.
    [13]Bodnar M, Hartmann J F, Borbely J. Preparation and characterization of chitosan-based nanoparticles [J]. Biomacromolecules,2005,6(5):2521-2527.
    [14]刘青,安静,罗青枝,等.银/壳聚糖复合物的制备与表征[J].材料导报:研究篇,2010,24(12):101-105.
    [15]Vilchez S, Jovancic P, Manich A M. Chitosan application on wool before enzymatic treatment J]. Journal of Applied Polymer Science,2005,98(5):1938-1946.
    [16]Khor E, Lim L Y. Implantable applications of chitin and chitosan[J]. Biomaterials, 2003,24 (13):2339-2349.
    [17]Mia FL, Wu YB, Shyu SS, et al. Asymmetric chitosan membranes prepared by dry/wet phase separation:a new type of wound dressing for controlled antibacterial release[J]. Journal of Membrane Science,2003,212:237-254
    [18]Sarasam A R, Brown P, Khajotia S S, et al. Antibacterial activity of chitosan-based matrices on oral pathogens[J]. Journal of Materials Science:Materials in Medicine, 2008,19:1083-1090.
    [19]Jou C H, Lin S M, Yun L, et al. Biofunctional properties of polyester fibers grafted with chitosan and collagen[J]. Polymers for Advanced Technologies,2007,18(3): 235-239.
    [20]张天琦,崔献奎,张兆镗.微波加热原理、特性和技术优势RMCM,2010,10-14.
    [21]王婧.壳聚糖/纳米银复合抗菌剂合成及羊毛抗菌层界面形成机理探索[M].太原,太原理工大学,2012.
    [22]Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nano-particles:a green method[J]. Carbohydrate Research,2004,339(15):2627-2631.
    [23]Gerbec J A, Magana D, Microwave-Enhanced Reaction Rates for NanoParticle Sythesis, J. American Chemical Society,2005,127:15791-15800.
    [1]陈四红,吕曼祺,张敬党,等.含Cu抗菌不锈钢的微观组织及其抗菌性[J].金属学报,2004,40(3):314-2318.
    [2]SHRIVASTAVA S, BERA T, ROY A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles[J]. Nanotechnology,2007,18 (22):225103-225112.
    [3]Morones J. R, J. L. Elechiguerra, A. Camacho, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology,2005,16 (10):2346-2353.
    [4]Baker C, A. Pradhan, L. Pakstis, et al. Synthesis and antibacterial properties of silver nanoparticles[J]. Nanosci Nanotechnol,2005,5 (2):244-249.
    [5]Pal S, Y. K.Tak, J. M. Song. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram- negative bacterium Escherichia coli[J]. Appl Environ Microbiol,2007,73 (6):1712-1720.
    [6]KIM J S, KUK E, YU K N, et al. Antimicrobial effects ofsilvern noparticles[J]. Nanomedicine:Nanotechnology, Biology, and Medicine,2007,3(1):95-101.
    [7]张志琨,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000,P1-3
    [8]AMIN R M, MOHAMED M B, RAMADAN M A, et al. Rapid and sensitive micro-plateassay for screening the effect of silver and gold nanoparticles on bacteria[J]. Nanomedicine,2009,4(6):637-643.
    [9]小佩尔扎M J,里德R D,詹E C S.微生物学[M].武汉大学生物系微生物教研室译,北京:科学出版社,1987.61-200.
    [10]吴源纳米银的生物效应及毒性作用机制[D].中国科学技术大学,2001.
    [11]Sanpui P, Murugadoss A, Prasad P V D, et al. The antibacterial properties of a novel chitosan- Ag-nanoparticle composite[J]. Int J Food Microbio,2008,124:142-46.
    [12]王晓凑,徐水凌.纳米银抗菌织物的研究进展[J].棉纺织技术,2008,36(2):126-128.
    [13]Rungby J, Ellermann-Eriksen S, Danscher G. Effects of selenium on toxicity and ultrastructural localization of silver in cultured macrophages[J]. Archives of Toxicology, 1987,61(1):40-45.
    [14]Dwight A. Webster J A, Spadaro, R. O. Becker, et al. Silver anode treatment of chronic ostermyelitis [J]. Clinical Orthopaedics & Related Research:1981,161:105-114.
    [15]Dibrov P, Dzioba J, Gosink K K, et al. Chemiosmotic mechanism of antimicrobial activity of Ag+ in vibrio cholerae [J]. Antimicrobial Agents and Chemotherapy,2002, 46(8):2668-2670.
    [16]Jones V E, Foster H A. Effects of silver sulphadiazine on the production of exoproteins by Staphylococcus aureus [J]. Journal of Medical Microbiology,2002,51(1):50-55.
    [17]Herbert S. Rosenkranz, Howard S. Carr. Silver sulphadiazine:effect on the growth and metabolism of bacteria [J]. Antimicrobial Agents Chemotherapy,1972 (2):367-372.
    [18]Coward J E, Carr H S, Rosenkranz H S. Silver sulphadiazine:effect on the growth and ultrastructure of staphylococci [J]. Chemotherapy,1973, (19):348-353.
    [19]Choi B K, Kim K Y, Yoo Y J, et al. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycet emcomitans and Streptococcus mutans [J]. International Journal of Antimicrobial Agents,2001,18(6): 553-557.
    [20]Hu S G, Jou C H, Yang M C. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyricacid-co-3-hydroxy-valeric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid [J]. Biomaterials,2003,24(16):2685-2693.
    [21]Shi Z, Neoh K G, Kang E T, et. al. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles [J]. Biomaterials,2006,27(11):2440-2449.
    [22]Hu Z G, Chan W L, Szeto Y S. Nanocomposite of chitosan and silver oxideand its antibacterial property[J]. Journal of Applied Polymer Science,2008,108(1):52-56.
    [23]季君晖,史维明编著,抗菌材料[M],北京:化学工业出版社,2003.
    [24]安静.银/聚合物纳米复合材料的制备、结构和抗菌性能研究[D],天津大学,2009.
    [25]Liu XF, Song L, Li L, et al. Antibacterial effects of chitosan and its water-soluble derivatives on E. coli, plasmids DNA, and mRNA. Journal of Applied Polymer Science, 2007,103(6):3521-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700