用户名: 密码: 验证码:
基于红外显微成像的果蔬农药快速检测识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农业生产中,随着农药的超标和滥用,农药对生态的破坏以及农药残留对人类身体健康的危害越演越烈,这一问题已成为全球的焦点,越来越受到社会的广泛关注和高度重视。因此,各个国家持续制定要求越来越严格的农药残留限量标准,并研究与发展相应的农药残留检测技术。
     红外显微成像技术是一种快速、无损、绿色的检测技术,具有高精度、高灵敏度、图谱合一、微区化和可视化等优点,是了解复杂物质的空间分布和分子组成的强有力方法。本文以红外显微成像系统为检测工具,以氯氰菊酯、毒死蜱以及阿维菌素为研究对象,对果蔬样品表面的农药残留以及生物农药掺假识别开展了定性及定量研究。本文分析了毒死蜱、氯氰菊酯等农药的红外显微图像特征,研究结果得到了氯氰菊酯和毒死蜱主要分子结构及其在红外谱区的特征吸收峰,为该技术用于表面滴加氯氰菊酯和毒死蜱溶液苹果皮的研究提供了依据。
     对表面滴加单一组分农药苹果皮的研究结果表明,随着氯氰菊酯与毒死蜱两种农药浓度的降低归属于两者的特征吸收峰的数量依次减少,且发生位移的特征吸收峰的数量依次增加。说明随着两种农药溶液浓度的降低,苹果自身的组成成分以及含水量对检测的干扰程度增强,以致红外显微成像技术的检测灵敏度下降。相关图像的分析结果可以方便、快速地获取氯氰菊酯、毒死蜱在苹果皮上分布信息及差异。
     在单一组分农药研究的基础上进行苹果皮表面滴加复配农药的研究。在滴加3种浓度以及不同比例氯氰菊酯和毒死蜱混合溶液苹果皮的红外谱图及二阶导数谱上均检测到了氯氰菊酯和毒死蜱的共同存在。且随着农药复配溶液浓度的降低,特征吸收峰的总数量依次减少;并且随着农药复配溶液中毒死蜱比例的增加,毒死蜱特征吸收峰的数量逐渐增多,氯氰菊酯特征吸收峰的数量逐渐减少。上述分析证实了红外显微成像技术在农药残留的应用领域中较为灵敏。
     在果蔬样品内部品质的不同对检测产生的影响的探讨中可知:苹果皮含水量的不同对检测有显著影响,当含水量过高或者过低时检测效果都不好,当相对含水量为50%左右时检测效果较好;苹果皮色素对检测有一定的影响,但具体影响不确定,尚有待于深入的研究;蔬菜叶片表面形态的差异对检测有一定的影响,在较为平整的叶片上应用效果较好,相反地,在褶皱较多的叶片上应用效果相对较差。
     本文分别基于红外显微成像技术及衰减全反射红外光谱技术建立了一种生物农药掺入化学农药的定性与定量检测技术。定性结果表明:随着阿维菌素中掺入毒死蜱比例的增加,归属于阿维菌素的特征吸收峰的数量不断减少,峰强度不断减弱;相反地,归属于毒死蜱的特征吸收峰的数量逐渐增加,峰强度逐渐加强。利用偏最小二乘法建立阿维菌素乳油制剂掺入毒死蜱的定量预测模型并进行优化,结合外部检验集对模型的性能进行了验证。定量结果表明:衰减全反射红外技术可以准确测定阿维菌素乳油制剂中掺假毒死蜱的含量。通过异常值诊断、光谱预处理及建模参数的优化,提高了模型的预测精度。模型决定系数R2(%)为99.88,校正集均方根误差RMSEC为0.44,交互验证均方根误差RMSECV为0.79,预测集均方根误差RMSEP为0.70。
     本研究为果蔬表面的农药残留快速检测及生物农药掺假化学农药的快速识别提供了一种新方法,为应用红外显微成像技术及衰减全反射红外光谱技术定性及定量检测农药残留及生物农药掺假奠定了基础。
In agricultural production, the pesticides-caused environmental pollutionas well as the harm caused to human health by residual pesticides isconstantly aggravating due to the massive and unreasonable use of pesticides.This issue has attracted a great deal of attention from all circles of society andis coming on global focus. Therefore, world governments formulate theincreasingly strict pesticide residue limits, and develop the detectiontechnologies of pesticide residues accordingly.
     Infrared micro-imaging technique is a kind of rapid, nondestructive andnon-polluted detection technique, which also has the advantages of theimage-spectrum combined, micro-area partition, visualization, high-accuracy,high-sensitivity and so on. It’s a powerful method to understand the spatialdistribution and the molecular composition of complex materials. Infrared micro-imaging system was as a testing tool, and Cypermethrin, Chlorpyrifos,Abamectin were as research objects in this paper. It launched qualitative andquantitative studies for pesticide residues on the surface of fruit and vegetablesamples and biological pesticide adulteration and recognition. The infraredmicro-image features of Chlorpyrifos, Cypermethrin and other pesticideswere analyzed in the paper. The results got the main molecular structure ofCypermethrin, Chlorpyrifos and its characteristic absorption peaks in theinfrared spectral region. Therefore, it provided feasibility study for thetechnology which used in apple skin sprayed with Cypermethrin andChlorpyrifos solution.
     The apple skins that sprayed with single component pesticide werestudied. The results show that with the decrease of concentration of twopesticides, the numbers of the characteristic absorption peaks which attributedto both pesticides reduced in turn. And the numbers of characteristicabsorption peaks which shifted increased in turn. At the same time with thereduction of the concentration of two pesticides, the interference of apple'sown composition and water content to detection enhanced.So that thedetection sensitivity of IR micro-imaging technique decreased. Thedifferences of distribution information of Cypermethrin and Chlorpyrifos onapple skin were easily and quickly seen by compare correlation images.
     The apple skins sprayed with pesticide mixtures were studied on the basis of single component pesticides. The co-existence of Cypermethrin andChlorpyrifos was detected by IR spectra and second derivative spectra ofapple skin which sprayed with three different concentrations and differentproportions of Cypermethrin and Chlorpyrifos mixed solution. In addition,with the decrease of concentration of pesticide mixtures, the total number ofcharacteristic absorption peaks reduced in turn. With the increase ofproportions of Chlorpyrifos in pesticide mixtures, the numbers ofcharacteristic absorption peaks which belonged to Chlorpyrifos were moreand more. But the numbers of characteristic absorption peaks which belongedto Cypermethrin were fewer and fewer. It confirmed that the IRmicro-imaging technique was more sensitive in the areas of pesticideresidues.
     This study probed the different internal quality of fruit and vegetablesamples which impacted on the detection. The different water contents ofapple skin significantly affected the detection results. It was not good whenthe water contents were too high or too low. It was better when the watercontent was50%. The apple skin pigment certain affected the detectionresults. But specific impact was uncertain. It needed to be in-depth study. Thedifferences of vegetables leaf surface morphology certain impacted on thedetection. The application effect was better in relatively flat leaves. On thecontrary, the application effect was poor in relatively drape leaves.
     And the identification and detection technology of biological pesticidesadulterated with chemical pesticides was established based on IRmicro-imaging technique and ATR-FTIR technique for the first time. Thequalitative results showed with the increase in the proportions of Chlorpyrifoswhich was adulterated into Abamectin, the number of characteristicabsorption peaks belonged to Abamectin decreased gradually, and the peakintensity weakened. The number of characteristic absorption peaks attributedto Chlorpyrifos was just the opposite, and the peak intensity increasedgradually. The quantitative prediction models of Abamectin EC adulteratedwith Chlorpyrifos were established by partial least squares method andoptimized. And then the external validation sets was used to validation themodel performance. The quantitative results showed that ATR-FTIRtechnology can accurately determine the content of Abamectin EC adulteratedwith Chlorpyrifos. The model of prediction precision was improved throughspectrum pretreatment, outliers diagnosis and modeling parametersoptimization. The determination coefficient (R2(%)) was99.88. The rootmean square error of calibration (RMSEC), the root mean square error ofcross-validation (RMSECV) and the root mean square error of prediction(RMSEP) was0.44,0.79and0.70, respectively.
     In this study, it provided a new method for rapid detection of pesticideresidues of fruits and vegetables and rapid identification of biological pesticides adulterated with chemical pesticides. It laid a foundation for theapplication of IR micro-imaging technique and ATR-FTIR technology toqualitative and quantitative detection of pesticide residues and biologicalpesticides adulteration.
引文
[1]宋辉.农产品农药残留速测技术应用.现代农业科技,2010,4:210
    [2]牛明芬,徐文迪,明铁山,等.有机磷农药毒死蜱的检测方法.环境科学与技术,2010,33(12F):485-487
    [3]李亚芸,陈亚玲,陈小飞.果园常用农药种类及其使用方法(上).西北园艺,2008,6:30-31
    [4]张炜,张汉明,郭美丽,等.几种中成药中有机氯类农药的残留分析.第二军医大学学报,1999,20(4):267-268
    [5]孙成玲,汪付星,颜冬云,等.拟除虫菊酯类农药残留检测前处理技术研究进展.农药,2010,49(1):11-15
    [6]张久刚.拟除虫菊酯降解菌的分离、鉴定、降解性能及系统发育分析[,学位论文].泰安:山东农业大学,2007
    [7]Albero B, Sánchez-Brunete C, Tadeo J L. Determination of endosulfan isomers and endosulfansulfate in tomato juice by matrix solid-phase dispersion and gas chromatography.Journal ofChromatography A,2003,1007(1-2):137-143
    [8]付颖,王常波,那宏壮.农药残留物的检测方法.化学工程师,2000,80(5):46-47
    [9]王朝瑾,蔡琦.农产品中农药残留的检测趋势.现代科学仪器,2006,1:106-108
    [10]潘守奇,孙军,董静,等.气相色谱法同时测定蔬菜中24种有机磷农药残留.分析试验室,2010,29(1):115-118
    [11]王江,王辛,梁晓聪,等.固相萃取-气相色谱法检测蔬菜中17种残留的有机磷农药.中国卫生检验杂志,2008,18(2):255-256
    [12]Mensah J K, Lundanes E, Greibrokk T, etc.. Determination of diflubenzuron in apples by gaschromatography. Journal of Chromatography A,1997,765(1):85-90
    [13]GB/T5009.19-2003,食品中六六六、滴滴涕残留量的测定
    [14] NY/T761-2008,蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定
    [15]义国通,农时锋,潘玉明,等.农药残留的常用分析方法.广西热带农业,2010,2:32-34
    [16]蔡建荣,张东升,赵晓联.食品中有机磷农药残留的几种检测方法比较.中国卫生检验杂志,2002,12(6):750-752
    [17]林子俺,龚巧燕,谢增鸿.高效液相色谱测定蔬菜中拟除虫菊酯类农药残留.福州大学学报(自然科学版),2008,36(1):122-125
    [18]李永新.果蔬中12种农药的高效液相色谱测定方法研究,[学位论文].成都:四川大学,2005
    [19]Sundaram B, Rai S K, Ravendra N. Determination of the insecticide imidacloprid in water andsoil using high-performance liquid chromatography. Journal of Chromatography A,1997,787(1-2):271-275
    [20]Pizzutti I R., Vreuls R J J, Kok A de, etc.. Determination of the insecticide imidacloprid inwater and soil using high-performance liquid chromatography.Journal of Chromatography A,2009,1216(15):3305-3311
    [21]GB/T5009.147-2003,植物性食品中除虫脲残留量的测定
    [22]GB/T5009.135-2003,植物性食品中灭幼脲残留量的测定
    [23]胡玉熙,刘清飞,从文娟.气质联用技术在生物医药领域中的应用进展.药物分析杂志,2008,28(6):999-1005
    [24]Pinto G M F, Jardim I C S F. Application of gas chromatography–tandem mass spectrometryto the analysis of pesticides in fruits and vegetables. Journal of Chromatography A,2002,959(1-2):203-213
    [25]何娟,康长安,万郑凯,等.气质联用法测定生菜中多农药残留及其动态降解.农药,2007,46(5):338-340
    [26]王莹,牛森,王勇,等.气质联用快速检测蔬菜中农药多残留.农药,2005,44(5):219-221
    [27]侯志广,王秀梅,范志先,等.气质法测定白菜中克百威残留量的研究.吉林农业大学学报,2004,26(1):70-72
    [28]Martínez V J L, Arrebol F J, Mateu-Sánchez M. Application of gas chromatography–tandemmass spectrometry to the analysis of pesticides in fruits and vegetables. Journal of Chromatography A,2002,959(1-2):203-213
    [29]Rissato S R, Galhiane M S, Marcos V de A, etc.. Multiresidue determination of pesticides inhoney samples by gas chromatography–mass spectrometry and application in environmentalcontamination. Food Chemistry,2007,101(4):1719-1726
    [30]GB/T19648-2006,水果和蔬菜中500种农药及相关化学品残留量的测定
    [31]NY/T1380-2007,蔬菜、水果中51种农药残留的测定
    [32]Cunha S C, Fernandes J O, Alves A, etc.. Fast low-pressure gas chromatography–massspectrometry method for the determination of multiple pesticides in grapes, musts and wines Journal ofChromatography A,2009,1216(1-2):119-126
    [33]陈如,苏红伟.现代分析测试技术在印染行业的应用(二)—液-质(LC-MS)联用分析技术.印染,2007,4:42-45
    [34]韩红新,吴莉宇,徐志,等.液质联用(ESI)检测蔬菜中4种农药残留.农药,2008,47(3):198-200
    [35]马又娥,余琛,刘宝峰,等.高效液相色谱-串联质谱法同时检测蔬菜、水果中21种农药多残留.农药,2008,47(3):192-194
    [36]Chung S W C, Chan B T P. Validation and use of a fast sample preparation method and liquidchromatography–tandem mass spectrometry in analysis of ultra-trace levels of98organophosphoruspesticide and carbamate residues in a total diet study involving diversified food types. Journal ofChromatography A,2010,1217(27):4815-4824
    [37]Garrido A F, Martínez J L V, López T L, etc.. Monitoring multi-class pesticide residues infresh fruits and vegetables by liquid chromatography with tandem mass spectrometry. Journal ofChromatography A,2004,1048(2):199-206
    [38]GB/T20769-2006,水果和蔬菜中405种农药及相关化学品残留量的测定
    [39]涂忆江.我国农药残留快速检测技术的研究与应用现状.农药科学与管理,2003,24(4):14-16
    [40]Campanella L, Bonanni A, Martini E, etc.. Determination of triazine pesticides using a newenzyme inhibition tyrosinase OPEE operating in chloroform. Sensors and Actuators B: Chemical,2005,111-112:505-514
    [41]邱朝坤,刘晓宇,任红敏,等.酶抑制法检测蔬菜中有机磷农药残留.食品与机械,2010,26(2):40-42
    [42]曾小岚,张歆,付东亮,等.酶抑制法检测蔬菜中的有机磷农药.环境监测管理与技术,2004,16(6):12-14
    [43]Jin Shengye, Xu Zhaochao, Chen Jiping, etc.. Determination of organophosphate andcarbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. AnalyticaChimica Acta,2004,523(1):117-123
    [44]GB/T5009.199-2003,蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测
    [45] NY/T448-2001,蔬菜上有机磷和氨基甲酸醋类农药残毒快速检测方法
    [46]武中平,徐春祥,高巍,等.酶联免疫分析法及其在食品农药残留检测中的应用.江苏农业科学,2007,1:198-201
    [47]王艳玲,江德甜,孙明山.酶联免疫吸附检测法在农药残留检测中的应用.现代化农业,2010,3:25-26
    [48]韩丽君,钱传范,李文明,等.酶联免疫吸附分析法测定土壤中的毒死蜱.河南农业科学,2005,8:53-56
    [49]韩丽君,钱传范,李文明,等.酶联免疫吸附分析法测定水样中的毒死蜱.环境科学与技术,2006,29(3):35-37
    [50]韩丽君,钱传范,李文明,等.酶联免疫吸附分析法测定黄瓜中的甲基对硫磷.农业基础科学,2005,21(6):146-149
    [51]Qian Guoliang, Wang Limin, Wu Yunru, etc.. A monoclonal antibody-based sensitiveenzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticideschlorpyrifos-methyl in real samples. Food Chemistry,2009,117(2):364-370
    [52]栾昉.果菜上农药残留的检测方法.河南农业,2008,7:20
    [53]乌日娜,李建科.生物传感器在农药残留分析中的研究现状及展望.食品安全与检测,2005,21(2):54-76
    [54]陈玲.生物传感器的研究进展综述.传感器与微系统,2006,25(9):4-7
    [55]干宁,王峰,杨欣,等.采用纳米修饰双酶电极生物传感器检测有机磷与氨基甲酸酯类农药.农药学学报,2008,10(3):329-334
    [56]Rekha K, Gouda M D, Thakur M S, etc.. Ascorbate oxidase based amperometric biosensor fororganophosphorous pesticide monitoring. Biosensors and Bioelectronics,2000,15:499-502
    [57]Gulla K C, Gouda M D, Thakur M S, etc.. Reactivation of immobilized acetyl cholinesterase inan amperometric biosensor for organophosphorus pesticide. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2002,1597(1):133-139
    [58]Andresa R T, Narayanaswamy R. Fibre-optic pesticide biosensor based on covalentlyimmobilized acetylcholinesterase and thymol blue. Talanta,1997,44(8):1335-1352
    [59]Stoytcheva M, Zlatev R, Velkova Z, etc.. Hybrid electrochemical biosensor fororganophosphorus pesticides quantification. Electrochimica Acta,2009,54(6):1721-1727
    [60]蒋雪松,应义斌,王建平.生物传感器在农药残留检测中的应用.农业工程学报,2005,21(4):188-122
    [61]周向阳,林纯忠,胡祥娜,等.近红外光谱法(NIR)快速诊断蔬菜中有机磷农药残残留.食品科学,2004,25(5):151-154
    [62]张宁,张德权,李淑荣,等.近红外光谱定性分析技术在食品安全中的应用研究进展.食品安全与检测,2008,8:218-221
    [63]沈飞,闫战科,叶尊忠,等.近红外光谱分析技术在辛硫磷农药残留检测中的应用.光谱学与光谱分析,2009,29(9):2421-2424
    [64]陈菁菁,李永玉,吴建虎,等.基于近红外光谱技术的微量有机磷农药的快速检测.食品安全质量检测技术,2009,1(1):45-50
    [65]Du Yi Ping, Wei Xue Mei, Xie Hong Ping, etc.. An enrichment device of silica-basedmonolithic material and its application to determine micro-carbaryl by NIRS. Chinese Chemical Letters,2009,20(4):469-472
    [67]Moros J, Armenta S, Garrigues S, etc.. Near infrared determination of Diuron in pesticideformulations. Analytica Chimica Acta,2005,543(1-2):124-129
    [68]Armenta S, Garrigues S, Guardia M de la. Partial least squares-near infrared determination ofpesticides in commercial formulations. Vibrational Spectroscopy,2007,44(2):273-278
    [69]杨燕宇,陈社员.油菜品质近红外反射光谱分析建模及应用研究进展.作物研究,2007(2):152-156
    [70]易时来,邓烈,何绍兰,等.近红外光谱技术在农作物品质检测上的研究进展.湖南农业科学,2007,(6):67-69
    [71]徐琳,王乃岩. ATR/FTIR技术和红外透射法用于蔬菜中农药含量测定的比较研究.红外技术,2008,30(12):702-705
    [72]徐琳.衰减全反射红外光谱法测定蔬菜农残的实验研究.安徽农业科学,2009,37(24):11353-11355
    [73]马国欣,王成龙,范多旺,等.红外光谱法测定农药中吡虫啉含量.光谱学与光谱分析,2006,26(3):434-437
    [74]Khanmohammadi M., Armenta S, Garrigues S, etc.. Mid-and near-infrared determination ofmetribuzin in agrochemicals. Vibrational Spectroscopy,2008,46(2):82-88
    [75]Moros J, Armenta S, Garrigues S, etc.. Quality control of Metamitron in agrochemicals usingFourier transform infrared spectroscopy in the middle and near range. Analytica Chimica Acta,2006,565(2):255-260
    [76]吴汉福.红外光谱技术的应用.六盘水师范高等专科学校学报,2006,18(3):51-54
    [77]毕琳娜.几种典型有机磷农药的荧光光谱研究,[学位论文].无锡,江南大学,2009
    [78]王玉田,崔立超,王冬生,等.基于同步-导数荧光光谱法的多组分农药残留测定的研究.光谱学与光谱分析,2006,26(11):2085-2088
    [79]李满秀,张文琴.荧光光谱法测定残杀威的研究.分析科学学报,2009,25(2):235-237
    [80]JiJi R D, Cooper G A, Booksh K S. Excitation-emission matrix fluorescence baseddetermination of carbamate pesticides and polycyclic aromatic hydrocarbons. Analytica Chimica Acta,1999,397(1-3):61-72
    [81]Sánchez F G, Rubio A L R, CerdáV, etc.. Variable-angle scanning fluorescence spectrometryfor the determination of closely overlapped pesticide mixtures. Analytica Chimica Acta,1990,228:293-299
    [82]肖怡琳,张鹏翔,钱晓凡.几种农药的显微拉曼光谱和荧光光谱.光谱学与光谱分析,2004,24(5):579-581
    [83]张鹏翔,周小芳,方炎.两种激发波长下蔬菜水果的拉曼光谱对比研究.光散射学报,2004,24(5):579-581
    [84]周小芳,方炎,张鹏翔.水果表面残留农药的拉曼光谱研究.光散射学报,2004,16(1):11-14
    [85]王睿垠,白士刚,金长江.激光拉曼光谱分析技术及其在农药残留检测中的试验研究.河南农业科学,2008,12(7):166-167
    [86]Alak A M, Vo-Dinh T.Surface-enhanced Raman spectrometry of chlorinated pesticides.Analytica Chimica Acta,1988,206:339-344
    [87]Quintás G, Garrigues S, Pastor A, etc..FT-Raman determination of Mepiquat chloride inAgrochemical products. Vibrational Spectroscopy,2004,36(1):41-46
    [88]Weiβenbacher N, Lendl B, Frank J, etc..Continuous surface enhanced Raman spectroscopy forthe detection of trace organic pollutants in aqueous systems. Journal of Molecular Structure,1997,410-411:539-542
    [89]钱晓凡,肖怡琳,徐存英,等.新鲜水果显微拉曼光谱研究.光散射学报,2001,13(1):59-61
    [90]胡宏友,李雄.拉曼光谱在植物科学研究领域中的应用.光散射学报,2009,21(2):178-184
    [91]杨晓云,费志平,徐汉虹.核磁共振技术及其在农药残留分析中的应用.农药,2009,48(3):163-171
    [92]祝亚非,关山越,邵伟艳.四氟菊酯的核磁共振法分析.分析测试学报,2003,22(3):63-65
    [93]Talebpour Z, Bijanzadeh H R. A selective19F NMR spectroscopic method for determination ofinsecticide diflubenzuron in different media. Analytical Nutritional and Clinical Methods,2007,105(4):1682-1687
    [94]Talebpour Z, Ghassempour A, Zendehzaban M, etc..Monitoring of the insecticide trichlorfonby phosphorus-31nuclear magnetic resonance (31P NMR) spectroscopy. Analytica Chimica Acta,2006,576(2):290-296
    [95]孙静霞,张正行. NMR在药物定量分析中的应用.药物分析杂志,2005,25(1):117-122
    [66]李晓婷,朱大洲,潘立刚,等.果蔬农药残留快速检测方法研究进展.农业工程学报,2011,27(supp.2):363-370
    [96]Gan-Mor S, Matthews G A. Recent Developments in Sprayers for Application ofBiopesticides-an Overview. Biosystems Engineering,2003,84(2):119-125
    [97]徐汉虹,安玉兴.生物农药的发展动态与趋势展望.药物科学与管理,2001,22(1):32-34
    [98]郭荣.我国生物农药的推广应用现状及发展策略.中国生物防治学报,2011,27(1):124-127
    [99]李明,刘彦文.生物农药在害虫防治上的应用.上海农业学报,2011,27(2):143-145
    [100]东野广智,张月飞,孟庆勇,等.鼻咽癌及正常鼻咽组织显微红外光谱研究.计算机与应用化学,2002,19(5):670-672
    [101]章成峰,刘毓海,徐怡庄,等.涎腺粘液表皮样癌的傅里叶变换显微红外光谱(Micro-FTIR)以及红外光谱图像研究.光谱学与光谱分析术,2004,24(11):23-25
    [102]Kazuyuki Yano, Susumu Ohoshima, Yoshiya Gotou, etc.. Direct Measurement of HumanLung Cancerous and Noncancerous Tissues by Fourier Transform Infrared Microscopy: Can an InfraredMicroscope Be Used as a Clinical Tool?. Analytical Biochemistry,2000,287(2):218-225
    [103]Ramesh J, Kapelushnik J, Mordehai J, etc.. Novel methodology for the follow-up of acutelymphoblastic leukemia using FTIR microspectroscopy. J. Biochem. Biophys. Methods,2002,51(3):251-261
    [104]Kretlow A, Wang Qi, Kneipp J, etc.. FTIR-microspectroscopy of prion-infected nervoustissue. Biochimica et Biophysica Acta,2006,1758(7):948-959
    [105]Essendoubi M, Toubas D, Bouzaggou M, etc.. Rapid identification of Candida species byFT-IR microspectroscopy. Biochimica et Biophysica Acta,2005,1724(3):239-247
    [106]Orsinia F, Amia D, Villaa A M, etc.. FT-IR microspectroscopy for microbiological studies.Journal of Microbiological Methods,2000,42(1):17–27
    [107]Ngo N A, Naumann Thi D. Investigating the heterogeneity of cell growth in microbialcolonies by FTIR microspectroscopy. Anal Bional Chem,2007,387(5):1769–1777
    [108]Erukhimovitch V, Pavlov V, Talyshinsky M, etc.. FTIR microscopy as a method foridentification of bacterial and fungal infections.Journal of Pharmaceutical and Biomedical Analysis,2005,37(5):1105-1108
    [109]马华成,黄勇,雷华.红外显微系统在法庭科学领域中的最新应用.光谱学与光谱分析,2001,21(4):468-471
    [110]黄娟娟,刘忠良,梅毅.傅立叶变换显微红外光谱法无损鉴别黑色中性笔色痕.现代科学仪器,2009,6(3):96-101
    [111]王俭,孙素琴,周群.蓝色圆珠笔字迹色痕傅里叶变换显微红外光谱法的无损分析.分析化学,1999,27(6):697-700
    [112]Ricci C, Bleay S, Kazarian S G.Spectroscopic Imaging of Latent Fingermarks Collected withthe Aid of a Gelatin Tape. Anal. Chem.,2007,79(15):5771-5776
    [113]Keune K, Jaap J B. Imaging Secondary Ion Mass Spectrometry of a Paint Cross SectionTaken from an Early Netherlandish Painting by Rogier van der Weyden.Anal.Chem.,2004,76(5):1374-1385
    [114]Annelies van L, Jaap J B. Characterization of the deterioration of bone black in the17thcentury Oranjezaal paintings using electron-microscopic and micro-spectroscopic imaging techniques.Spectrochimica Acta Part B,2004,59(10-11):1601-1609
    [115]李波阳.显微红外光谱法鉴别纤维的种类.公安大学学报,2000,(2):48-50
    [116]熊磊,刘洪玲,于伟东.拉伸羊毛分子结构的显微红外光谱分析.东华大学学报,2005,31(3):5-9
    [117]柳洪超,尤瑜生,吴立军.聚合物复合膜的红外显微成像分析.工程塑料应用,2010,38(3):59-61
    [118]Yu Peiqiang. Applications of Hierarchical Cluster Analysis (CLA) and Principal ComponentAnalysis (PCA) in Feed Structure and Feed Molecular Chemistry Research, Using Synchrotron-BasedFourier Transform Infrared (FTIR) Microspectroscopy. Agricultural and Food Chemistry,2005,53(18):7115-7127
    [119]Baeten V, Holst von C, Garrido A, etc.. Detection of banned meat and bone meal infeedstuffs by near-infrared microscopic analysis of the dense sediment fraction. Anal Bioanal Chem.,2005,382(1):149-157
    [120] Yu P, Wang R, Bai Y.Reveal Protein Molecular Structural-Chemical Differences betweenTwo Types of Winterfat (Forage) Seeds with Physiological Differences in Low Tolerance UsingSynchrotron-Based Fourier Transform Infrared Microspectroscopy. J. Agric.Food Chem.,2005,53(24):9297-9303
    [121]Yu Peiqiang, Mckinnon J J, Christensen C R, etc..Using Synchrotron-Based FTIRMicrospectroscopy to Reveal Chemical Features of Feather Protein Secondary Structure: Comparisonwith Other Feed Protein Sources.J.Agric.Food Chem.,2004,52(24):7353-7361
    [122]Yu Peiqiang. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-SpatiallyResolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties.WileyInterScience,2006,85(4):308-317
    [123]Yu Peiqiang, Mckinnon J J, Christensen C R, etc.. Using Synchrotron Transmission FTIRMicrospectroscopy as a Rapid, Direct, and Nondestructive Analytical Technique to Reveal MolecularMicrostructural-Chemical Features within Tissue in Grain Barley.J. Agric.Food Chem.,2004,52(6):1484-1494
    [124]Yu Peiqiang, Mckinnon J J, Christensen C R, etc.. Chemical Imaging of Microstructures ofPlant Tissues within Cellular Dimension Using Synchrotron Infrared Microspectroscopy. J. Agric. FoodChem.,2003,51(20):6062-6067
    [125]Yu Peiqiang, Jonker A, Gruber M, etc.. Molecular basis of protein structure inproanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value usingsynchrotron-radiation FTIR microspectroscopy: A novel approach. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73(5):846-853
    [126]Dokken K M, Davis L C, Erickson L E, etc.. Synchrotron fourier transform infraredmicrospectroscopy: A new tool to monitor the fate of organic contaminants in plants. MicrochemicalJournal,2005,81(1):86-91
    [127]Sully P, Paul R, Luc S, etc.. Deposition of Cell Wall Polysaccharides in Wheat Endospermduring Grain Development: Fourier Transform-Infrared Microspectroscopy Study. J. Agric. FoodChem.,2006,54(6):2303-2308
    [128]Chena L, Wilsonb R H, McCannC M C. Investigation of macromolecule orientation in dryand hydrated walls of single onion epidermal cells by FTIR microspectroscopy. Journal of MolecularStructure,1997,408-409(1):257–260
    [129]熊磊.纺织纤维显微红外光谱技术的应用研究,[学位论文].上海:东华大学,2003
    [130]周鑫.聚合物复合材料相容性的傅立叶变换红外光谱显微成像研究,[学位论文].北京:北京化工大学,2008
    [131]常敏.应用红外光谱技术进行牛奶成分检测的研究,[学位论文].天津:天津大学,2004
    [132]何晓东,汤河原,徐新,等. FT-IR显微ATR红外光谱图像系统及其应用.现代仪器使用与维修,1999,(2):32-34
    [133]黄红英,尹齐和.傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展.中山大学研究生学刊(自然科学.医学版),2011,32(1):20-31
    [134]徐琳,王乃岩,霸书红,等.傅里叶变换衰减全反射红外光谱法的应用与进展.光谱学与光谱分析,2004,24(3):317-319
    [135]李晓婷,朱大洲,潘立刚,等.红外显微成像技术及其应用进展.光谱学与光谱分析,2011,31(9):2313-2318
    [136]苏星,田维坚,张淳民.显微成像光谱仪技术的研究及应用.光学技术,2006,32(6):820-823
    [137]Lobinski R, Moulinb C, Ortegac R. Imaging and speciation of trace elements in biologicalenvironment. Biochimie,2006,88(11):1591-1604
    [138]李静,李美超,莫卫民.显微红外光谱技术的发展及应用.理化检,2009,45(10):1245-1248
    [139]黄乔松,于肇贤,李静,等.含油岩心显微红外光谱成像方法的研究.光谱学与光谱分析,2009,29(2):451-454
    [140]Santos C, Fraga M E, Kozakiewicz Z, etc.. Fourier transform infrared as a powerful techniquefor the identification and characterization of filamentous fungi and yeasts. Research in Microbiology,2008,161(2):168
    [141]Annette N, Gregor H, Rolf R. Efficient discrimination of oat and pea roots by cluster analysisof Fourier transform infrared (FTIR) spectra. Field Crops Research,2010,119(1):78-84
    [142]徐荣,孙素琴,刘友刚,等.红外光谱法用于肉苁蓉属中药鉴别研究.光谱学与光谱分析,2010,30(4):897-900
    [143]Roza-Delgado B de la, Soldado A, Mart′nez-Ferna′ndez A, etc.. Application of near-infraredmicroscopy (NIRM) for the detectionof meat and bone meals in animal feeds: A tool for food and feedsafety. Food Chemistry,2007,105(3):1164-1170
    [144]Gazi E, Dwyer J, Lockyer N P, etc.. Biomolecular profiling of metastatic prostate cancer cellsin bone marrow tissue using FTIR microspectroscopy: a pilot study. Analytical and BioanalyticalChemistry,2007,387(5):1621-1631
    [145]Motoko Igisu, Yuichiro Ueno, Mie Shimojima, etc.. Micro-FTIR spectroscopic signatures ofBacterial lipids in Proterozoic microfossils. Precambrian Research,2009,173(1-4):19-26
    [146]冯计民.红外光谱在微量物证分析中的应用.北京:化工工业出版社,2010:5-8
    [147]孙素琴,周群,陈建波.中药红外光谱分析与鉴定.北京:化工工业出版社,2010:17-22
    [148]陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术.北京:中国石化出版社,2000,141-150
    [149]Yano T, Matsushige H, Suehara K I, etc.. Measurement of the concentration of glucose andlactic acid in peritoneal dialysis solutions using near-infrareds pectroscopy. Joumal of Bioscience and Bioengineering,2000,90(5):540-544
    [150]Blanca M, Pages J. Classification and quantitation of finishing oils by near infraredspectroscopy. Analytica Chimica Acta,2002,463:295-303
    [151]Casale M, Abajo M S, Saiz J M G, etc.. Study of the aging and oxidation processes of vin egarsamples from different origins during storage by near-infrared spectroscopy.Analytica Chimica A cta,2006,557:360-366
    [152]梁逸曾,俞汝勤.化学计量学.北京:高等教育出版社,2004:35-38
    [153]Nagle D J, George G A, Rintoul L, etc.. Use of micro-ATR/FTIR imaging to studyheterogeneous polymer oxidation by direct solvent casting onto the ATR IRE. Vibrational Spectroscopy,2010,53(1):24-27
    [154]Franquelo M L, Duran A, Herrera L K, etc.. Comparison between micro-Raman andmicro-FTIR spectroscopy techniques for the characterization of pigments from Southern Spain CulturalHeritage. Journal of Molecular Structure,2009,924-926:404-412
    [155]Fumière O, Veys P, Boix A, etc.. Methods of detection, species identification andquantification of processed animal proteins in feedingstuffs. Biotechnol. Agron. Soc. Environ.,2005,13(S):59-70
    [156]索婧侠,孙素琴,王文全.甘草的红外光谱研究.光谱学与光谱分析,2010,30(5):1218-1223
    [157]Ahmed S S S J, Santosh W, Kumar S, etc.. Neural network algorithm for the early detectionof Parkinson's disease from blood plasma by FTIR micro-spectroscopy. Vibrational Spectroscopy,2010,53(2):181-188
    [158]Cozzolino D, Cherce A, Scaife J R, etc.. Usefuiness of near-infrared reflectance (NIR)spectroscopy and chemometrics to discriminate fishmeal batches made with different fish species.J.Agric. Food Chem,2005,53:4459-4463
    [159]许禄.化学计量学(第二版).北京:化学出版社,2004:53-55
    [160]严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005:36-39
    [161]徐广通,袁洪福,陆婉珍. CCD近红外光谱谱图预处理方法研究.光谱学与光谱分析,2000,20(5):619-622
    [162]郑咏梅,张铁强,张军,等.平滑、导数、基线校正对近红外光谱PLS定量分析的影响研究.光谱学与光谱分析,2004,24(12):1546-1548
    [163]Li Xiaoting, Zhu Dazhou, Wang Dong, etc.. The detection of Cypermethrin on the surface ofApple by IR Micro-imaging.Advanced Materials Research,2011,287-290:2991-2997
    [164]Armenta S, Quintás G, Garrigues S, etc.. A validated and fast procedure for FTIRdetermination of Cypermethrin and Chlorpyrifos. Talanta,2005,67(3):634-639
    [165]Doran E M, Yost M G, Fenske R A. Measuring Dermal Exposure to Pesticide Residues withAttenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy. Bulletin ofEnvironmental Contamination and Toxicology,2000,64(5):666-672
    [166]Armenta S, Garrigues S, Guardia M de la. Determination of iprodione in agrochemicals byinfrared and Raman spectrometry. Analytical and Bioanalytical Chemistry,2007,387(8):2887-2894
    [167]Li Xiaoting, Zhu Dazhou, Wang Dong, etc.. Feasibility study of the detection of Chlopyrifosresiduals of Apple based on IR Micro-imaging. Optical Engineering,2012,51(10)
    [168]Syetov Y, Vdovin A. Infrared spectra of benzoxazoles exhibiting excited state proton transfer.Vibrational Spectroscopy,2010,53(1):146-150
    [169]Wetzel D L. Mid-IR and near-IR chemical imaging: Complementary for biological materials.Vibrational Spectroscopy,2012,60:29-33
    [170]吴志生,陶欧,程伟,等.基于光谱成像技术的乳块消素片活性成分空间分布及均匀性研究.分析化学,2011,39(5):628-634
    [171]Arnold J C, Watson T, Alston S, etc..The use of FTIR mapping to assess phase distribution inmixed and recycled WEEE plastics. Polymer Testing,2010,29(4):459-470
    [172]Eder G C, Lidija S L, Chernev B S. Visualisation and characterisation of ageing inducedchanges of polymeric surfaces by spectroscopic imaging methods. Anal. Bioanal. Chem.,2012,403(3):683-695
    [173]Wu Zhisheng, Tao Ou, Cheng Wei, etc.. Visualizing excipient composition and homogeneityof compound liquorice tablets by near-infrared chemical imaging. Spectrochimica Acta Part A,2012,86:631-636
    [174]Lanzarotta A, Lakes K, Marcott C A, etc.. Analysis of counterfeit pharmaceutical tablet coresutilizing macroscopic infrared spectroscopy and infrared spectroscopic imaging. Analytical Chemistry,2011,83(15):597-5978
    [175]Wu Zhisheng, Tao Ou, Dai Xingxing, etc.. Monitoring of a pharmaceutical blending processusing near infrared chemical imaging. Vibrational Spectroscopy,2012,63:371-379
    [176]姜训鹏,杨增玲,韩鲁佳,等.精料补充料中肉骨粉的显微近红外成像识别.农业机械学报,2011,42(7):155-159
    [177]吕程序,杨增玲,韩鲁佳,等.饲料中动物源性成分显微近红外光谱检测分析.农业机械学报,2011,42(5):171-174,213
    [178]Malek Ma, Kim B, Jung H J, etc.. Single-particle mineralogy of Chinese soil particles by thecombined use of low-Z particle electron probe X-ray microanalysis and attenuated totalreflectance-FT-IR imaging techniques. Analytical Chemistry,2011,83(20):7970-7977
    [179]Ji Yeon Ryu, Chul-Un Ro. Attenuated total reflectance FT-IR imaging and quantitative energydispersive-electron probe X-ray microanalysis techniques for single particle analysis of atomsphericaerosol particles. Analytical Chemistry,2009,81(16):6695-6707
    [180]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,1999,20(2):134-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700