用户名: 密码: 验证码:
四宝山废弃采石场山体自然恢复初期群落演替规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山开采造成的破坏山体严重影响区域生态环境的安全,其植被恢复与重建的难度极大。然而,目前破坏山体植被恢复与重建的研究与实践及其贫乏,生产上亟需相应的理论基础和配套技术指导。本文以对四宝山废弃采石场山体为研究对象,调查了四宝山废弃采石场植被演替初期的群落的种类组成(包括种类组成的性质分析和数量特征)、群落结构(群落的垂直结构、水平结构和生活型谱)、影响群落组成和结构的因素进行了调查和分析,对现有的植物群落进行分类和排序,并通过空间代时间的方法得到了四宝山采石废弃地上植被的演替序列,并结合立地条件,分析各演替阶段的演替特征。此研究对于实现废弃采石场植被恢复和环境的可持续发展具有极其重要的理论与实践指导意义。主要结论如下:
     1、四宝山废弃采石场植被恢复初期阶段的物种组成
     废弃采石场草本层物种组成较丰富,共计25科48属55种。其中,菊科植物占草本种数的36%,禾本科植物占草本总物种数的22%,其他属于23科23属的24种草本植物占草本总物种数的42%。灌木种类很少,共计4科7属7种:荆条(Vitex negundo)、小叶鼠李(Rhamnus parvifolia)、胡枝子(Lespedeza bicolor)、锦鸡儿(Caragana sinica)、酸枣(Ziziphus jujuba)和白蔹(Ampelopsis japonica)。其中,荆条是该研究区的建群种。在演替过程中,一年生草本阶段,禾本科植物占优势。随着时间推移,环境的改善,禾本科优势度逐渐减小,演替至灌木阶段降至16.3%;菊科植物有一个先升后降的过程,而其它科属植物随着演替的进行是稳步增加的。
     2、四宝山废弃采石场植被恢复初期阶段的多样性特征
     四宝山废弃采石场自然演替初期,一年生草本阶段、多年生草本阶段到灌木阶段,群落的物种多样性是逐渐增加的。同一时间形成的立地,局部小环境的影响,群落间的物种多样性可以差别很大。物种多样性接近的群落演替时间也可能有很大的差距。
     改善立地条件可以加速演替进程。群落发育的不平衡性和立地现状的复杂性决定了植被恢复工程应采取因地制宜的措施,改善群落的水热环境。制定的恢复规划措施要综合群落立地条件、演替阶段,尊重群落的自然演替规律。
     3、四宝山废弃采石场植被自然恢复初期的演替序列
     根据WINTWINS分类和DCA排序的结果,并结合分析植被历史记录,四宝山废弃采石场植被自然演替初期大致分为三个演替阶段:一年生草本阶段、多年生草本阶段和灌丛阶段。
     从草本层在演替最初以狗尾草(Setaria viridis)、牛筋草(Eleusine indica)等一年生先锋种群落开始,大多数群落以狗尾草为优势种,极端干旱处为牛筋草,积水处马唐(Digitaria Sailguinails)占优势。随时间推移群落中出现多年生草本,大部分群落中北京隐子草(Cleistogenes hancei)竞争力强成为优势种,水土条件富集处,菊科及野韭菜(Allium ramosum)、鹅绒藤(Cynanchum chinensis)等本土种在竞争中占优势。由于群落立地条件的差异,各立地一年生草本阶段演替所需时间1~5a不等。演替至5~10a大部分一年生草本群落发育成多年生草本群落。与此同时,多年生草本群落中开始出现低矮的灌木,主要是荆条,之后灌木层的物种增多,除荆条外酸枣和小叶鼠李等乡土种加入灌木层的竞争。从灌木开始在群落中出现,到成为优势层片约需40a的时间。灌木层经过50a的生长发育组成仍然十分简单。而自然生长的乔木树种尚未侵入。灌木自然演替到乔木阶段的时间无法预测。不加以人工辅助恢复措施,该区域的植被自然恢复将是一个极其漫长的过程。
It is well known that there are too much difficulties to recover the damaged mountain body because of mining activities, and there are few researches and practices on the vegetation’s recovery. In this paper, we take abandoned quarry site of Sibao-shan was taken as the research area. Based on the site conditions and other literatures, this abandoned quarry was classified into 5 types. Typical samples were selected in each site type. The community structures, including the species composition (number of species and height), vertical and horizontal structure, life form, together with its relative environmental factors, were investigated in initial stage of natural vegetation restoration since 2006. The succession series were identified based on the community quantitative classification and ordination, as well as historical records of plant community evolution. The comunity characters were sumerized for each succession stage. This study has great significance on the vegetation restoration and reconstruction. The main conclusions are as follows:
     1.The species components in initial stage of natural vegetation restoration on abandoned quarry site of Sibao-shan
     The herbacrous species are rich in this area. There are 55 species belonging to 45 genera and 25 families. The compositae species is consist of 36% and Gramineae species is consist of 22%, 24 plant species belonging to 23 genera and 23 families made up 42% of the total hereb species.
     The species of shrub are relative rare. There are only 7 species belonging to 7 genera and 4 families. There are: Vitex negundo, Rhamnus parvifolia, Lespedeza bicolor, Caragana sinica, Ziziphus jujube and Ampelopsis japonica.
     Gramineae species are dorminant in the annual herb plant stage during succession process. As the process continues, the degree of advantages of Gramineae species gradually reduce and down to 16.3% in the shrub stage. The number of Compositae species appear an increasing and then a decreasing trend. The number of other genera and families gradually increased.
     2. The species diversities in initial stage during natural restoration on abandoned quarry of Sibao-shan
     The species diversity increased continuously in the initial stage during natural restoration. Even though the site types formed in the same time, the species diversity indexes have great differences among communities because of the micro-site differences. The closed species diversity indexes may need different successional time.
     Improving site conditions can accelerate the succession process. The complexities of community succession and the sites play an important role in the vegetation restoration, based on local circumstances improving the hydrothermal conditions should be taken. The restoration practices should be carried out according to the site conditions and succession stages.
     3. The succession series in initial stage of natural community restoration on abandoned quarry of Sibao-shan
     According to the WINTWINS classification and DCA ordination, and integrating the history records of the vegetation, the succession series can be divided into 3 stages: annual herb stage, perennial herb stage and shrub stage.
     The succession originates the pioneer species, such as Setaria viridis, Eleusine indica, with the lapse of time, perennial herbs appear. Cleistogenes hancei is the dominant species in most communities. The native species such as species of Compositae, Allium ramosum, and Cynanchum chinensis are dominant ones in better sites. The annual herb stage would last from 1 to 5 years at different site conditions. After 5~10 years growing, most of the annual herb communities develop to perennial herb communities. Meanwhile, some laigh shrubs appear in the community. The dominant is V. negundo. Latter there were more shrub species coming into and became more common. It might need 40 years for the dominant shrub layer development since its first appearing. It is very difficult to forecast how long the community climax will last, because that the shrub layer still is very simple after 50 years development and no arbor species appear at present. Without artificial measures the succession of this area will last for a long time.
引文
[1]毕润成.山西霍山植被生态定量研究[J].陕西师范大学学报(自然科学版), 1992, 12: 56-59
    [2]毕润成,阎桂琴,黄文选.霍山森林群落的数量分类[J].山西师大学报(自然科学版), 1992, 6 (1): 50-54
    [3]白中科,李晋川,王文英.中国山西平朔安太堡大型露天煤矿退化土地生态重建研究[J].中国土地科学, 2000, 14 (4): 1-4
    [4]包维楷,刘照光,刘朝禄等.中亚热带湿性常绿阔叶次生林自然恢复15年来群落乔木层的动态变化[J].植物生态学报, 2000, 24 (6): 702-709
    [5]陈波,包志毅.国外采石场的生态和景观恢复[J].水土保持学报, 2003, 17 (5):72-74
    [6]陈芳清,卢斌,王祥荣.村坪磷矿废弃地植物群落的形成与演替[J].生态学报, 2001, 21 (8): 1347-1354
    [7]陈芳清.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境, 2004, 13(3): 286-291
    [8]代宏文.澳大利亚矿山复垦现状[C].矿山废地复垦与绿化.中国林业出版社, 1995. 194-204
    [9]丁勇,牛建明,杨持.沙质草原植物群落退化与沙化演替[J].生态学杂志, 2006, 25(9): 1044-1051.
    [10]董林水,张旭东,周金星,宋爱云.晋西土石山区森林次生演替过程中群落结构及复杂性[J].应用生态学报, 2007, 18(3): 471-475
    [11]方炜,彭少麟,何道泉.广州白云山次生林演替过程中的种群动态[J].植物学通报. 1995, (12): 55-62
    [12]高国雄等.国外工矿区土地复垦动态研究.水土保持研究. 2001, 8 (1):98~103
    [13]郭全邦,刘玉成,李旭光.缙云山森林次生演替系列群落的物种多样性动态[J].应用生态学报, 1999, 10 (5): 521-524
    [14]高国雄,高宝山,周心澄等.国外工矿区土地复垦动态研究[J].水土保持研究, 2001, 8 (3): 98-103
    [15]高贤明,马克平,陈灵芝.暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系[J],植物生态学报, 2001, 25: 553-559
    [16]关文彬,曾德慧,范志平等.中国东部西部地区沙质荒漠化过程与植被动态关系的生态学研究:植被的排序[J].应用生态学报, 2001, 12(5): 687-691
    [17]高立平,王惠芳.阿拉善干旱荒漠区石质荒山造林技术的研究[J].防护林科技, 2006 (3): 8-10
    [18]侯本栋,马风云,邢尚军等.黄河三角洲不同演替阶段湿地群落的土壤和植被特征[J].浙江林学院学报, 2007, 24 (3): 313-318
    [19]何小琴,蒋志荣,王刚等.子午岭地区植被恢复演替过程与环境因子的分类与排序[J].西北植物学报, 2007, 27(3): 0601-0606
    [20]黄忠良,孔国辉,何道泉.鼎湖山植物群落多样性研究[J].植物生态学报, 1995, 19 (4): 311-318
    [21]景福军,张德罡,尚占环等.黄土高原弃耕地不同地形下植物群落演替初期的群落结构及多样性研究[J].甘肃农业大学学报, 2005, 40 (2): 233-238
    [22]贾晓妮,程积民,万惠娥. DCA、CCA和DCCA三种排序方法在中国草地植被群落中的应用现状[J].中国农学通报, 2007, 23 (12): 391-395
    [23]李根福.土地复垦知识[M].北京:冶金工业出版社, 1991
    [24]李永宏,刘书润,张志诚.锡林河河漫滩草甸群落的结构与生产力及其排序[J].植物生态学与地植物学学报, 1993, 17 (2) :243-252
    [25]李树志.生物复垦技术.煤矿环境保护. 1995(2): 18~20
    [26]李树志,周锦华,张怀新.矿区生态防治技术[M].北京:煤炭工业出版社. 1998
    [27]李博.生态学[M].高等教育出版社.北京. 2000, 125-128
    [28]李楠.手提电钻铁路裸露陡坡挖坑造林试验[J].甘肃林业科技. 2004, 20(3): 155-156
    [29]娄仲连.岩质边坡的生态恢复工程新技术研究[J].地下空间, 2001, (4): 318-323
    [30]李健,郗金标.山东省石灰岩山地的速生树种[J].山东林业科技, 2000 (增): 44-46
    [31]刘询.岩质边坡的生态恢复工程新技术研究[J].广东水利水电. 2001, (5): 21-22
    [32]刘仁芙.我国土地复垦形式与政策建议[J].中国土地, 2002 (3): 31-34
    [33]刘向东.秦沈客运专线路基边坡植被防护设计与施工技术[J].岩土工程技术. 2002, (1): 60-62
    [34]陆子锋.深圳市裸露山体缺口整治技术探讨[J].水土保持通报. 2002, 22 (5): 55-56
    [35]李斌,张金屯.黄土高原地区植被与气候的关系[J].生态学报, 2003, 23 (1):82-89
    [36]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报, 2004, 24 (1): 95-100
    [37]李凯辉,胡玉坤,范永刚等.环境因子对高寒草地植物群落分布和物种组成的影响[J].中国农业气象, 2007, 28 (4): 378-382
    [38]刘春霞,韩烈保.高速公路边坡植被恢复研究进展[J].生态学报. 2007, 27 (5): 2900-2908
    [39]莫测辉,蔡全英,王江海.城市污泥在矿区废弃地复垦的应用探讨[J].生态学杂志, 2001, 20 (2): 44-47
    [40]马文希.厦门裸露山体植物治理设计方案[J].亚热带水土保持, 2005, 17 (2): 50-52
    [41]彭少麟.植物群落演替研究II.动态研究方法[J].生态科学, 1994, 2: 117-119
    [42]罗松,郑天媛.采石场遗留石质开采面阶梯整形覆土绿化方法研究[J].中国水土保持. 2001, (2): 36-38
    [43]彭少麟.热带亚热带恢复生态学研究与实践.北京:科学出版社. 2003
    [44]阮宏华,姜志林,贾永正.空青山次生阔叶林群落类型及物种多样性研究[J].南京林业大学学报, 1998, 22 (3): 21-26
    [45]任海,彭少麟,鼎湖山森林生态系统演替过程中的能量生态特征[J].生态学报, 1999, 19 (6): 817-822
    [46]任海,蔡锡安,饶兴权等.植物群落的演替理论[J].生态科学, 2001, 20 (4): 59-67
    [47]舒俭民,刘连贵,张岱松.石墨矿废弃地生态复垦研究[J].中国环境科学, 1996, 16 (3): 191-195
    [48]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科学. 2000, 19 (2): 24-29
    [49]孙建华,宋斌,陈宜华,黄金山.马钢南山矿土地利用现状及生态系统重建方案[J].冶金矿山设计与建设, 2001, 33(2)
    [50]史敏华,李新平.晋西黄土丘陵沟壑区植被自然恢复及技术对策[J].干旱区研究, 2003, 20 (2): 139-143
    [51]汤惠君,胡振琪.试论采石场的生态恢复[J].中国矿业, 2004 (13): 38-42
    [52]王伯荪,马曼杰.鼎湖山自然保护区森林保护区森林群落的演变[A].中国科学院鼎湖山森林生态系统定位研究站和鼎湖山国家级自然保护区管理处.热带亚热带森林生态系统研究(第1集) [C].广州:广东科学技术出版社, 1982, 142-156
    [53]王伯荪,彭少麟.鼎湖山森林群落分析群落演替的线性系统[J].中山大学学报,1985, (4):75-80
    [54]王义弘.森林生态学实验实习方法[M].东北林业大学出版社.哈尔滨. 1990, 35-48
    [55]邬建国, John L. V.,高纬.生态演替理论与模型II刘建国.当代生态学博论[M].北京:中国科学技术出版社, 1992. 19-64
    [56]王希华,宋永昌.天童国家森林公园废弃采石场植被自然恢复早期阶段的种群动态及生物量的研究[J].应用生态学报, 1999, 10 (5): 545-548
    [57]王晓东,刘晔,王晓春.边坡绿化喷播技术应用[J].公路, 2000, (4): 46-49
    [58]吴东辉,胡克.大型土壤动物在在鞍山市大孤山铁矿废弃地生态环境恢复与重建中的指示作用[J].吉林大学学报(地球科学版), 2003 ,33 (2): 213-216
    [59]王强,唐燕飞,王国兵.城市森林中校园森林群落的结构特征分析[J].南京林业大学学报, 2006, 30 (1): 109-112
    [60]王君,伊力塔,葛静茹等.森林群落演替研究进展[J].河北林果研究, 2007, 22 (1): 44-49
    [61]阎桂琴,毕润成.山西霍山森林群落物种的多样性和生态优势度[J].西南师范大学学报(自然科学版), 1993, 18 (2): 173-178
    [62]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报. 2001 ,21 (11): 1932-1941
    [63]杨志军,谭玉屏,陈华生.山东植被演替的探析[J].防护林科技. 2007, 5(增刊): 120-129
    [64]钟章程.常绿阔叶林生态系统研究[M].重庆:西南师范大学出版社, 1992. 1-47
    [65]张振克.人为裸露坡面植被自然恢复的初步研究[J].水土保持通报. 1998, 18(1): 26-28
    [66]张庆费,徐绒娣.浙江天童常绿阔叶林演替过程中的凋落物现存量[J].生态学杂志, 1999, 18 (2): 17-21
    [67]张俊云等.岩石边坡生态护坡研究简介[J].水土保持通报. 2000, 20 (4): 36-38
    [68]张志权,束文圣,廖文波,蓝崇钰.豆科植物与矿业废弃地植被恢复[J].生态学杂志. 2002, 21 (2): 47-52
    [69]张继义,赵哈林,张铜会.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报, 2003, 23 (12): 2741-2746
    [70]张峰,张金屯.历山自然保护区猪尾沟森林群落植被格局及环境解释[J].生态学报, 2003, 23 (3): 421-427
    [71]张荣盛.厦门市岛外裸露山体的植物治理技术探讨[J].中南林业调查规划, 2004, 23 (2): 17-22.
    [72]周小勇,黄忠良,史家辉等.鼎湖山针阔混交林演替过程中群落组成和结构短期动态研究[J].热带亚热带植物学报. 2004, 12 (4): 323-330
    [73]钟晓,吴长文,陈林东.绿化笼砖在治理岩质陡坡中的应用[J].中国水土保持科学. 2004, 2 (3): 119-121
    [74]张桂莲,张金屯,郭逍宇.安太堡矿区人工植被在恢复过程中的生态关系[J].应用生态学报, 2005, 16 (1): 151-155
    [75]Ash, H. J. et al. The introduction of native plant species on industrial waste heaps: a test of immigration and other factors affecting primary succession [J]. Journal of Applied Ecology, 1994, 31 (1): 74-84
    [76]Bradshaw, A. D. and Chadwick, M. J. The Restoration of Land: the Ecology and Reclamation of Derelict and Degraded Land [M]. Oxford: Blackwell Sicentific Publication, 1980
    [77]Cheng Jianlong, LU Zhaohua. Natual vegetation recovery on waste dump in opencast coal mine area [J]. Journal of Forest Resear, 2005, 16 (1): 55-57
    [78]Dum E P. Fundamentals of ecology [M]. Philadelphia: Saunders Co. 1971
    [79] Daniel R., And M. C., Ricardo S., Eugenia M., Carla C., Ana S. & Isabell H. The Restoration of Degraded Mountain Woodlands: Effects of Seed Provenance and Microsite Characteristics on Polylepis australis Seedling Survival & Growth in Central Argentina. Restoration Ecology, 2005, 13 ( 1): 129–137
    [80] Gemmell, R. P. Colonisation of Industrial Wasteland [M]. London: Arnold, 1977
    [81] GRIME J. P. Plant strategies and vegetation processes[M]. Chichester: Wile, 1979 HORN H S. Forest succession [J]. Scientific American, 1975, 232: 89-98
    [82] Haywood JP et al. Survival and growth of trees and shrubs different lignite mine soils in Louisiana[J]. Tree Plant Notes, 1993,44 (4): 166-171
    [83] Herrera, M. A. et al. Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recocer deseritified Mediterranean ecosystems [J]. Applied and Environmental Microbiology, 1993. 59 (1): 129-133
    [84] Harris, J. A. et al. Land Restoration and Reclamation:Principles and Practice [M]. Singapore: Longman,1996
    [85] Jha P. K., et al . Suitability of rhizobia-inoculateal wild legumes argy rolobium flaccidum [J]. Plant and Soil, 1995 (177): 139-149
    [86] Kaar E., et al. Dependence of reonln aracaon conditions [J]. Mest and asliknd-urimused. 1992 (24): 135-142
    [87] Luken J. O. Directing ecological succession [M]. London: Chapman and Hall, 1985
    [88] Li, R. W. and Daniels, W. L. Nitrogen accumulation and form over time in young mine soils [J]. Journal of Environmental Quality. 1994, 23 (1): 166-172
    [89] Leiros M. C., et al. Soli recovery at Meirama opencast lignite mine in northwest Spain: a comparison of the effectiveness of cattle slurry and inorganic fertilizer[J].Minesite Revegetation and soli pollution. 1996 (91): 1-2.109-124
    [90] LORENA GO′MEZAPARICIO, REGINO ZAMORA, et al. Applying plant facilitation to forest restoration: A meta-analysis of the use of shrubs as nature plants. Ecological Applications, 2004, 14(4): 1128–1138
    [91] Margalef R. Perspectives in ecology [M]. Chicago: University of Chicago Press, 1968
    [92] Mcintosh R. P. The background of ecology[M]. Cambridge University Press, 1985
    [93] Nakashizuka T. Forest canopy structure analyzed by using aerial photographs [J]. Ecological Research, 1995, 10: 13-18
    [94] Pickett S. T. A. , WHITE P. S. The ecology of natural disturbance and patch dynamics[M]. New York: Academic Press. 1985
    [95] Porazinska D. L. , Duncan L. W. , McSorleg R,et al. Nematode communities as indicators of status and processes of a soil ecosystem inflenced by agricultural management practices [J]. Applies Soil Ecology, 1999, 13:69-86
    [96] Shugart H. H., WEST D. C. Forest succession models [J]. Bioscience, 1980,30: 308-313
    [97] Schuman GE et al. short term effects of surface-applied gypsum on revegetated sodic bentonite spoils [J]. Soil science Society of America Journal, 1993, 57 (4): 1083-1088

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700