用户名: 密码: 验证码:
基于有机—无机杂化材料的硝酸还原酶和辣根过氧化物酶电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝酸盐和酚类化合物是水体中重要的污染物质,威胁着人们的身体健康和生存环境。因此,对这两类污染物的快速准确测定具有重大的意义。生物传感器具有分析速度快、灵敏度高、成本低等特点,已经在环境监测、临床医学、食品分析、军事医学等领域得到了广泛应用。
     本论文使用基于溶胶-凝胶技术的有机-无机杂化材料,采用包埋方法并结合纳米技术分别制备了硝酸还原酶和辣根过氧化物酶两类电极,以检测水中的硝酸盐和酚类污染物。具体研究内容如下:
     利用了透析、调整固定化参数和杂化材料各组分比例等方法对原有的硝酸还原酶电极进行改进,制备出性能更好、稳定性更强的硝酸还原酶电极。酶电极的响应电流与硝酸根浓度在0.01~0.4mmol/L范围内呈线性关系(R~2=0.9928),检测灵敏度为6.866nA/(μmol/L),检测限为3.37×10~(-6)mol/L。工作电位为-0.712V,响应时间仅为6.7s。一个月后,响应电流为初始值的87.6%。
     由于碳纳米管具有众多独特的性质,对于提高生物传感器检测的灵敏度和稳定性具有重大意义。因此基于单壁碳纳米管制成了两种酶电极:一种是将硝酸还原酶包埋在杂化材料里,在单壁碳纳米修饰过的金电极表面形成酶膜制成酶电极;另一种是将硝酸还原酶包埋在掺杂有SWNTs的杂化材料里制成硝酸还原酶电极。实验结果表明两种电极的响应电流都大幅增加,检测灵敏度分别为8.806nA/(μmol/L)和11.361nA/(μmol/L)。响应时间和工作电位变化不大,而第二种方法制备的酶电极稳定性更强。
     将辣根过氧化物酶直接包埋在杂化材料里,在金电极表面形成酶膜,制备出能够检测水中多种酚类化合物的生物传感器。酶电极的响应电流与对苯二酚浓度在1~70μmol/L范围内呈线性关系(R2=0.9996),检测灵敏度为93nA/(μmol/L),检测限为0.023μmol/L。工作电位为-0.20V,响应时间仅为2.4s。一个月后,响应电流为初始值的91.6%。
     分别使用单壁碳纳米管和普鲁士蓝对辣根过氧化物酶电极进行修饰,有效地降低了工作电位(分别降至-0.05V和-0.03V),增强了酶电极的抗干扰性。两种电极的响应时间分别为4.6s和9.9s。
Nitrate and phenolic compounds, as main pollutants, are threatening human health and our living environment. The fast, accurate detection of these two pollutants is of great significance. With the merits of prompt analysis, high sensitivity and low cost, biosensors have been widely used in enviromental monitoring, clinical diagnosis, food analysis and military medicine.
     In this dissertation, with nanometer technology we immobilized nitrate reductase and horseradish peroxidase enzymes respectively by sol-gel derived organic-inorganic hybrid material to fabricate various nitrate reductase and horseradish peroxidase biosensors. The detailed work of this thesis has been set out as follows:
     By dialysis and optimizing the parameters of hybrid material, an amperometric nitrate reductase biosensor with good performance and stability had been prepared. The electroanalytical properties of optimized biosensor at -0.712V(vs SCE) were measured: linear response range, sensitivity and detection limit were 0.01~ 0.4mmol/L (R~2=0.9928), 6.866nA/(μmol/L), 3.37×10~(-6)mol/L, respectively. It reached a steady-state response to the added nitrate in 6.7s. After 30 days’interval use, the response current dropped to 87.6% of its initial value.
     To enhance the sensitivity and stability of the nitrate reductase biosensor, single-wall carbon nanotubes (SWNTs) were used and two enzyme electrodes were fabricated by different methods: First, nitrate reductase was embedded on SWNTs modified electrode by hybrid material; Second, SWNTs were added to hybrid material directly. The results showed that response currents of the two electrodes were both significantly enhanced and the sensitivity were 8.806 A/(μmol/L),11.361 nA/(μmol/L), respectively. Applied potential and response time had changed slightly whereas the second electrode had better stability and reproducibility.
     An amperometric horseradish peroxidase biosensor which can determine phenolic compounds (such as hydroquinone, phenol, catechol, chlorophenol, cresol) had been fabricated by immobilizing horseradish peroxidase enzymes on the surface of Au electrode with hybrid material. The electroanalytical properties of optimized biosensor at -0.20V(vs SCE) were measured: linear response range, sensitivity and detection limit were 1~70μmol/L (R2=0.9996), 93nA/(μmol/L), 0.023μmol/L, respectively. It reached a steady-state response to the added hydroquinone in 2.4s. After 30 days’interval use, the response current dropped to 91.6% of its initial value.
     Two types of horseradish peroxidase biosensors based on SWNTs and Prussian Blue modified electrodes had been fabricated which can both reduced operating potential and eliminated the interferences of electroactive substances (such as ascorbic acid and uric acid) effectively. Response time were 4.6s and 9.9s, respectively.
引文
[1] Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery [J], Ann. NY Acad Sci.,1962, 102: 29-45.
    [2] Stoytcheva M, Nankov, N, and Sharkova, V. Analytical Characterization and Application of A P-Benzoquinone Mediated Amperometric Graphite Sensor With Covalently-Linked Glucoseoxidase [J]. Anal. Chim. Acts., 1995, 315(1-2): 101-107.
    [3] Turner APF, KarubeI, Wilson G. Biosensors: Fundamentals and Applications Mir[M]. Moscow, 1992.
    [4] Boguslavsky L, Kalash H, Xu Z, et al. Thin-Film Bienzyme Amperometric Biosensors Based on Polymeric Redox Mediators With Electrostatic Bipolar Protecting Layer [J]. Anal. Chim. Acta., 1995, 311(1): 15-21.
    [5] Updike SJ, Hicks GP. The enzyme electrode [J]. Nature, 1967, 214:986-988.
    [6] 董绍俊,田敏,刘柏峰. 二茂铁—AQ 修饰碳纤维微葡萄糖传感器的研究[J]. 分析化学,1993 ,21(3) :255 - 258.
    [7] 纪学锋,章咏华. 介体双酶 D—氨基酸传感器的制备[J]. 分析化学,1993 ,21(6) :625 - 629.
    [8] Wang BQ, Dong SJ. Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film [J]. Talanta, 2000, 51(3): 565-572.
    [9] Wang BQ, Li B, Deng Q, et a1. Amperometric Glucose Biosensor Based on Sol-Gel Organic-Inorganic Hybrid Material [J]. Anal. Chem., 1998, 70(15): 3170-3l74.
    [10] 何亚明, 张维成, 王志茹. 测酚用的酪氨酸酶媒体玻碳电极的研制[J]. 分析测试学报, 1999, 18(4): 76-78.
    [11] Karyakin AA. Prussian Blue and its analogues: Electrochemistry and analytical applications [J]. Electroanalysis, 2001, 13 (10): 813-819.
    [12] Dostal A, Meyer B, Scholz F, et al. Electrochemical study of microcrystalline solid prussian blue particles mechanically attached to graphite and gold electrodes - electrochemically induced lattice reconstruction [J]. J. Phys. Chem., 1995, 99 (7): 2096-2103.
    [13] De Mattos IL, Gorton L. Metal-hexacyanoferrate films: A tool in analytical chemistry [J]. Quimica Nova, 2001, 24 (2): 200-205.
    [14] Karyakin AA, Karyakina EE, Gorton L. On the mechanism of H2O2 reduction at Prussian Blue modified electrodes [J]. Electrochem. Commun., 1999, 1(2): 78-82.
    [15] De Mattos IL, Gorton L, Ruzgas T, et al. Sensor for hydrogen peroxide based on Prussian Blue modified electrode: Improvement of the operational stability [J]. Anal. Sci., 2000, 16 (8): 795-798.
    [16] 李彤, 姚子华. 普鲁士蓝修饰电极结合硅溶胶-凝胶技术制备高灵敏葡萄糖传感器[J]. 分析化学, 2004, 32(2): 237-240.
    [17] Cass AEG. Biosensors: A practical Approach[M]. IRL Press, Oxford, 1990.
    [18] Anon. Current-awareness in biosensors-and-bioelectronics[J]. Biosensors & Bioelectronics, 1994, 9 (1): R25-R35.
    [19] Guilbault GG. Analytical Uses of Immobilized Enzymes[M]. Marcel Dekker, 1984.
    [20] Caras S, Janata. Field effect transistor sensitive to penicillin [J]. J. Anal. Chem., 1980, 52(12): 1935-1937.
    [21] Bartlett DN, Cooper JM. A review of the immobilization of enzymes in electropolymerized films [J]. J. Electroanal. Chem., 1993, 362 (1-2): 1-12.
    [22] Riklin A., Katz E, Winner L, et al. Improving Enzyme-Electrode Contacts By Redox Modification Of Cofactors [J]. Nature, 1995, 376 (6542): 672-675.
    [23] Willner I, Katz E, Wiliner B. Electrical contact of redox enzyme layers associated with electrodes: Routes to amperometric biosensors [J]. Electroanalysis, 1997, 9 (13): 965-977.
    [24] Gavalas, Vasilis G, Chaniotakis, et al. Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon [J]. Analytica Chimica Acta, 2000, 404(1):67-73.
    [25] 潘涛. 生物传感器的概述和研究进展[J]. 江苏广播电视大学学报, 2002, 13(6): 55-56.
    [26] 马全红, 邓家祺. 苯醌介体修饰的葡萄糖生物传感器[J]. 复旦学报, 2000, 39(4): 400-404.
    [27] Junio L R, Neto G Oliverira, Fermande J R. Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole -glutaraldehyde matrix [J]. Talanta, 2000, 51(3): 547-557.
    [28] Piro B, Dang L A, Pham M C. A glucose biosensor based on modified-enzyme incorporated with electropolymerised poly(3,4-ethylene-dioxythiophene)-(PEDT)films[J]. Journal of Electroanalytical Chemistry, 2001, 512(1-2):101-109.
    [29] Sugawara K, Fukushi H, Hoshi S. Electrochemical sensing of glucose at a platinum electrode with a chitin/glucose oxidase Film [J]. Analytical Sciences, 2000, 16(6): 1139-1142.
    [30] 钱江红, 刘永成, 刘海鹰. 再生丝素固定葡萄糖氧化酶及其传感器的应用[J]. 高等学校化学学报, 1996, 17(1): 52-54.
    [31] 吴霞琴, 郭小明, 王荣, 等.普鲁士蓝修饰铂盘电极的胆固醇传感器的研制[J]. 分析化学, 2001, 29(11): 1273-1275.
    [32] 吴辉煌, 吴宝璋. 环糊精聚合物的分子包合作用及在酶电极中的应用[J]. 电化学, 1998, 4(2): 210-216.
    [33] Reddy S M, Vadgama P. Entrapment of glucose oxidase in non-porous poly(vinyl chloride) [J]. Analytica Chimica Acta, 2002, 461(1): 57-64.
    [34] Zheng H, Xue H G, Zhang Y F. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst [J]. Biosensors and Bioelectronics, 2002, 17(6-7): 541-545.
    [35] Tatsuma T, Ogawa Y, Sato R, et a1. Peroxidase-incorporated sulfonated polyaniline -polycation complexes for electrochemical sensing of H2O2 [J]. Journal of Electroanalytical Chemistry, 2001, 501(1-2): 180-185.
    [36] Braun S, Rappoport S, Zusman R, et a1. Biochemically active sol-gel glasses: the trapping of enzymes [J]. Mater Lett, 1990, 10(1-2): 1-5.
    [37] Liu Z J, Liu B h, Kong J L, et a1. Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor [J]. Anlytical Chemistry, 2000, 72(19): 4707-4712.
    [38] Liu Z J, Liu B H, Zhang M. Al2O3 sol-gel derived amperometric biosensor for glucose [J]. Analytica Chimica Acta, 1999, 392(2-3): 135-141.
    [39] Chex, Cheng G J, Dong S J. Amperometric tyrosinase biosensor based on a sol-gel derived titanium oxide-copolymer composite matrix for detection of phenolic compounds[J]. Analyst, 2001, 126(10): 1728-1732.
    [40] Ciucu AA, Negulescu C, Baldwin RP. Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system [J]. Biosensors & Bioelectronics, 2003, 18(2)(3): 303-310.
    [41] Songqin Liu, Jiuhong Yu, Huangxian Ju. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode [J]. Journal of Electroanalytical Chemistry, 2003, 540(2): 61-67.
    [42] Wang H Y, Mu S L. Bioelectrochemical response of the polyaniline ascorbate oxidase electrode [J]. Journal of Electroanalytical Chemistry, 1997, 436(1-2): 43-48.
    [43] Edelman PG, Wang J. Biosensors and Chemical Sensors[M], ACS Symp. Ser. No 487, ACS, Washington, DC, 1992.
    [44] Paul D, Hale, Leonid I, et al. Amperometric glucose biosensors based on redox polymer-mediated electron transfer [J]. Anal. Chem. , 1991, 63(7): 677-682.
    [45] Dumont J, Fortier G. Behavior of glucose oxidase immobilized in various electropoly- merized thin films [J]. Biotechnology and Bioengineering,1996, 49(5): 544-552.
    [46] Yabuki S, Mizutani F, Hirata Y. Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide [J]. J. Electroanal. Chem., 1999, 468(1): 117-120.
    [47] Yamamoto K, Ohgaru T, Torimura M, et al. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry [J]. Anal. Chim. Acta, 2000, 406(2): 201-207.
    [48] Wang J, Park D S, Pamidi. P V, Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors [J]. J. Electroanal Chem.,1997, 434(1-2): 185-189.
    [49] 张成如, 杨孔章. 新型α,β-不饱和羰基桥联双二茂铁衍生物的合成及其成膜性[J]. 高等学校化学学报, 1996, 17(3):401-404.
    [50] Tonmura H K, Yamamoto K, et al. Amperometric determination of NAD(P)H with peroxidase-based H2O2-sensing electrodes and its application to isocitrate dehydrogenase activity assay in serum [J]. J. Electroanal. Chem., 1999, 478(1-2): 33-39.
    [51] Wang B Q, Dong S J. Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film [J]. Talanta, 2000, 51(3): 565-572.
    [52] Pereira A C, Fernando L F, Neto G Deo, et a1. Reagentless biosensor for isocitrate using one step modified Pt-Ir mi-croelectrode [J]. Talanta, 2001, 53(4): 801-806.
    [53] 屠一锋, 陶春红. 亚甲蓝作为酶电极电子传递介体的性能研究[J]. 分析科学学报, 1997, 13(3): 189-192.
    [54] 何亚明, 张维成, 王志茹. 测酚用的酪氨酸酶媒体玻碳电极的研制[J]. 分析测试学报,1999, 18(4): 76-78.
    [55] Quan D, Shim JN, Kim JD, et al. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air[J]. Anal. Chem., 2005, 77 (14): 4467-4473.
    [56] Glazier SA, Campbell ER, Campbell WH. Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water [J]. Anal. Chem., 1998, 70 (8): 1511-1515.
    [57] Junior L R. Nero G O, Femandes J R, et a1. Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole -glutaraldehyde matrix [J]. Talanta, 2000, 51(3): 547-557.
    [58] Bonfranceschi A, Cordoba AP, Keunchkarian S, et al. Transport across poly(o-aminophenol) modified electrodes in contact with media containing redox active couples. A study using rotating disc electrode voltammetry [J]. J. Electroanal. Chem., 1999, 477 (5): 1-13.
    [59] Dong S, Kuwana T. Cobalt Porphyrin Nafion Film on Carbon Microarray Electrode to Monitor Oxygen for Enzyme Analysis of Glucose [J]. Electroanalysis, 1991, 3 (6): 485-491.
    [60] Koide S, Yokoama K. Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer [J]. J. Electroanal. Chem. 1999, 468 (2): 193-201.
    [61] Niwa O, Kurita R, Lju Z M, et al. Subnanoliter Volume Wall-Jet Cells Combined with Interdigitated Microarray Electrode and Enzyme Modified Planar Microelectrode [J]. Anal. Chem., 2000, 72(5): 949-995.
    [62] Nalini B, Narayanan S S. Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode [J]. Anal. Chim. Acta, 2000, 405(1-2): 93-97.
    [63] Inagaki T, Lee HS, Hale PD, et al. Synthesis and electrochemical characterization of siloxane polymers containing hydroquinone and 1,4-naphthohydroquinone[J]. Macromolecules, 1989, 22(12): 4641- 4643.
    [64] Mao L Q, Yamamoto K. Glucose and choline on-line biosensors based on electropolymerized Meldola's blue [J]. Talanta, 2000, 51(1): 187-195.
    [65] Kim H, Pyo M. Electrochemical preparation and properties of composite films with polypyrrole/poly (styrene sulfonate): polyviologen multilayers [J]. Journal of Applied Electrochemistry[J],2000, 30 (1): 49-53.
    [66] Cai C, Xue K. Electrocatalysis of NADH oxidation with electropolymerized films of azure I [J]. J. Electroanal Chem, 1997, 427(1-2): 147-153.
    [67] 刘盛辉, 莫卫民, 陈帆. β-环糊精聚合物—二茂铁安培型葡萄糖氧化酶电极[J]. 分析测试学报, 1999, 18 (4): 42-45.
    [68] Jacques Livage. Thibaud Coradin and Cecile Roux, Encapsulation of biomolecules in silica gels [J]. J. Phys., Condens. Matter., 2001, 13(33): 673-691.
    [69] Joseph Wang. Sol-gel materials for electrochemical biosensors [J]. Analytica Chimica Acta, 1999, 399(1-2): 21–27.
    [70] Brinker CJ,Scherer GW. Sol-gel Science: The Physics and chemistry sol-gel Processing[M], Acdamic Press, New York,1990.
    [71] Licklider M,Kuhr WG. Online Microreactors/Capillary Electrophoresis/Mass Spectrometry for the Analysis of Proteins and Peptides [J]. Anal.Chem.,1995, 67(22): 4170-4177.
    [72] Dave BC, Dunn B, Valentine JS, et al. Sol-gel Encapsulation Methods for Biosensors [J]. Analytical chemistry,1994, 66(22):1120A-1127A.
    [73] KIibanov AM, Enzymes that work in organic solvents [J]. Chemtech, 1986,16:354-359.
    [74] Hench LL,West JK.The Sol-Gel process [J]. Chemical Reviews, 1990, 90(1): 33-72.
    [75] Tsionsky M, Gun J, Glezer V, et al. Sol-Gel-Derived Ceramic-Carbon Composite Electrodes: Introduction and Scope of Applications [J]. Anal. Chem.,1994, 66(10): 1747-1753.
    [76] Avnir D, Organic-chemistry within ceramic matrices - doped sol-gel materials [J]. Acc.Chem. Res.,1995, 28 (8): 328-334.
    [77] Brinker CJ, Smith DM, Deshpande R. sol-gel processing of controlled pore oxides [J]. Catal.Today, 1992, 14 (2): 155-163.
    [78] Edmiston PL, Wambolt CL, Smith MK, et al. Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses [J]. Journal of Colloid and Interface Science, 1994, 163(2): 395-406.
    [79] Brennan, John D. Using intrinsic fluorescence to investigate proteins entrapped in sol-gel derived materials , Applied Spectroscopy [J]. 1999, 53(3): 106A-121A.
    [80] Collinson, Maryanne M, Zambrano, et al. Diffusion coefficients of redox probes encapsulated within sol-gel derived silica monoliths measured with ultramicroelectrodes [J]., Langmuir, 1999, 15(3): 662-668.
    [81] Rottman C, Ottolenghi M, Zusman R,et al. Doped sol-gel glasses as pH sensors [J]. Materials Letters, 1992, 13(6): 293-298.
    [82] Uchida N, Ishiyama N, Kato Z, et al. Chemical effects of DCCA to the sol-gel reaction process [J]. Journal of Materials Science, 1994, 29(19): 5188-5192.
    [83] Nikolic Lj, Radonjic Lj. Effect of drying control chemical additives in sol-gel-glass monolith processing [J]. Ceramics International, 1994, 20(5): 309-313.
    [84] Sanchez C. In M, Molecular design of alkoxide precursors for the synthesis of hybrid organic inorganic gels [J]. J. Non-Cryst. Solids, 1992,147: l-l2.
    [85] Kusakabe K, Yoneshige S, Morooka S. Separation of benzene/cyclohexane mixtures using polyurethane-silica hybrid membranes [J]. J. Membr. Sci.,1998, 149 (1): 29-37.
    [86] Kim J H, Lee Y M. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes [J]. J. Membr. Sci., 2001, 193 (2): 209-225.
    [87] Smaihi M, Schrotter JC, Lesimple C, et al. Gas separation properties of hybrid imide-siloxane copolymers with various silica contents [J]. J. Membr. Sci., 1999, 161 (1-2): 157-170.
    [88] 谭学才, 翟海云, 李荫 等. 基于溶胶-凝胶壳聚糖/SiO2杂化材料的安培型葡萄糖生物传感器[J]. 高等学校化学学报,2004, 259(9):1645-1647.
    [89] Schubert U, Husing N, Lorenz A. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides [J]. Chem. Mater. 1995, 7 (11): 2010-2027.
    [90] Leonard V, Interrante MJ, Hampden Smith. Chemistry of Advanced Materials[M], An Overview, Wiley-VCH, 1997.
    [91] Zhang Z. Chen Y, D'souza R, et al. Biocompatible macroporous silica monoliths withentrapped proteins, 7th World Biomaterials Congress[C], 2004, 1323.
    [92] Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach [J]. J. Am. Chem. Soc., 1998, 120 (34): 8587-8598.
    [93] Wang B, Zhang J, Cheng G, et al. Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film [J]. Anal. Chim. Acta, 2000, 40(1-2): 111-118.
    [94] Wang G, Xu J, Chen HY, et al. Amperometric hydrogen peroxide biosensor with sol- gel/chitosan network-like film as immobilization matrix [J]. Biosensors & Bioelectronics, 2003, 18(4): 335-343.
    [95] Tan XC, Tian YX, Cai PX, et al. Glucose biosensor based on glucose oxidase immobilized in sol-gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode [J]. Analytical and Bioanalytical Chemistry, 2005, 381(2): 500-50.7
    [96] Tan XC, Wang JW, Xu JJ, et al., Preparation and characterization of chitosan/silica hybrid film and its application in immobilization of glucose oxidase [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(4): 50-53.
    [97] 阎博. 基于新型有机-无机杂化材料的生物传感器研究[D]. 天津: 天津大学, 2005.
    [98] 缪煜清, 刘仲明, 官建国. 纳米技术在生物传感器中的应用[J]. 传感器技术, 2002, 21(11): 61-64.
    [99] 张志妮, 崔作林. 纳米技术和纳米材料[M], 北京: 国防工业出版社, 2000.
    [100] 孟宪伟, 冉均国, 苟立等. 金属与非金属纳米颗粒增强葡萄糖生物传感器[J]. 材料科学与工艺, 2004, 1(2): 163-166.
    [101] Dequaire M, Dequaire C, Degrand C, et a1. An electrochemical metalloimmunoassay based on a colloidal gold label [J]. Ana1. Chem., 2000, 72: 5521-5528.
    [102] Ju HX, Liu SQ, Ge BX, et a1. Electrochemistry of cytochrome C immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity[J]. Electroanalysis, 2002,14: l4l-147.
    [103] Raj CR,Okajima T, Ohsaka T. Gold nanoparticle array for the voltammetric sensing of dopamine[J]. Electroanal.Chem., 2003,543: 127-133.
    [104] Tang FQ, Meng XW, Chen D, et al. Glucose biosensor enhanced by nanoparticles[J]. Science in China Series B-Chemistry, 2000, 43 (3): 268-274.
    [105] 吴宝艳, 杨钰, 宋昭. 纳米颗粒对葡萄糖生物传感器性能影响的研究[J]. 高技术通讯, 2005, 15(6):50-54.
    [106] 任湘菱, 唐芳琼. 纳米铜颗粒-酶-复合功能敏感膜生物传感器[J]. 催化学报, 2000, 21(5):455-458.
    [107] Crumbliss AL, Perine SC, Stonehuerner J, et a1. Colloidal gold as a biocompatible immobilization mamx suitable for the fabrication of the enzyme electrodes by electrodeposition [J]. Biotechnol. Bioeng., 1992,40:483-490.
    [108] Zhao J, Henkens RW, Stonehuerner J, et a1. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes[J]. J. Electroanal. Chem., 1992, 327: 109-l19.
    [109] 江龙. 量子化尺寸纳米颗粒及其在生物体系中的作用[J]. 无机化学学报, 2000, 16(2):185-194.
    [110] 孟宪伟, 唐芳琼, 冉均国 等.纳米颗粒复合材料增强的葡萄糖生物传感器[J]. 化学通报, 2001, 6: 365-367.
    [111] Iijima S. Helical microtubes of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [112] Liu J, Rinzler AG, Dai H, et al. Fullerence Pipes[J]. Science, 1998, 280: 1253-1256.
    [113] Kovtyukhova NI, Mallouk TE, Pan L, et al. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of cabon nanotube ropes [J]. J. Am. Chem. Soc., 2003, 125: 9761-9769.
    [114] 朱为宏,朱世琴,田禾. 单壁纳米碳管的结构修饰[J]. 有机化学, 2002, 22 (12) : 964 - 973.
    [115] Mawhinney DB, Naumenko V, Smalley RE. Surface defect site density on single walled carbon nanotubes by titration[J]. Chem. PhysLett, 2000, 324: 213- 216.
    [116] Hu H, Bhowmik P, Zhao B, et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration [J]. Chem. Phys. Lett., 2001, 345: 25-28.
    [117] 罗红霞, 施祖进, 李南强 等. 羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用[J]. 高等学校化学学报, 2000, 21(9): 1372-1374.
    [118] Luo HX, Shi ZJ, Li NQ,et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Anal. Chem., 2001,73: 915-920.
    [119] Britto PJ, Santhanam KS, Ajayan PM. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochemistry and Bioenergetics, 1996,41:121-125.
    [120] Federica Valentini, Aziz Amine, Silvia Orlanducci, et al. Carbon Nanotube Purification: Preparation and characterization of carbon nanotube paste electrodes[J]. Anal. Chem., 2003, 75: 5413-5421.
    [121] Maria DR, Gustavo AR. Carbon nanotubes paste electrode[J]. Electrochemistry Communications, 2003, 5: 689-694.
    [122] Jason JD, Richard CH, Allen OH. Protein electrochemistry at carbon nanotube electrodes[J], Journal of Electroanalytical Chemistry. 1997, 440: 279-282.
    [123] Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J], Electrochemistry Communications, 4 (10): 743-746.
    [124] Zhao YD, Zhang WD, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode [J]. Sensors and Actuators B., 2002, 87(1): 168- 172.
    [125] 蔡称心, 陈静. 碳纳米管电极上辣根过氧化物酶的直接电化学[J]. 化学学报, 2004, 62(3): 335-340.
    [126] Anthony Guiseppi Elie, Chenghong Lei, Ray H Baughman. Direct electron transfer of glucose oxidase on carbon nanotubes [J]. Nanotechnology, 2002, 13(5): 559-564.
    [127] Wang S G, Qing Zhang, Ruili Wang, et al. novel multi-walled carbon nanotube-based biosensor for glucose detection [J]. Biochemical and Biophysical Research Communications, 2003, 311(3): 572-576.
    [128] Xu JZ, Zhu JJ, Wu Q, et al. Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes [J]. Chinese Journal of Chemistry, 2003, 21 (8): 1088-1091.
    [129] Liu Ying, ,Wang Mingkui, Zhao Feng, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosensors and Bioelectronics, 2005, 21(6): 984-988.
    [130] Davis JJ, Green MLH, Hill HAO, et al. The immobilization of proteins in carbon nanotubes[J]. Inorganica Chimica Acta,1998,272: 261-266.
    [131] Falbe J, Regitz M. R?mpp Chemie Lexikon (9th edition, Vol.3)[M]. Thieme Verlag, Stuttgart, New York: 1992.
    [132] WHO. Guidelines for Drinking Water Quality[M], World Health Organisation, Geneva, 1993.
    [133] EEC-European Economic Community. Council directive on the quality of water for human consumption (No-80/778 Off)[M]. J. EEC. 1980, 229, 11-29.
    [134] Newborne, P.M., Nitrates and nitrites in food and in the biological system[M]. In Newborne, P.M. (Ed.), Trace Substances and Health. A hand book Pt-2. Marcel Dekker, New York, 1982, 1-46.
    [135] Chan, TYK. Food borne nitrates and nitrites as a case of methaemoglo-binaemia[M]. Southeast Asian. J. Trop. Pub. Health 27,1996, 189-192.
    [136] Taras HJ. Colorometric Determination of Nonmetals[M]. Interscience Publishers: New York, 1958, 135-137.
    [137] Fritz JS, Gjerde DT, Pohlandt C. Ion Chromatography[M]. Huthig, Heidelberg, 1982, 84.
    [138] Davenport RJ, Johnson DC. Voltammetric determination of nitrate and nitrite ions using a rotating cadmium disk electrode [J]. Anal. Chem., 1973,45:1979-1980.
    [139] Hussein WR, Guilbault GG. Nitrate And Ammonium Ion-Selective Electrodes as Sensors Ⅱ Assay of Nitrate Ion And Nitrate And Nitrite Reductases In Stationary Solutions And Under Flow-Stream Conditions [J]. Anal. Chim. Acta., 1975, 76 (1): 183-192.
    [140] Takayama K. Biocatalyst electrode modified with whole-cells of P-denitrificans for the determination of nitrate, Bioelectrochemistry and Bioenergetics [J]. 1998, 45 (1): 67-72.
    [141] Mbeunkui F, Richaud C, Etienne AL, et al. Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain [J]. Appl. Microbiol. Biotechnol., 2002, 60 (3): 306-312.
    [142] Kirstein D, Kirstein L, Scheller F, et al. Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase [J]. Journal of Electroanalytical Chemistry, 1999, 474 (1): 43-51.
    [143] Ferreyra NF, Solis VM. An amperometric nitrate reductase–phenosafranin electrode: kinetic aspects and analytical applications [J]. Bioelectrochemistry, 2004, 64 (1): 61-70.
    [144] Mori H. Direct determination of nitrate using nitrate reductase in a flow system [J]. Journal Of Health Science, 2000, 46 (5): 385-388.
    [145] Aiken AM, Peyton BM, Apel WA, et al. Heavy metal-induced inhibition of Aspergillus niger nitrate reductase: applications for rapid contaminant detection in aqueous samples [J]. Analytica Chimica Acta, 2003, 480 (1): 131-142.
    [146] Da Silva S, Shan D, Cosnier S. Improvement of biosensor performances for nitrate determination using a new hydrophilic poly (pyrrole-viologen) film [J]. Sensors and Actuators B-Chemical, 2004, 103 (1-2): 397-402.
    [147] Cosnier S, Galland B, Innocent C. New electropolymerizable amphiphilic viologens for the immobilization and electrical wiring of a nitrate reductase [J]. Journal of Electroanalytical Chemistry, 1997, 433 (1-2): 113-119.
    [148] Ramsay G, Wolpert SM. Utility of wiring nitrate reductase by alkylpyrroleviologen-based redox polymers for electrochemical biosensor and bioreactor applications [J]. Anal. Chem., 1999, 71 (2): 504-506.
    [149] Cosnier S, Innocent C, Jouanneau Y. Amperometric Detection of Nitrate via a Nitrate Reductase Immobilized and Electrically Wired at the Electrode Surface [J]. Anal. Chem., 1994, 66 (19): 3198-3201.
    [150] Moretto LM, Ugo P, Zanata M, et al. Nitrate biosensor based on the ultrathin-film composite membrane concept [J]. Anal. Chem., 1998, 70 (10): 2163-2166.
    [151] Conrado Moreno-Vivián, Purificación Cabello, Manuel Martínez-Luque, et al. Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases [J]. Journal of Bacteriology, 1999, 181(21) : 6573-6584.
    [152] Dias JM, Than ME, Humm A et al. Crystal structure of a perplasmic nitrate reductase (NAP) from Desulfovibriodesulfuricans ATCC27774 at 1.75 ? resolution by MAD: a molybdopterin enzyme with a single Fe4S4 cluster [J]. Structure, 1999,.7: 65-79.
    [153] Hyde GE, Wilberding JA, Meyer AL, et al. Monoclonal antibody-based immunoaffinity chromatography for purifying corn and squash NADH: nitrate reductases. Evidence for aninterchain disulfide bond in nitrate reductase [J]. Plant Mol. Biol., 1989,13(2):233-246.
    [154] Da Silva S, Shan D, Cosnier S. Improvement of biosensor performances for nitrate determination using a new hydrophilic poly (pyrrole-viologen) film[J]. Sensors and Actuators B-Chemical, 2004, 103 (1-2): 397-402.
    [155] Ramsay G, Wolpert SM. Utility of wiring nitrate reductase by alkylpyrroleviologen-based redox polymers for electrochemical biosensor and bioreactor applications [J]. Anal. Chem., 1999, 71 (2): 504-506.
    [156] Strehlitz B, Grundig B, Vorlop Kd, et al. Artificial Electron-Donors for Nitrate and Nitrite Reductases Usable as Mediators in Aperometric Biosensors [J]. Journal of Analytical Chemistry, 1994, 349 (8-9): 676-678.
    [157] Patolsky F, Katz E, Heleg-Shabtai V, et al. A Crosslinked Microperoxidase-11 and Nitrate Reductase Monolayer on a Gold Electrode: An Integrated Electrically Contacted Electrode for the Bioelectrocatalyzed Reduction of NO3- [J]. Chemistry- A European Journal, 1998, 4 (6): 1068-1073.
    [158] Aylott JW, Richardson DJ, Russell DA. Optical biosensing of nitrate ions using a sol-gel immobilized nitrate reductase [J]. Analyst, 1997, 122 (1): 77-80.
    [159] 宋雅茹, 吴红, 邵会波. 硝酸还原酶在巯基自组装膜上的电化学性质[J]. 电化学, 2002, 8(3): 333-336.
    [160] Wang XJ, Sergei VD, Jean MC, et al. Conductometric nitrate biosensor based on methylviologen/Nafion?/nitrate reductase interdigitated electrodes[J]. Talanta, 2006, 69(2): 450- 455.
    [161] Yue Cui, John P, Barford. Development of a bienzyme system for the electrochemical determination of nitrate in ambient air[J]. Analytical and Bioanalytical Chemistry, 2006, 386(5): 1567-1570.
    [162] 王涛, 何胜悦. 超临界水氧化法处理对苯二酚废水的初步研究[J], 化工学报, 1996, 47(3): 381-384.
    [163] 赫春香, 汪振霞. 多波长线性回归—导数分光光度法测定对苯二酚,邻苯二酚和苯酚[J]. 分析试验室, 1996, 15(2): 25-28.
    [164] 解长利. 常温发黑溶液中对苯二酚的测定[J]. 电镀与涂饰, 1996, 15 (2) : 29-30.
    [165] Welinder K J. Amino acid sequence studies of horseradish peroxidase[J]. Eur. J. Biochem, 1879, 96: 483-502.
    [166] Liu Y, Qian J , Fu X, et al.. Immobilization of horseradish peroxidase onto a composite membrane of regenerated silk fibro in and polyvinyl alcohol and its application to a new methylene blue-mediating sensor for hydrogen peroxide [J]. Enzyme Microb. Technol., 1997, 21: 154-159.
    [167] Ruzgas T, Gorton L, Emnéus J, et al. Kinetic models of horseradish peroxidase action on a graphite electrode [J]. J. Electroanal. Chem. , 1995, 391: 41-49.
    [168] Chen L, Lin M, Hara M, et al. Kohlrabi-based amperometric biosensor for hydrogen peroxide measurement [J]. Anal. Lett. , 1991, 24: 1-14.
    [169] Tsai WC, Cass AE. Ferrocene-modified horseradish peroxidase enzyme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide[J]. Analyst, 1995, 120: 2249-2254.
    [170] Schubert F, Saini S, Turner APF. Mediated amperometric enzyme electrode incorporating peroxidase for the determination of hydrogen peroxide on organic solvents[J]. Anal. Chim. Acta, 1991, 245: 133-138.
    [171] Oyyama N , Ohsaka T, Shimizu T. Electrochemically polymerized N,N-dimethylaniline film with ion exchange properties as an electrode modifier[J]. Anal. Chem., 1985, 57: 1526- 1532.
    [172] Liu Y, Qian J, Fu X, et al. Immobilization of horseradish peroxidase onto a composite membrane of regenerated silk fibro in and polyvinyl alcohol and its application to a new methylene blue-mediating sensor for hydrogen peroxide [J]. Enzyme Microb.Technol., 1997, 21(3): 154-159.
    [173] 韩树波, 朱敏, 袁倬斌. 电分析化学进展[C]. 西安: 西安地图出版社, 1999, C16, 172.
    [174] Lei C, Deng J. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montono rillonite-modified bovine serum album in Glutaraldehyde matrix on a glassy carbon electrode surface[J]. Anal. Chem., 1996, 68(19): 3344-3349.
    [175] 王炳全, 董绍俊. 电分析化学进展[C]. 西安: 西安地图出版社, 1999, C10, 159.
    [176] Liu H, Qian Y, Liu T. Fabrication and features of a methylene green-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as immobilization matrix forperoxidase[J]. Talanta, 1996, 43: 111-118.
    [177] Korell U , Spichiger U E. Nover membraneless amperometric peroxide biosensor based on a tetrathiafulvalene ”p” tetracyanoquinodimethane electrode[J]. Anal. Chem., 1994, 66: 510-515.
    [178] Bifulco L, Cammaroto C, Newman J. TTF-modified biosensors for hydrogen peroxide [J]. Anal. Lett. , 1994, 27: 1443-1452.
    [179] Wang J , Varughese K. Polishable and robust biological electrode surfaces[J]. Anal. Chem., 1990, 62: 318-320.
    [180] Zhang Z, Lei C, Sun W. Electrochemical immobilization of horseradish peroxidase on an electro-activated glassy carbon electrode [J]. J. Electroanal.Chem., 1996, 419: 85-91.
    [181] 陈红, 吴辉煌. 邻苯二胺对 1, 4-二氧六环介质中 HRP 酶电极催化性能的影响[J]. 电化学, 1995, 4: 465-467.
    [182] Ruzgas T, Emnéus J , Gorton L. The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds [J]. Anal. Chim. Acta, 1995, 311: 245-255.
    [183] Ho WO,Athey D. Mediatorless horseradish peroxidase enzyme electrodes based on activated carbon: Potential application to specific binding assay [J]. J. Electroanal. Chem., 1993, 351: 185-197.
    [184] 严芳, 刘宝红, 邓家祺. 二氧化硅固定辣根过氧化物酶过氧化氢生物传感器[J]., 分析化学, 1997, 25(11): 1363.
    [185] Lindgren A, Emnéus J, Ruzgas T. Amperometric detection of phenols using peroxidase - modified graphite electrodes [J ]. Anal. Chim. Acta, 1997, 347: 51-62.
    [186] Scoregi E, Gorton L. Carbon fibres as electrode materials for the construction of peroxidase-modified amperometric biosensors [J]. Anal. Chim. Acta, 1993, 273: 59-70.
    [187] Dunford HB, Adeniran AJ, Hammett rho sigma correlation for reactions of horseradish peroxidase compound II with phenols[J], Arch. Biochem. Biophys., 1986, 251(2): 536-542
    [188] Job D, Dunford HB. Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I [J]. Eur. J. Biochem., 1976, 66: 607-614.
    [189] Ruzgas T, Csoregi E, Emnéus J. Peroxidase-modified electrodes: Fundamentals and application [J]. Anal. Chim. Acta, 1996, 330: 123-138.
    [190] Dominguez-Sanchez P, O’ Sullivan CK. Flow injection amperometric detection of aniline with a peroxidase modified carbon paste electrode[J]. Anal. Chim. Acta, 1994, 291: 349.
    [191] Tang L, Zeng MG, Yang YH, et al. Detection of phenylhydrazine based on lectin- glycoenzyme multilayer-film modified biosensor[J]. International Journal of Environmental & Analytical Chemistry, 2005, 85(2): 111-125.
    [192] Seung CC, Keith R, Calum JM. Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols[J]. Biosensors and Bioelectronics, 2002, 17(11-12): 1015-1023.
    [193] Solna R, Sapelnikova S, Skladal P, et al. Multienzyme electrochemical array sensor for determination of phenols and pesticides[J]. Talanta, 2005, 65(2): 349-357.
    [194] Rosatto Simone S, Sotomayor Pilar T, Kubota Lauro T, et al. SiO2/Nb2O5 sol-gel as a support for HRP immobilization in biosensor preparation for phenol detection[J].Electrochimica Acta, 2002, 47(28): 4451-4458.
    [195] Yang Shaoming, Chen Zhichun, Jin Xin, et al. HRP biosensor based on sugar-lectin biospecific interactions for the determination of phenolic compounds[J]. Electrochimica Acta, 2006, 52(1): 200-205.
    [196] Wilbur H. Campbell. Nitrate reductase structure, function and regulation: bridging the Gap between Biochemistry and Physiology [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999, 50:277-303.
    [197] Berks SJ, Ferguson SJ, Moir JWB, et al. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxianions[J]. Biochem Biophys Acta,1995, 1232(3):97-173.
    [198] Borcherding H, Leikefeld S, Frey C, et al. Enzymatic Microtiter Plate-based Nitrate Detection in Environmental and Medical Analysis[J], Analytical Biochemistry, 2000, 282(1): 1-9.
    [199] Patton CJ, Fischer AE, Campbell WH, et al. Corn leaf nitrate reductase: A nontoxic alternative to cadmium for photometric nitrate determinations in water samples by air-segmented continuous-flow analysis[J]. Environmental Science and Technology, 2002, 36(4): 729-735.
    [200] Shu FR, Wilson GS. Rotating ring-disk enzyme electrode for surface catalysis studies[J]. Analytical Chemistry, 1976, 48(12) :1679-1686.
    [201] Matthew J M, James Davis, Richard GC. Detection and determination of nitrate and nitrite: a review[J]. Talanta, 2001, 54: 785-803.
    [202] Lev O. Diagnostic applications of organically doped Sol-gel porous glass [J]. Analusis, 1992, 20(9): 543-553.
    [203] Hasebe K, Osteryoung J. Differential pulse polarographic determination of some carcinogenic nitrosamines [J]. Analytical Chemistry, 1975, 47(14): 2142-2148.
    [204] 蔡称心, 陈静, 包建春 等. 碳纳米管在分析化学中的应用[J]. 分析化学, 2004, 3(32): 381-387.
    [205] Ebbesen, Thomas W. Carbon nanotubes[J]. Physics Today, 1996, 49(6):26-32.
    [206] Zhu HW, Xu CL, Wu DH. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569): 884-886.
    [207] Saito R, Fujita M. Electronic structure of chiral graphene tubules[J]. Applied Physics Letters, 1992, 60(18): 2204-2206.
    [208] Wildoer Jeroen WG , Venema Liesbeth C, Rinzler Andrew G. Electronic structure of atomically resolved carbon nanotubes[J]. Nature, 1998, 391(6662): 59-62.
    [209] Odom TW, Huang JL, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 391(6662): 62-64.
    [210] 廖静敏, 李光, 马念章. 碳纳米管在生物传感器中的应用[J]. 传感技术学报, 2004, 3: 467-471.
    [211] Jia ZJ, Wang ZY, Liang J. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Carbon, 1999, 37: 903-906.
    [212] 王正元, 贾志杰, 张增民 等. 用红外光谱研究硝酸处理对多壁碳纳米管表面羧基地影响[J]. 炭素技术, 1999, 5: 14-16.
    [213] Niu CM, Sichel EK, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Appl. Phys. Lett., 1997, 70(11):1480-1482.
    [214] Zhang MG., Gorski W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System[J]. Journal Am. Chem. Soc., 2005, 127 (7): 2058-2059.
    [215] 焦奎, 罗细亮, 孙伟. 辣根过氧化物酶修饰电极的研究进展[J]. 青岛化工学院学报, 2001, 22(1): 1-7.
    [216] Baek HK, Van Vart H E. Elementary steps in the reaction of horseradish peroxidase with several peroxides: Kinetics and thermodynamics of formation of compound 0 and compound 1[J]. J. Am. Chem. Soc. , 1992, 114: 718-725.
    [217] 高孟姣, 应太林, 漆德瑶. 辣根过氧化氢酶电极的研究[J]. 分析试验室, 2001, 20(1): 55-57.
    [218] Dunford HB. Horseradish Peroxidases:Structure and Kinetic Properties, In Peroxidases in Chemistry and Biology[M], CRC Press, Boca Raton, 1991: 1-24.
    [219] Palmisano F, Zambonin PG. Ascorbic acid interferences in hydrogen perxide detecting biosensors based on electrochemically immobilized enzymes [J]. Analytical Chemistry, 1993, 65(19): 2690-2692.
    [220] Chen J, Hamon MA, Hu H, et al. Solution properties of single-walled carbon nanotubes[J]. Science, 1998, 282 (5386): 95-98.
    [221] Hamon MA, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes[J]. Advanced Materials, 1999,11 (10): 834-836.
    [222] 寇会忠,廖代正. 一种设计实用分子铁磁体的有效构件:普鲁士蓝类配合物[J]. 无机化学学报, 1999, (2): 141-150.
    [223] Upadhyay DN , Kolb DM. Optical properties of prussian-blue-modified gold and platinum single crystal electrodes[J]. J. Electroanal Chem,1993 ,358 (1-2) :317-325.
    [224] Zhou J, Wang E. Amperometric Determination of Catecholamines with Liquid Chromatography at a Novelly Constructed Prussian Blue Modified Electrode[J]. Talanta, 1992, 39(3): 235-242.
    [225] Pan KC , Chuang CS, Cheng SH. Electrocatalytic reactions of nitric oxide on Prussian blue film modified electrodes[J]. J Electroanal Chem., 2001, 50(1): 160-165.
    [226] Lu W, Wallace GG, Karyakin AA. Use Of Prussian Blue Conducting Polymer-Modified Electrodes For the Detection Of Cytochrome-C[J]. Electroanalysis, 1998 ,10(7) :472-476.
    [227] 朱明霞, 马永钧, 康敬万 等. 稀土掺杂普鲁士蓝化学修饰电极上过氧化氢的伏安性质研究[J]. 西北师范大学学报(自然科学版), 1998, 34(3) : 38-40.
    [228] 王荣, 郭晓明, 吴霞琴 等. 基于普鲁士蓝(PB) 膜修饰铂电极的葡萄糖传感器的研究[J]. 化学研究与应用, 2001, 13 (4): 380-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700