用户名: 密码: 验证码:
纳米结构电极的制备及其在电化学传感中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料(0.1~100 nm)因其独特的拓扑结构和优异的电学性能在电化学以及电分析化学领域中得到越来越广泛的应用,尤其是在新型化学修饰电极的制备与应用方面。基于纳米材料的优异特性,本论文制备了几种纳米结构电极并用来研究环境内分泌干扰物(己烯雌酚和氟乐灵)以及药物橙皮甙的电化学行为,并在此基础上建立了他们的分析检测方法。这些研究结果拓展了纳米结构电极在电分析化学中的重要意义。研究的主要内容有:
     1.在纳米结构电极上研究了环境内分泌干扰物氟乐灵的电化学响应。通过将多壁碳纳米管(MWNTs)分散在表面活性剂双十六烷基磷酸(DHP)中,然后通过滴涂的方法即可在电极表面构建了纳米结构电极。实验表明制备的纳米结构电极能够减少氟乐灵的电化学还原过电位,并显著增加峰电流,在此基础上提出了一种高灵敏检测氟乐灵的电化学分析方法。
     2.在单壁碳纳米管膜修饰电极研究了橙皮甙的电化学行为。橙皮甙在单壁碳纳米管膜修饰电极上表现出灵敏的电化学响应。基于橙皮甙在修饰电极上的优良电化学特性,建立了一种测定橙皮甙的伏安检测方法并优化了各测定参数。方法用于陈皮中橙皮甙的测定,得到满意的结果。
     3.制备了多壁碳纳米管/纳米铂复合膜修饰电极,对电极的表征和性能进行了研究,并在该电极上用多种电化学方法对橙皮甙在的电化学行为进行了研究,实验表明橙皮甙在复合膜修饰电极上的电化学响应明显比在裸玻电极以及MWNTs-DHP复合膜修饰电极上的要大。据此对实验参数进行了优化,建立了一种检测橙皮甙的新方法。
     4.制备了纳米铂溶胶,并将单壁碳纳米管(SWNTs)与纳米铂结合,构建了均一、稳定的纳米复合膜修饰电极,并详细考察了环境内分泌干扰物己烯雌酚在纳米复合膜修饰电极上的电化学行为。单壁碳纳米管/纳米铂复合膜能显著提高己烯雌酚的电化学响应及其测定的灵敏度。据此建立了一种新的检测己烯雌酚的高灵敏度方法。
Nano-materials, with sizes in the range of 0.1-100 nm, because of their unique architecture and remarkable electrical properties, are widely used in electrochemistry and electroanlytical chemistry, especially in the preparation and application of chemically modified electrode (CME). In this paper, several nano-structred electrodes were fabricated based on the especial properties of nano-materials, and successfully applied to environmental endocrine disrupting chemicals and pharmaic analysis analysis and studies on kinetics of electrochemical process. The results confirm that nano-interfaces play important roles in electroanalyticl chemistry. The focus of this paper has been listed as follows:
     1. The electroanalytical behaviors of the endocrine-disrupting chemical trifluralin have been studied at a nanostructuring electrode firstly. The nanostructuring electrode was fabricated by coating a uniform multi-wall carbon nanotubes (MWNTs) film on glassy carbon electrode (GCE). The reduction peak currents of trifluralin increased remarkably and the reduction peak potential shifted positively at the MWNTs film modified GCE, compared with that at a bare GCE. The results showed that this nanostructuring electrode exhibited excellent enhancement effects on the electrochemical reduction of trifluralin. Consequently, a simple and sensitive electroanalytical method was developed for the determination of trifluralin.
     2. A convenient and sensitive electrochemical method is described for the determination of hesperidin based on the unique properties of a single-wall carbon nanotubes (SWNTs) thin film firstly. The electrochemical behavior of hesperidin at the SWNTs film-coated glassy carbon electrode (GCE) was investigated in detail, showing that the SWNTs-coated GCE exhibits electrocatalytic activity to the electrochemical behavior of hesperidin. The experimental parameters, which influence the current of hesperidin, were optimized.
     3. The voltammetric behaviour of hesperidin was investigated by linear sweep voltammetry and cyclic voltammetry at platinum nanoparticle/MWNTs nanocomposites of glassy carbon electrodes. Compared with the bare GC electrode and MWNTs film modified GC electrode, the peak currents at the MWNTs/Ptnano composite film modified GC electrode was enhanced greatly. The experimental parameters were optimized. The method has been applied successfully to the determination of hesperidin in Chinese crude drugs.
     4. Platinum nanoparticles (Ptnano) were prepared and used in combination with single-wall carbon nanotubes (SWNTs) for fabricating electrochemical sensors with remarkably improved sensitivity toward diethylstilbestrol (DES). The glassy carbon (GC) electrode modified with SWNTs/Ptnano composite film exhibited excellent electrochemical behaviors toward the redox of DES. Compared with the bare GC electrode and SWNTs film modified GC electrode, the redox peak currents at the SWNTs/Ptnano composite film modified GC electrode was enhanced greatly. The experimental parameters, which influence the current of DES, were optimized.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [2]白春礼.纳米科学与技术[M].云南:科技出版社, 1999.
    [3] W A de Heer. The physics of simple metal clusters [J]. Modern Phys. Rev., 1993, 65(3): 611-676.
    [4] W. Z. Li, S. S. Xie, L. X. Qian, et al. Large-scale synthesis of aligned carbon nanotubes [J]. Science, 1996, 274: 1701-1703.
    [5] D. Zhou, S. Seraphin. Production of silicon-carbide whiskers from carbon nanoclusters [J]. Chem. Phys. Lett. , 1994, 222(3): 223-238.
    [6] W. Q. Han, S. S. Fan, Q. Q. Li, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science, 1997, 277: 1287-1289.
    [7] K. Suenaga, C. Colliex, N. Demoncy, et al. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon[J]. Science, 1997, 278: 653-655.
    [8]胡建强.金属纳米粒子的尺寸和形状可控合成及其表征[D].厦门大学博士学位论文, 2003.
    [9] Y. Wang, W. Mahler, Degenerate four-wave mixing of CdS/polymer composite [J]. Opt. Commun., 1987, 61(3): 233-236.
    [10] E. Hilinski, P. Lucas, Y. Wang, A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film [J]. J. Chem. Phys., 1988, 89(6): 3435-3441.
    [11] S. Auer, D. Frenkel, Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy [J]. Nature, 2001, 413: 711-713.
    [12]张池明.超微粒子的化学特性[J].化学通报, 1993, (8): 20-23.
    [13]张立德,年季灵.纳米材料学[M].沈阳:辽宁出版社, 1994.
    [14] H. Gleiter, Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223-315.
    [15] B. Barbara, W. Wernsdorfer, TI quantum tunneling effect in magnetic particles SO [J]. Curr. Opin. Solid State Mater. Sci., 1997, 2: 220-225.
    [16]李明怡.纳米材料应用现状及发展趋势[J],导弹与航天运载技术, 2002, 7: 23- 24.
    [17]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程, 2000 (3): 42-48.
    [18]徐胜良.金属纳米粒子催化的鲁米诺化学发光及其应用[D].中国科学技术大学硕士学位论文, 2006.
    [19]周民.贵金属纳米粒子的可控合成与表征[D].山东大学博士论文, 2006.
    [20]王宝辉,王德军. CdS超微粒子薄膜电极的光电化学特性[J].高等学校化学学报, 1995, 16(10): 1610-1613.
    [21]张琳,唐芳琼,江龙等.溶胶-凝胶法制备含纳米憎水SiO2颗粒葡萄糖电极[J].中国科学(B辑), 1995, 25(7): 701-703.
    [22]田明原,施尔畏,郭景坤.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报, 1998, 13 (2): 129-137.
    [23]陈长伦.纳米金和碳纳米管修饰Pt电极对CO电催化的研究[D].合肥工业大学硕士论文, 2004.
    [24] S. Iijima. Nature, 1991, 354: 56-58.
    [25] P.M.Ajayan Nanotubes from carbon [J]. Chem. Rev., 1999, 99(7): 1787-1799.
    [26] C.H. Kiang, W.A. Goddard, R. Beyers, D.S. Bethune. Carbon nanotubes with single-layer walls [J], Carbon, 1995, 33(7): 903–914.
    [27]罗勇,应鹏展,苏慧仙,贾良菊.碳纳米管制备方法概况[J].煤矿机械, 2004, (8): 7-8.
    [28]康诗钊,崔泽一,穆劲.碳纳米管的制备、修饰及其应用[J].光电子技术, 2005, 25(1): 56-62.
    [29] Y.P. Sun, K.F. Fu, Y. Lin, W.J. Huang. Functionalized carbon nanotubes: properties and applications [J]. Acc. Chem. Res., 2002, 35: 1096-1104.
    [30] P. Liu. Modifications of carbon nanotubes with polymers [J]. Eur. Polym. J., 2005, 41: 2693-2703.
    [31]晋卫军,孙旭峰,王煜.碳纳米管溶解性及其化学修饰[J].新型炭材料, 2004, 19(4): 312-318.
    [32]蔡称心,陈静,包建春,陆天虹.碳纳米管在分析化学中的应用[J].分析化学, 2004, 32(3): 381-387.
    [33]孙静.碳纳米管及其研究进展[J].世界科学, 2006, (5): 28-29.
    [34]成会明.碳纳米管:制备、结构、物性及应用[M].北京:化学工业出版社, 2002.
    [35]王利生.碳纳米管的制备方法[J].精细石油化工进展, 2002, 3(5): 46-51.
    [36]蒋美丽.碳纳米管的制备[J].朔料科技, 2004, (4): 5-9.
    [37]张璐.碳纳米管制备技术[J].宁夏石油化工, 2004, 23(1): 7-10.
    [38]赵琨.碳纳米管在电分析化学中的应用研究[D].华东师范大学博士论文, 2007.
    [39]廖静敏,李光,马念章.碳纳米管在生物传感器中的应用[J] .传感技术学报, 2004, (3): 467-471.
    [40] G. S. Duesberg, W. Blau, H. J. Byrne, et al. Chromatography of carbon nanotubes [ J ]. Synth. Met., 1999, 103: 2484-2485.
    [41]孙晓刚,曾效舒.空气氧化法提纯碳纳米管的研究[J].新型炭材料, 2004, 19(1): 65-68.
    [42]杨占红,李新海,王红强,李晶.用空气氧化法高效纯化碳纳米管[J].新型炭材料, 1999, 14(2): 67-70.
    [43]杨占红,吴浩青,李晶,李新海.碳纳米管的纯化-电化学氧化法[J].高等学校化学学报, 2001, 22(3): 446-449.
    [44] Y. Lin, S. Taylor, H.P. Li, K.A.S. Fernando, Advances toward bioapplications of carbon nanotubes [J]. Chem. Mater., 2004, 14: 527-541.
    [45] M. Valcárcel, B.M. Simonet, S. Cárdenas, B. Suárez. Present and future application ofcarbon nanotubes to analytical science [J]. Anal. Biochem., 2005, 382: 1783-1790.
    [46]杨占红,李新海.碳纳米管纯化技术研究[J].中南工业大学学报, 1999, 30(4): 389-391.
    [47]曾艳.碳纳米管修饰玻碳电极的研究和应用[D].华中师范大学硕士论文, 2006.
    [48] B. Kazee, D.E. Weisshaar, T. Kuwana. Evidence for the presence of a thin carbon-particle layer on polished glassy carbon electrodes[J]. Anal. Chem., 1985, 57: 2736-2739.
    [49]姜灵彦.壳聚糖-碳纳米管修饰玻碳电极的研究及应用[D].华中师范大学硕士论文, 2005.
    [50] P.J. Britto, K.S.V Santhanam, P.M. Ajayan. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem. Bioenerg., 1996 , 41: 121-125.
    [51] J.J. Davis, J.C. Richard, H. Allen, O. Hill. Protein electrochemistry at carbon nanotube electrode[J]. J. Electroanal. Chem., 1997, 440 (1): 79-83.
    [52] P.E. Liu, J.H. Hu. Carbon Nanotube Powder Microelectrodes for Nitrite Detection[J]. Sens. Actuators B: Chem., 2002, 84: 194-199.
    [53]罗红霞,施祖进,李男强,庄乾坤.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用[J].高等学校化学学报, 2000, 21(9): 1372-1374.
    [54] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu. Investigation of electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode [J]. Microchem. J., 2002, 73: 325-333.
    [55] M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, et al. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water [J]. Nano Lett., 2003, 3(2): 269-273.
    [56] F.H. Wu, G.C. Zhao, X.W. Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode [J]. Electrochem. Commun., 2002, 4: 690–694.
    [57] M. Musamech, J. Wang, A. Merkoci, Y. H. Lin. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J]. Electrochem. Commun., 2002, 4: 743-746.
    [58]孙延一,吴康兵,胡胜水.多壁碳纳米管一Nafion抗坏血酸和尿酸体化学修饰电极在高浓度系中选择性测定多巴胺[J].高等学校化学学报, 2002, 23(11): 2067-2069.
    [59] K.B. Wu, S.S. Hu, J.J. Fei, W. Bai. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes [J]. Anal. Chim. Acta, 2003, 489: 215-221.
    [60] K.B. Wu, S.S. Hu, J.J. Fei. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes [J]. Anal. Biochem., 2003, 318(1): 100-105.
    [61] K.B. Wu, Y.Y. Sun, S.S. Hu. Development of an amperometric indole-3- acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode [J]. Sens. Actuat. B: chem, 2003, 96: 658-662.
    [62] K.B. Wu, S.S. Hu, J.J. Fei, W. Bai. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode [J]. Anal. BioChem., 2003, 376: 205-209.
    [63]任湘菱,孟宪伟,廖芳琼.纳米铂颗粒在酶生物传感器中的应用研究[J] .功能材料与器件学报, 2005, 11(2): 246-250.
    [64]濮文虹,黄金桃,钱功明,张敬等.纳米铂直接修饰玻碳电极的制备及在半胱氨酸中的电化学行为[J].应用化学, 2007, 24(8): 868-872.
    [65]邵玉艳,尹鸽平,张健等.碳纳米管电极上原位沉积Pt纳米颗粒[J].催化学报, 2006, 27(7): 606-610.
    [66]翟宏菊,孙德武,林险峰,李恒达.液相法制备纳米金属材料及其应用[J].吉林师范大学学报(自然科学版), 2006, 2: 13-15.
    [67] S. Hrapovic, E. Majid, Y.L. Liu. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds [J]. Anal. Chem., 2006, 78: 5504-5512.
    [68]丁收年,卢业举,金葆康.一种纳米铂水溶胶的制备及其在电化学上的应用研究[J] .安徽大学学报, 2002, 26(3): 74-78.
    [69] J.H. Adair, Suvaci E.. Morphological control of particles [J]. Curr. Opin. Colloid Interface Sci., 2000, 5: 160-167.
    [70] D.B. Williams, C.B. Carter. Transmission electron microscopy: a textbook for materials science, Plenum Press, [M]. New York, 1996.
    [71]徐胜良.金属纳米粒子催化的鲁米诺化学发光及其应用[D].中国科学技术大学硕士学位论文, 2006.
    [72] T. Del Castillo-Castro, E. Larios-Rodriguez, Z. Molina-Arenas, M.M. Castillo-Ortega. Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites [J]. Composites Part A, 2007, 38: 107-113.
    [73] S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J]. Anal. Chem., 2004, 76: 1083-1088.
    [74]朱玉奴,彭图治,李建平.碳纳米管负载铂颗粒酶电极葡萄糖传感器[J].分析化学, 2004, 32(10): 1299-1303.
    [75] M.H. Yang, Y.H. Yang, Y.L. Liu, G.L. Shen, R.Q. Yu, Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors [J]. Biosens. Bioelectron., 2006, 21: 1125-1131.
    [76] N.N. Zhu, Z. Chang, P.G. He, Y.Z. Fang, Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes [J]. Anal. Chim. Acta, 2005, 545(1): 21-26.
    [77]赵国华,李明利,李琳,高廷耀.纳米铂微粒电极催化氧化有机污染物的研究[J].环境科学, 2003, 24(6): 90-95.
    [78]毛景英.生物农药-未来农药发展的理想选择[J].环境科学进展, 1998, 6 (3): 43-47.
    [79]莫汉宏,安凤春,杨克武,李本昌.农药在生态环境中的持久性及残留的研究方法[J].环境化学, 1994, 13 (3): 218-220.
    [80]陈曙阳,王鸿飞. 1992 ~1996年我国农村农药中毒报告发病情况[J].农药科学与管理, 1997, 4: 40-41.
    [81]田明远.工程环境影响评价中的生态影响评价[J].城乡生态环境, 1998, 21(3): 30-32.
    [82]潘元海,魏爱雪,赵国栋,等.水中痕量有机磷农药的高效液相色谱质谱分析[J].环境科学进展, 1999, 7(1): 32-40.
    [83]单正军,朱忠林,华小梅,等.我国农药环境污染及管理现状[J].环境保护, 1997, 7: 40-44.
    [84]蒋慧.土壤中农药残留的分析方法及应用研究[D].南京理工大学硕士论文, 2004.
    [85] M.C. Bruzzoniti, C. Sarzanini, G. Costantino, M. Fungi, Determination of herbicides by solid phase extraction gas chromatography–mass spectrometry in drinking waters [J]. Anal. Chim. Acta, 2006, 578: 241-249.
    [86] E.F.G.C. Dores, S. Navickiene, M.L.F. Cunha, L. Carbo, M.L. Ribeiroc, E.M. De-Lamonica-Freire, Multiresidue determination of herbicides in environmental waters from primavera do leste region (middle west of brazil) by SPE-GC-NPD[J]. Braz. Chem. Soc., 2006, 17: 866-873.
    [87] N. Vela, G. Perez, G. Navarro, S. Navarro, Gas chromatographic determination of pesticide residues in malt, spent grains, wort, and beer with electron capture detection and mass spectrometry[J]. J. AOAC Int., 2007, 90 (2): 544-549.
    [88]周培,陆贻通,伊雄海,洪静波.花生中氟乐灵农药残留的优化气相色谱测定法[J].上海交通大学学报(农业科学版), 2003, 21(3): 205-207.
    [89] H. Karasali, G. Balayannis, A. Hourdakis, A. Ambrus, Development and single-laboratory validation of a new gas chromatographic multi-pesticide method of analysis of commercial emulsifiable concentrate formulations containing alachlor, chlorpyrifos methyl, fenthion and trifluralin as active ingredients [J]. J. Chromatogr. A, 2006, 1129: 300-303.
    [90] U.I. Garimella, G.K. Stearman, M.J. Wells, Comparison among soil Series and extraction methods for the analysis of trifluralin [J]. J. Agric. Food Chem., 2000, 48(12): 5874–5880.
    [91] M. Kotou?ek, M. Opravilová, Voltammetric behaviour of some nitropesticides at the mercury drop electrode [J]. Anal. Chim. Acta, 1996, 329: 73-81.
    [92] A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, I. Szendro, Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection [J]. Anal. Chim. Acta, 2003, 487: 31-42.
    [93] U. Khasanov, U.K. Rasulev., D.T. Usmanov, S.S. Iskhakova, Detection and analysis of nitrogen-containing pesticides in environment by surface-ionization methods [J]. Surf. Interface Anal. , 2006, 38: 309-312.
    [94] L.Y Fang., E.A. Huang, M.M Safarpour, Applications of capillary electro- chromatography analysis for formulated pesticide products [J]. J. Cap. Electrophor., 1998, 5: 115–123.
    [95] P. Zuman, Z. Fijalek, D. Dumanovic, D. Suznjevic, Polarographic and electrochemical studies of some aromatic and heterocyclic nitro compounds, part I: General mechanistic aspects[J]. Electroanalysis, 1992, 4: 783–794.
    [96]黄燕玲.橙皮甙的提取及其抗氧化作用研究[D].广东工业大学硕士论文, 2001.
    [97]中国药典(2005版一部),中国药典委员会编,化学工业出版社,北京: 2005, p132.
    [98]肖崇厚.中药化学[M].上海:上海科学技术出版社, 1999: 263-298.
    [99]郑建仙.功能性食品(第二卷)[M].北京:中国轻工出版社, 1999: 429- 442.
    [100] R J. Bradcock, Handbook of by- products and processing technology [M]. John Wiley & Sons Inc, 1999.
    [101]梁瑞云,陆奕东,陈玲,林跃.橙皮甙的提取和抗氧、防霉性能探讨[J].广州食品工业科技, 15(3): 4-8接下28.
    [102] E. Belajová, M. Suhaj. Determination of phenolic constituents in citrus juices: Method of high performance liquid chromatography [J]. Food Chem., 2004, 86: 339–343.
    [103] F.I. Kanaze, C. Gabrieli, E. Kokkalou, M. Georgarakis, I. Niopas, Simultaneous reversed-phase high-performance liquid chromatographic method for the determination of diosmin, hesperidin and naringin in different citrus fruit juices and pharmaceutical formulations [J]. J. Pharm. Biomed. Anal., 2003, 33: 243-249.
    [104] F.I. Kanaze, E. Kokkalou, M. Georgarakis, I. Niopas, Validated high-performance liquid chromatographic method utilizing solid-phase extraction for the simultaneous determination of naringenin and hesperetin in human plasma[J]. J. Chromatogr. B, 2004, 801: 363–367.
    [105]李惠彬,陈仁芳.高效液相色谱法分析检测保健食品中橙皮甙的方法研究[J].中国卫生检验杂志, 2001, 11(6): 667-668.
    [106] Zs. Füzfai, I. Molnár-Perl. Gas chromatographic–mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: Analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits[J]. J. Chromatogr. A, 2007, 1149: 88–101.
    [107] X.G He, L.Z. Lian, L.Z. Lin, M.W. Bernart, High-performance liquid chromatography–electrospray mass spectrometry in phytochemical analysis of sour orange (Citrus aurantium L.) [J]. J. Chromatogr. A, 1997, 791: 127–134.
    [108] T. Wu, Y. Guan, J. Ye. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection [J]. Food Chem., 2007, 100: 1573–1579.
    [109]吕元琦,王月伶,袁倬斌.毛细管电泳法快速测定枳实和枳壳中的橙皮甙和柚皮甙[J].生命科学仪器, 2004, 2(5): 36-37.
    [110] Y. Peng, F. Liu, J. Ye. Quantitative and qualitative analysis of flavonoid markers in Frucus aurantii of different geographical origin by capillary electrophoresis with electrochemical detection [J]. J. Chromatogr. B, 2006, 830: 224–230.
    [111]潘娓婕,邓双. TLCS法测定四种中成药中橙皮甙含量[J].陕西师范大学学报(自然科学版), 2001, 29(1): 123-124.
    [112] E.L. Bayoumi, Modified H-point standard addition method and logarithmic function for the spectrophotometric and spectrodensitometric determination of hesperidin and diosmin in mixtures [J]. Anal. Lett., 1999, 32(2): 383-400.
    [113] N.E. Zoulis, C.E. Efstathiou, Preconcentration at a carbon-paste electrode and determination by adsorptive-stripping voltammetry of rutin and other flavonoids [J]. Anal. Chim. Acta, 1996, 320: 255-261.
    [114] G.J. Volikakis, C.E. Efstathiou. Determination of rutin and other flavonoids by flow-injection: adsorptive stripping voltammetry using nujol-graphite and diphenylether- graphite paste electrodes [J]. Talanta, 2000, 51: 775–785.
    [115]许雪琴,齐秀贞,杨金城,陈国南.橙皮甙在玻碳电极上的阳极伏安行为研究及其测定[J].化学传感器, 2003, 23(1): 58-61.
    [116] K.L. Noller, C.R. Fisch, Diethylstilbestrol usage: its interesting past, important present, and questionable future [J]. Med. Clin. North Am., 1974, 58: 739-810.
    [117] L. Titus-Ernstoff, E.E. Hatch, R.N. Hoover, et al. Long term cancer risk in women given diethylstilbestrol (DES) during pregnancy [J]. Br. J. Cancer, 2001, 84: 126-133.
    [118] IARC Diethylstilboestrol and diethylstilboestrol dipropionate. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans. International Agency for Research on Cancer [J]. Lyon, 1979, 21: 173-231.
    [119] M. J. López de Alda, D. Barcelo. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography–diode array detection–mass spectrometry [J]. J. Chromatogr. A, 2000, 892: 391-406.
    [120]陈杖榴,杨桂香,孙永学.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报, 2001, 22(1): 88-91.
    [121]王恒.己烯雌酚免疫分析化学研究[D].扬州大学硕士论文, 2006.
    [122]姚浔平,金米聪,李小平. HPLC法测定动物组织中己烯雌酚的含量[J].中国卫生检验杂志, 2005, l5(6): 722.
    [123]王静,李军. HPLC法测定己烯雌酚软膏含量[J].齐鲁药事, 2004, 23(9): 33-34.
    [124]叶英.高效液相色谱法测定畜禽肉中己烯雌酚[J].热带农业工程, 2002, 3: 20-21.
    [125]张彩虹.高效液相色谱法测定己烯雌酚的实验研究[J].中国热带医学, 2006, 6(2): 328-329.
    [126]李薇,张娟.高效液相色谱法测定儿童保健品中己烯雌酚的方法[J].江苏预防医学, 2001, 12(1): 65.
    [127] S. Talat, N. Esmael, A. Nisar, Assessment of the levels of anabolic compoumds in Kiwait meat industry:optimization of a multiresidue method and the results of a priliminery survey [J]. Food Contr., 1999, 10: 169–174.
    [128] Carlos H. Van Peteghem, Marc F. Lefevere, Gustaaf M. Van Haver, et al. Quantification of diethylstilbestrol residues in meat samples by gas chromatography-isotope dilution mass spectrometry[J]. J. Agric. Food Chem., 1987, 35: 228-231.
    [129]刘万山,刘思洁,李青. GC/MS法测定动物性食品中己烯雌酚残留量方法的探讨[J].中国卫生检验杂志, 2007, 17(8): 1531-1534.
    [130] T.M. Huo, L.Y. Wang, L.Q. Liu, X.G. Chu, C.L. Xu, Rapid time-resolved fluoroimmunoassay for diethylstilbestrol residues in chicken liver [J]. Anal. Biochem., 2006, 357: 272-276.
    [131] John C. Gridley, Edward H. Allen, W. Shimoda. Radioimmunoassay for Diethylstilbestrol and the Monoglucuronide Metabolite in Bovine Liver [J]. J. Agric. Food Chem., 1983, 31: 292-296.
    [132] W.N.Sawaya, Screening for estrogenic steroids in sheep and chicken by the application of enzyme-linked immunosorbent assay and a comparison with analysis by gas chromatography-mass spectrometry [J]. Food Chem., 1998, 63(4): 563-569.
    [133]罗丽荣,周福林,章竹君.流动注射化学发光法测定己烯雌酚[J].分析试验室, 2006, 25( 4): 79-81.
    [134]杨冰仪,莫金垣,赖瑢.肉类中己烯雌酚的高速毛细管电泳安培法测定[J].分析测试学报, 2003, 22(3): 15-17.
    [135] B. Qiu, W. Wang, Y.W. Chi, G.A. Chen. Electrochemical behaviors of diethylstilbestrol and its application in pharmacokinetics [J]. Anal. Biochem., 2005, 336: 196–201.
    [136] S.H. Zhang, K.B. Wu, SS.. Hu. Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium [J]. Talanta, 2002, 58: 747-/754.
    [137] ?. Biryola, B. Salc?, E. Erdik. Voltammetric investigation of diethylstilbestrol [J]. J. Pharm. Biomed. Anal., 2003, 32: 1227-/1234.
    [138]孙延一,吴康兵,胡胜水.己烯雌酚在多壁碳纳米管修饰电极上的电化学行为及其电化学测定[J].药学学报, 2003, 5: 364-367.
    [139]吕昊,章竹君,郭志慧,李志仙.簇状纳米二氧化锰修饰玻碳电极电化学发光法测定己烯雌酚[J].分析化学, 2007, 35(1): 143-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700