用户名: 密码: 验证码:
溶胶—凝胶法制备SiO_2/环氧树脂涂料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过溶胶-凝胶法,以双酚A环氧树脂为基体,以TEOS为前驱体,并加入GPTEMS硅烷偶联剂制备纳米填充物,以期得到纳米粒子分散均匀的SiO_2/环氧树脂涂料,并重点研究了涂料的制备工艺及涂料的力学性能和防腐性能。
     首先通过试验确定了SiO_2/环氧树脂涂料的制备工艺,重点考察了催化剂用量、硅烷偶联剂用量和固化剂用量对涂膜性能的影响;按照优化工艺制备出不同配方的涂料,并较细致地研究了不同配方涂料的力学性能和防腐性能。
     研究表明催化剂选用HCl,其用量为TEOS的质量的10%时涂膜的综合性能较好;固化剂选用低分子聚酰胺651,其用量为环氧树脂质量的40%时涂膜的力学性能最佳;涂料溶剂选用丙酮-丁醇-二甲苯混合溶剂,其用量为环氧树脂质量的20%时可以保证溶胶-凝胶法制备涂料的顺利进行,制得的涂料具有良好的施工性能。
     实验表明硅烷偶联剂GPTMS对涂膜的性能影响显著,当其用量为TEOS质量的15%-20%时,可以得到综合性能良好的涂料。
     通过红外和扫描电镜分析表明通过溶胶-凝胶法制得了SiO_2分散较为均匀,粒径在100nm左右的纳米复合涂料。
     通过对不同SiO_2含量的纳米复合涂料的硬度、附着力、耐磨性和抗冲击性的测试,表明纳米SiO_2的产生可以较大幅度提高涂料的力学性能,当其含量在12%时,力学性能最佳。溶胶-凝胶法制得了SiO_2/环氧树脂涂料的抗紫外光老化性能有显著提高。
     采用失重法、塔菲尔曲线法和交流阻抗法对不同SiO_2含量的纳米复合涂层的防腐性能进行了测试,表明SiO_2的加入改善了涂膜的防腐性能,并对防腐机理做了分析。
In this paper, in order to get nano-hybrid coating with excellent performance, the coating is prepared through sol-gel process using TEOS as precursor, and bi-osphenol-A epoxy resin as the matrix.Techniques of the preparing coating and the performance of the coating including mechanics properties, anticorrosion performance and anti-ultraviolet performance is discussed in details.
     The preparation process is optimized through experiments, and the effect of catalyzer, silane coupling agent dosage and curing agent dosage on the coating are stressed; Then coatings with different formula are prepared according the optimized process, and performance of the coatings are investigated.
     Results indicate that when the dosage of HCl as catalyzer is 10% of TEOS in weight, the curing agent content is 40% of the epoxy resin in weight, the coating exhibits good performance. When the dissolvent is made of acetone, butyl alcohol and xylene, and shares 20% of the epoxy resin, it can guarantee the sol-gel process smoothly and good usability .
     Results indicate that the silane coupling agent plays an important role in the coating, and that when its content is between 15%-20% of the TEOS, the performance is best.
     Through IR and SEM, it proves that the silica in the coating disperses well, and the diameter is about 100 nm.
     Results indicate that the coating made by the sol-gel process exhibits excellent hardness, adhesion, impact stress and wear resistance and the most suitable content of SiO_2 in the epoxy resin is 12%.
     Results also indicate SiO_2/epoxy resin coating prepared by sol-gel process get good anti-ultraviolet performance.
     Methods of lost weight, polarization curve and electrochemical impedance spectroscopy indicates that the anti-corrosion performance of SiO_2/epoxy resin coating is improved distinctly, and the mechanism of the anti-corrosion is provided.
引文
1柯伟.中国工业与自然环境腐蚀调查的进展.北京:第四届全国腐蚀大会论文集,2003.1:82-91
    2陈光章.船舶腐蚀与防护.船舶科学技术. 2001 (2):26-29
    3 Lin Zhu, Xun Ye. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Published online 30 May 2006 in Wiley InterScience
    4李国莱.重防腐涂料.化学工业出版社, 1999.9:9~12
    5沈丽霞.改性环氧树脂涂料的研制与应用.四川化工与腐蚀控制. 2002(5):21-26
    6韩永奇.我国涂料企业竞争失利的经营原因分析.建材发展导向. 2004(5):25-30
    7张立德,牟季美.纳米材料和纳米结构.北京科学技术出版社, 2001:5-8
    8徐伟平,黄锐.聚合物/无机纳米粒子复合材料研究进展.中国塑料,1997 (5):15-21
    9张玉龙主编.纳米复合材料手册.中国石化出版社, 2005.7:3
    10徐滨士,刘世参.表面工程.机械工业出版社,2000:40-49
    11 J. P. Bucher, D. C. Douglass, L. A. Bloomfield. Magnetic Properties of Free Cobalt Clusters . PhsRevLeFt, 1991, 66 (23):3052-3055
    12纳米结构材料语技术手册.美国Academic出版社, 1997:85-91
    13 M. G.. McKee, S. Unal, G.. L. Wilkes and T. E. Long. Progress in Polymer Science. 2005(30): 507-539
    14 L. Valentin, V. Bavastrello, I. Armentano, et al. Synthesis and Electrical Properties of CdS Langmuir-Blodgett Multilayers Nanoparticles on Self-assembled Carbon Nanotubes. Chemical Physics Letters. 2004, 392: 214-219
    15 X. Mo, C. Y. Wang, M. You, eta. A Novel Ultraviolet-irradistion Route to CdS Nanocrystallites with Different Morphologies. Mater Res Bull. 2001, 36: 2277-2282.
    16 Xin Chen, Zhen-TaoYu, Jie-Sheng Chen, et al. In Si-tu Hydrothermal Preparation of CdS/polymer Composite Particles with Cadmium-containing Polymer Latexes. Materials Letters. 2004, 58(3-4):384-386.
    17 P. V. Braun, S. I. Stupp. CdS Mineralization of Hexagona,l Lamellarand Cubic Lyotropic Liquid Crytals. Materials Research Bulletin. 1999, 34(3): 463-469.
    18 R. S. Singh, V. K. Rangari. Nano-structured CdTe, CdS and TiO2for Thin Film SolarCellApplications. Solar Energy Materials and Solar Cells. 2004, 82(1-2):315-330.
    19武利民.关于纳米复合涂料的探讨.现代涂料与涂装. 2004(5):19-24
    20周树学,武利民.纳米涂料制备技术及其系列化产品研究开发.材料导报. 2002 , 16(3):41-47
    21赵石林,李晓男.纳米复合涂料的研究开发现状.涂料工业. 2001, 31(10): 24-29
    22曹洪亮,赵石林.纳米透明耐磨涂料.中国涂料. 2003 (1):34-37
    23 T. Y. Zeng, Y. Qiu, L. S. Chen, et al. Microstructure and Phase Evolution of Ti02 Precursors Prepared by Peptization-hydrolysis Method Using Polycarboxylic Acid as Peptizing Agent. Material Chemistry and Physics. 1998 (56): 163-170
    24 L. Guther. Magnetic Nano-particles for High Density Recording. Physics Reports. 1990, (3): 138~148
    25季保华,方东等.纳米涂料研究概况.科技情报开发与经济. 2002, 12(5):97~98
    26 Reynolds, William, etal. Ultraviolet resistant premix compositions and articles using such compositions, USA: US6, 337~362, June 12, 2000
    27赵成,李晓等.纳米复合涂料的研究进展.涂料工业. 2002, 25(10 ): 24~25
    28王成云.纳米技术改性涂料研究进展.涂料与应用. 2002, 32 (3): 13~16
    29 L. O. Ohman, J. Paul. Materials Aspects of Titanium-doped Aluminas 14%Ti/y- A12O3/Cu and Sulfided A12O3-Ti02/NiMo. Materials Chemistry and Physics. 2002 (73): 242-251
    30 S. Werke. Cooking utensils with a nonstick coating,Germany, 2001(4):2025~2100
    31贾爱忠,梁今生.纳米材料技术在涂料产业中的应用现状与发展趋势.天津城市建设学院学报. 2002, 8 (3):166~167
    32 S. Jiansirisomboon, K. J. D. MacKenzie. Low pressure plasma-sprayed A12O3/SiC nanocomposite coatings from different feedstock powders. Journal of the European Ceramic Society. 2003(23):961-976
    33 S. Carvalho, E. Ribeiro, J. Pacaud, et al. PVD grown (Ti,Si,Al)N nanocomposite coatings and (Ti,Al)N/(Ti, Si)multilayers: structural and mechanical property.Surface and Coatings Technology. 2003(172):109-116
    34刘福春,韩恩厚,柯伟.纳米复合涂料的进展.材料保护. 2001(2):34-45
    35王成.高性能纳米涂料的表面原位纳米改性制备方法.化工科技市场. 2002, 25(9):70-76
    36苑金生.纳米涂料的性能与特点.建材产品与应用. 2001(4):29-30
    37李嘉禾.纳米防水装饰涂料.新型建筑材料. 2003 (4):64-71
    38童忠良.纳米复合耐高温防火涂料.电镀与涂饰. 2002, 21 (5 ):64-69
    39水性纳米氟碳涂料在沪问世.化工中间体. 2003(2):53
    40张洪亮,黄志杰.浅议纳米材料及其改性涂料.中国涂料. 2001 (5):21-27
    41刘永辉.电化学测试技术.北京航空航天大学出版社, 1987.10:36-41
    42刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展.高分子材料科学与工程. 2004, 20(2):28-31
    43 V. Bounor-Legare, C. Angelloz, P. Blanc, etal. A new route for organic-inorganic hybrid material synthesis through reactive processing without solvent. Polymer. 2004(45):1485-1493
    44 G. Brusatin, P. Innocenzi, M. Guglielmi, etal. Basic Catalyzed Synthesis of Hybrid Sol-Gel Materials Based on GPTMS. Journal of Sol-Gel Science and Technology. 2003, 26:303-306
    45 R. Marissen.. Craze growth mechanics. Polymer. 2000,(41):1119-1129
    46 P. A. O'Connell, M. J. Bonner. The relationship between slow crack propagation and tensile creep behaviour in polyethylene. Polymer. 1995, 36(12):2355-2362.
    47 Y. Sha, C. Y. Hui, A. Ruina, E. J. Kramer. Continuum and discrete modeling of craze failure ata crack tip in a glassy polymer. Macromolecules. 1995,(28):2450-2459.
    48田晓风.纳米SiC颗粒增强2024铝基复合材料的力学性能研究.稀有金属. 2005, 25(4):13-16
    49曹楚南著.电化学阻抗谱导论.科学出版社, 2004:125-164
    50李国英.表面工程手册.第9篇.腐蚀防护与防腐工程设计.机械工业出版社, 1998
    51林海朝,李谋成.涂层下金属的腐蚀过程.腐蚀科学与防护技术. 2002, 10(5):180-181
    52张志坤.纳米技术与纳米材料.国防工业出版社, 2001:108-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700