用户名: 密码: 验证码:
甜瓜属Cucumis×hytivus Chen and Kirkbride种间杂交的分子验证和细胞器基因的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜属Cucumis X hytivus Chen and Kirkbride (2n=38)是陈劲枫通过远缘杂交和胚拯救并经体细胞无性系变异染色体数目加倍而育成的异源四倍体新种,该物种的合成对改善黄瓜种质资源,将近缘野生种的有用性状转移到栽培种黄瓜具有重要意义。
     为了在分子水平验证Cucumis X hytivus Chen and Kirkbride起源于栽培种黄瓜‘北京截头’与甜瓜属野生种之间的种间远缘杂交并且明确经过5代繁育后是否仍然保持杂种特性,本研究以异源四倍体新种经过5代连续自交的后代S5和栽培种黄瓜‘北京截头’(Cucumis sativus L.'Beijingjietou',2n=14)及母本甜瓜属野生种(Cucumis hystrix Chakr..2n=24)为材料,以6-磷酸葡萄糖酸脱氢酶基因(6-phosphogluconate dehydrogenase gene,6PGDH)为对象进行研究,结果如下:
     1.黄瓜6-磷酸葡萄糖酸脱氢酶基因(6-phosphogluconate dehydrogenase gene,6PGDH)的克隆及分析
     根据6PGDH保守氨基酸序列设计简并引物,应用RT-PCR技术从黄瓜叶片中获得了640bp的特异片段,以该序列在EST数据库进行同源检索筛选,显示甜瓜EST序列AM715537.2与之高度同源,据此设计引物经RT-PCR扩增、分子克隆和序列拼接,获得了黄瓜6-磷酸葡萄糖酸脱氢酶基因全长序列,命名为Cs6PGDH。序列分析表明该基因全长1,829bp,其中开放读码框(ORF)长1,488bp编码495个氨基酸组成的多肽,编码区内无内含子存在,5’,3’端非翻译区长度各为70bp和271bp。Blast同源性分析表明该基因编码的氨基酸序列与拟南芥、大豆、水稻、玉米、菠菜等物种6PGDH的氨基酸序列有74%以上的同源性,该基因在GenBank登录号为FJ610345。运用半定量RT-PCR技术对6PGDH基因的转录水平进行分析,结果表明该基因在叶、根、茎中均有表达,高温胁迫下的表达量高于常温对照,说明6PGDH基因与热胁迫相关。
     2.利用6PGDH基因进行杂交种的分子验证
     根据上述黄瓜6PGDH基因序列(GenBank登录号:FJ610345)设计引物,扩增了异源四倍体新种S5、甜瓜属野生种和‘北京截头’的6PGDH基因片段,测序结果表明3个种的6PGDH同源一致性高达99.73%,片断长度分别为1,718bp,1718bp和1,720bp,均包含1,488bp编码495个氨基酸的完整开放阅读框和68-70bp的5’非编码区,162bp的3’非翻译区末端。利用DNAMAN软件检测到异源四倍体新种与野生种和栽培黄瓜‘北京截头’的氨基酸多态性差异位点有4个,其中新种有3个氨基酸位点来自野生种,另1个来从‘北京截头’;碱基多态性差异位点有24个,其中新种有11个位点碱基来自‘北京截头’,另有10个来自野生种,有2个位点同时含有双亲碱基,只有1个位点碱基发生转换突变而与双亲都不相同。
     氨基酸和碱基多态性差异位点的遗传分布符合孟德尔遗传学定律,在分子水平证实了异源四倍体新种起源于甜瓜属野生种和栽培黄瓜‘北京截头’的种间杂交,并且在经过5代繁育后仍然保持杂交种特性。
     为研究甜瓜属hystrix×sativis种间杂交中细胞器(线粒体、叶绿体)基因的遗传规律,对甜瓜属人工合成的异源四倍体新种(Cucumis×hytivus Chen and Kirkbride)的自交后代S5及其杂交母本甜瓜属野生种(Cucumis hystrix Chakr.)和杂交父本栽培种黄瓜‘北京截头’(Cucumis sativus L.)线粒体基因组中apocytochrome b(cob),NADH dehydrogenase subunit1(NAD1),NADH dehydrogenase subunit7(NAD7)基因序列,叶绿体基因组中matK-trnK和rbcL-accD区域的DNA序列进行了测序与比较分析,结果如下:
     3.线粒体基因的遗传分析
     在线粒体基因组中,3个种cob基因的909bp长度片断序列中只存在1个多态性碱基位点,新种该位点碱基类型与父本‘北京截头’相同而不同于母本野生种;在长度为943bp的NAD1内含子中有7个多态性碱基位点,其中有6个位点的碱基类型新种与父本‘北京截头’相同而不同于母本野生种,另1个位点的碱基类型与双亲都不相同;在长度为880bp的NAD7内含子序列中存在17个多态性碱基位点,其中有14个位点新种的碱基类型与父本‘北京截头’相同而不同于母本野生种,另3个位点碱基类型与双亲都不相同,这可能主要是由于DNA随机突变造成的。上述结果表明甜瓜属hystrix×sativus种间杂交中线粒体基因主要表现为父系遗传。
     4.叶绿体基因的遗传分析
     在叶绿体基因组中,3个种在长度为2.036bp Matk-trnK区域中存在着18个多态性碱基位点,其中有16个多态性位点的碱基类型新种与母本野生种相同,只有2个位点的碱基类型与父本‘北京截头’相同;在长度为945bp的rbcL-accD区域中存在着19个多态性位点,其中有18个多态性位点的碱基类型新种与母本野生种相同,只有1个多态性位点碱基类型与父本‘北京截头’相同。这表明甜瓜属hystrix×sativus种间杂交叶绿体基因主要表现为母系遗传。
Cucumis X hytivus Chen and Kirkbride (2n=38) of genus Cucumis was created by Jin-feng Chen via interspecific crossing and embryo rescue, chromosome numbers were doubled through somaclonal variation. This new species was very useful in broadening the germplasm base of cultivated cucumber and transferring some valuable traits from the wild cucumis species to cultivated cucumber.
     In order to verify in molecular level that Cucumis X hytivus Chen and Kirkbride was originated from interspecific crossing between cultivated cucumber'Beijingjietou'and the wild Cucumis species and whether it still maintained hybridization trait after five generations breeding, in this study we selected cucumber cultivar'Beijingjietou'(C.sativus L.), the wild Cucumis species (C. hystrix Chakr.) and the S5progenies of C. hytivus Chen and Kirkbride.) as materials to investigate, the research results were as follow.
     1. The cloning and the analysis of6-phosphogluconate dehydrogenase gene (6PGDH) from cucumber
     Degenerated primers were designed according on conserved amino acids region of6-phosphogluconate dehydrogenase gene (6PGDH),a640bp in length cDNA fragment was amplified from Cucumis sativus'Beijingjietou'leaves through RT-PCR method, using fragment sequence as a querying probe, one highly homologous melon EST sequence AM715537.2was obtained from EST database. The full-length of cucumber6-phosphogluconate dehydrogenase gene(designated as Cs6PGDH) was obtained through RT-PCR method with primers designed basing on EST sequence and sequence assembling. Sequence analysis showed that Cs6PGDH (GenBank accession number was FJ610345) was1,829bp, which encompassed a1,488bp open reading frame (ORF) encoding495amino acid residues, no intron existed in ORF region and non-translation of5'and3'-terminal region were70bp,271bp, respectively. The results of Blast homologous analysis demonstrated that deduced amino acid sequence of Cs6PGDH had above74%identity with Arabidopsis thaliana, Glycine max, Oryza saliva, Zea mays, Spinacia oleracea et al. The expression of6PGDH was analyzed by semi-QRT-PCR indicating that the gene had expression in leaf, root and stem, the amount of expression was higher in heat stress than normal temperature, the result showed that expression of6PGDH was related to heat stress.
     2. Confirmation of the interspecific hybridization trait by nuclear gene6PGDH
     Primers were designed based on the6PGDH gene of cucumber (GenBank accession number was FJ610345), fragments from allotetraploid, the wild Cucumis species and cucumber'Beijingjietou'were obtained in PCR reaction, respectively and sequences alignment were analyzed by DNAMAN software. Four polymorphic amino acid sites were detected among three species, the allotetraploid possessed three amino acids of polymor-phic sites from the wild Cucumis species, and one amino acid from cucumber 'Beijingjietou'; twenty-four polymorphic nucleotide sites were also detected in three species, the allotetraploid possessed eleven bases type of polymorphic nucleotide sites from cucumber'Beijingjietou', ten bases type of polymorphic nucleotide sites from the wild Cucumis, two additive nucleotide sites possessed both different nucleotides sites from cultivar'Beijingjietou'and the wild Cucumis species simultaneously, while one base type of nucleotide sites differ from both species.
     The distribution of these polymorphic sites was congruence well with Mendel's genetics law of inheritance. Therefore it was proven at molecular level that this synthetic allotetraploid species was the hybrid originated from the wild Cucumis species and cucumber'Beijingjietou' interspecific crossing and still maintained hybridization trait after five generations breeding.
     To investigate the inheritance of organellar(mitochondrial and chloroplast) gene in Genus Cucumis, the Nad7, Nad1and cob gene fragments of mitochondrial DNA and the Matk-trnK and rbcL-accD gene region fragments of chloroplast DNA were amplified and sequenced from the S5progenies of the allotetraploid(Cucumis hytivus Chen and Kirkbride.), the wild Cucumis species(C. hystrix Chakr.) the maternal parents and cultivated cucumber(C. sativus L.'Beijingjietou') the paternal parents, respectively.
     3. The inheritance of mitochondrial(mt) gene
     Polymorphic Loci in Nad7, Nad1and cob mt gene were detected among three species by DNA sequencing and comparison, the results showed that only one polymorphic locus existed in909bp length sequence of cob gene, the base type of polymorphic locus in allotetraploid was identical to cucumber'Beijingjietou'the paternal parents but different from the wild Cucumis species the maternal parents; seven polymorphic loci existed in943bp length intron sequence of NAD1gene, among them six base types of polymorphic loci in allotetraploid were identical to cucumber 'Beijingjietou' but different from the wild Cucumis species, one base type of polymorphic locus was different from both parents; seventeen polymorphic loci were detected in880bp length intron sequence of NAD7gene, among them fourteen base types of allotetraploid were identical to cucumber 'Beijingjietou' but different from the wild Cucumis species, three base types of polymorphic loci were different from both parents.
     This result revealed that mt genes was dominantly paternal transmission in hystrixxsativus interspecific crossing.
     4. The inheritance of chloroplast(cp) gene
     Polymorphic Loci in Matk-trnK and rbcL-accD gene region of cp genomes were also detected among three species by DNA sequencing and comparison, the results showed that eighteen polymorphic loci existed in2,036bp length sequence of Matk-trnK region, among them the base types of sixteen loci in allotetraploid were identical to wild Cucumis species the maternal parents, only two loci's base type in allotetraploid were identical to the cucumber'Beijingjietou' the paternal parents; nineteen polymorphic loci existed in945bp length sequence of rbcL-accD region, among them the base types of eighteen Loci in allotetraploid were identical to wild Cucumis species only one base type of polymorphic locus was identical to the cucumber'Beijingjietou'.
     This study revealed that cp genes were dominantly maternal transmission in hystrixxsativus interspecific crossing.
引文
[1]潘瑞炽,董愚得.植物生理学(第三版).北京:高等教育出版社.1995.
    [2]王晓敏.葡萄糖-6磷酸葡萄糖酸脱氢酶在芦苇愈伤组织盐适应性中调节作用的机理研究.兰州大学,博士论文,2008.
    [3]沈同,王镜岩.生物化学(第二版).北京:高等教育出版社,1991.
    [4]Schnarrenberger C, Flechner A, Martin W. Enzymatic evidence for a complete oxidadtive pentose phosphate pathway in chloroplasts and an incomplete pathway in the cytosol of spinach leaves. Plant Physiol,1995,108:609-614.
    [5]Phillip M D, Michael J E. Subcellular distribution of enzymes of the oxidative pentose phosphate pathway in root and leaf tissues. J Exp Bot,1999,50:1653-1661.
    [6]高东升.落叶果树自然休眠生物学研究.山东农业大学学报,2001,6:53-54.
    [7]Nemoto Y, Sasakuma T. Specific expression of glucose-6-phosphate dehydrogenase(G6PDH)gene by salt stress in wheat(Triticum aestivum L). Plant Science,2000,158:53-61.
    [8]赵永华,杨世林,刘惠卿.西洋参种子休眠解除与戊糖磷酸途径关系的研究.中草药,2001,32:259-261.
    [9]徐莉,蔡素雯,王永辉.激光辐射对玉米幼苗糖代谢的影响.应用激光,2000.22(6):569-572.
    [10]丁林云.水稻胞质6-磷酸葡萄糖酸脱氢酶基因的功能分析.南京农业大学,硕士论文,2007.
    [11]叶建仁,黄素红,李传道.磷酸葡萄糖脱氢酶和苯丙氨酸解氨酶与抗松针褐斑病的关系.林业科学,1994,30:430-435
    [12]Hauschild R, Von Schaewen A. Differential regulation of glucose-6phosphate dehydrogenase isoenzyme activities in potato.Plant Physiol,2003,133:47-62.
    [13]Bailey-serres J, Tom J, Freeling M. Expression and distribution of cytosolic 6-phosphogluconate dehydrogenase isozymes in maize. Biochemical Genetics,1992,30:233-246.
    [14]侯夫云.水稻戊糖磷酸途径两个关键酶基因的克隆与功能分析.南京农业大学,硕士论文,2005.
    [15]Tanksley S D, Kuehn G D. Genetics, subcellular location and molecular charac terization of 6-phosphogluconate dehydrogenase isozymes in tomato. Biochemical Genetics,1985,23:441-454.
    [16]Nasoff M S, Baker H V, WolfJr R E. DNA sequence of the Escherichia coli gene, gnd, for 6-phosphogluconate dehydrogenase. Gene,1984,27:253-264.
    [17]Fahrendorf T Niw, Shorrosh B S, Dixon R A. Stress responses in alfalfa (Medicago sativa L.) XIX. transcriptional activities pentose phosphate pathway gene at the onset of the isoflavonoid phytoalexin response. Plant Mol Biol,1995.28:885-900.
    [18]Karsten K, Marlies P, William M. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Eur J Biochom,2001,268:2678-2686.
    [19]黄骥.水稻功能基因的电子克隆与盐胁迫诱导cDNA文库的构建.南京农业大学,硕士论文.2002.
    [20]Van Assche F, Carchinael C, Clijster H. Induction of enzyme capacity in plants as a result of heavy metal toxicity:dose-response relations in Phaseolus vulgaris L. treated with zinc and cadmium. Environ Pollut,1988,52:103-115.
    [21]Slaski J J, Zhang G, Basu U, Stephens J L, Taylor G J. Aluminum resistance in wheat (Triticum aestivum) is associated with rapid, Al-induced changes in activities of glucose-6-phosphate dehydrogenase and 6-phosphoglucanate dehydrogenase in root apices. Plant Physiol,1996, 98:477-484.
    [22]彭克勤,夏石头,李阳生.涝害对早中稻生理特性及产量的影响.湖南农业大学学报(自然科学版),2001,21:173-176.
    [23]黄骥,侯夫云,王建飞,张红生.高等植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因的不同进化起源.植物学通报,2005.22(2):138-146.
    [1]曹家树,申书兴.园艺植物育种学.北京:中国农业大学出版社.2001.
    [2]徐传远.油菜与诸葛菜远缘杂交后代的选育及遗传分析.华中农业大学,博士论文,2007.
    [3]杜雪竹.甘蓝型油菜与Lesquerella fendleri及菘蓝族间杂种的遗传研究.华中农业大学,博士论文,2008.
    [4]景士西.园艺植物育种学.北京:中国农业出版社.1999.
    [5]吴定华,梁树南.番茄远缘杂交的研究.园艺学报,1992,19(1):41-46.
    [6]Gudiu Serge. Embryo rescue in Rose hybrids. Euphytica,1994,7(2):205-212.
    [7]杨红花,陈学森,冯宝春,刘焕芳,郑洲.利用远缘杂交创造核果类果树新种质的研究Ⅱ.李、杏远缘杂种胚抢救及杂种鉴定.中国农业科学,2004,37(8):1203-1207.
    [8]王发林,赵秀梅,李红旭,郝燕.李、杏属间远缘杂交及杂种胚培养技术研究.果树学报,2003,20(2):103-106.
    [9]Mullinls M G. Tissure culture and the genetic improvement of grapevines a review. Acta Horticulturae,1990,280:11-12.
    [10]马瑞娟,杜平,胡金良,许建兰,俞明亮.桃、李种间远缘杂交亲和性研究.果树学报,2005,22(3):283-285.
    [11]梁青,陈学森,刘文,吴燕.胚抢救在果树育种上的研究及应用.园艺学报,2006,33(2):445-452.
    [12]徐民生,谢维荪.仙人掌及多肉植物.北京:中国经济出版社.1997.
    [13]赵世伟,程金水,陈俊愉.金花茶和山茶花的种间杂种.北京林业大学学报,1998,20(2):44-49.
    [14]吴定华,程玉瑾,梁树南,张曙光.类番茄茄与番茄属间有性杂交的研究.园艺学报,2000,27(2):117-122.
    [15]刘春,穆鼎,明军,董玲.百合种间杂交受精前障碍的研究.园艺学报,2006,33(3):653-656.
    [16]张修仁,张居里,张世明.苹果×梨属间杂交新品种‘甘金’的选育.果树科学,1991,8(2):65-70.
    [17]胡适宜,申家恒.棉花受精过程各阶段的持续时间的研究.北京大学学报,1980,1:75-87.
    [18]张启翔.梅花远缘杂交与抗寒性育种.北京林业大学学报,1988,10(4):53-59.
    [19]Liu Qinglin. Effects of Pollen Mentor, Growth Regulator and Embryo Culture on Interspecific Hybridization of Prunusmume. Journal of Beijing forestry university,1999,21(2):54-60.
    [20]邓光兵,潘志芬,翟旭光,余懋群.燕麦种间杂种F1的形态学与细胞遗传学研究.作物学报,2005,31(9):1186-1191.
    [21]杨红花.李、杏属间远缘杂交及种质创新的研究.山东农业大学,博士论文,2004.
    [22]罗向东,陈劲枫,郭军洋,娄群峰,钱春桃.Cucumis sativus×C.hystrix种间杂种的形态学和细胞学观察,西北植物学报,2004,24(12):2303-2306.
    [23]周清元.白菜型油菜×羽衣甘蓝种间杂种的性状表现.西南农业大学学报,2006,28(1):1-3.
    [24]程志芳,钱春桃,陈学军,陈劲枫.辣椒属种间杂交及杂种鉴定研究.园艺学报,2007,34(4):883-888.
    [25]张成敏,孙卫邦,张石宝.四季秋海棠与球根秋海棠远缘杂种-漪婴桃海棠.园艺学报.2001.28(1):83-85.
    [26]Binsfeld P C, Wingender R, Schnabl H. Cytogenetic analysis of interspecific sunflower hybrids and molecular evalution of their progeny. Theor Appl Genet,2001,102:1280-1285.
    [27]Kraevoi S Ya, Nizhnikov Vs, Kraevoi Ya. Modern methods of breeding sour cherries(Cerasus Juss.).Biologicheskaya,1974,2:261-274.
    [28]罗向东,戴亮芳,陈龙正,钱春桃,陈劲枫.野黄瓜(Cucumis hystrix Chakr.)与3种不同基因型栽培黄瓜(Cucumis sativus L.)(?)中间杂交及杂种鉴定.武汉植物学研究2006,24(3):207-211.
    [29]陈劲枫,庄飞云,钱春桃.甜瓜属一新物种(双二倍体)合成及定性.武汉植物学研究,2001,19(5):357-362.
    [30]王树彦.加拿大披碱草-老芒麦及其杂交后代的遗传分析.内蒙古农业大学,博士论文.2004.
    [31]刘道峰,程祝宽,刘国庆,刘国振.水稻类病变突变体lmi的鉴定及其基因定位.科学通报,2003,48(8):831-833.
    [32]杨国华,李滨,刘建中.应用基因组原位杂交鉴定蓝粒小麦及其诱变后代.遗传学报,2002,29(3):255-259.
    [33]陈沁滨,侯喜林,陈晓峰,张静宜.洋葱细胞质雄性不育基因RAPD及SCAR分子标记研究.南京农业大学学报,2007,30(4):16-19.
    [34]姜廷波,李绍臣,高福铃.白桦RAPD遗传连锁图谱的构建.遗传,2007,29(7):867-873.
    [35]刘平武,周国岭,杨光圣,傅廷栋.双低甘蓝型油菜杂交种亲本指纹图谱构建和杂交种纯度鉴定.作物学报,2005,31(5):640-646.
    [36]崔江慧,薛薇,段西飞,王静华,常金华.高粱分子连锁图谱的构建.华北农学报,2007,22(4):120-123.
    [37]陈华锋,钱保俐,庄丽芳.普通小麦中国春-百萨堰麦草异染色体系的分子标记分析.作物学报,2007,33(8):1232-1239.
    [38]黄和艳,张延国,邓波AFLP标记辅助甘蓝显性雄性不育高代回交系选择.园艺学报,2006,33(3):539-543.
    [39]陈奕欣,左正宏,陈晓,王重刚,吕良炬.坛紫菜种质资源遗传多样性的AFLP分析.厦门大学学报(自然科学版),2007,46(6):831-835.
    [40]陈碧云,张冬晓,伍晓明.89份油菜区试品种的AFLP指纹图谱分析.中国油料作物学报,2007,29(2):9-14
    [41]路明,周芳,谢传晓,李明顺,徐云碧,Marilyn Warburton,张世煌.玉米杂交种掖单13号 的ssR连锁图谱构建与叶夹角和叶向值的QTL定位与分析.遗传,2007,29(9):1131-1138.
    [42]刘志斋,王大宇,黎裕.TP-M13-SSR技术及其在玉米遗传多样性研究中的应用.玉米科学,2007,15(6):10-15.
    [1]Knoop V. The mitochondrial DNA of land plants:peculiarities in phylogenetic perspective. Curr Genet,2004,46:123-139.
    [2]Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome:comparative analysis of mitochondrial genome in higher plants. Mol Gen Genet,2005,272:603-615.
    [3]Backert S, DORFel P, Larz R, Borner T. Rolling-circle replication of mitochondrial DNA in the higher plant (Chenopodium album L.). Mol Cell Biol,1996,16:6285-6294.
    [4]潘宝平,卜文俊.线粒体基因组的遗传与进化研究进展.生物学通报,2005,40(8):1-3.
    [5]Qiu Y L, Plamer J D. Many independent origins of traps splicing of a plant mitochdrial group II intron. Mol Evol,2004,59:722-724.
    [6]Chen H, Sun M. Consensus multiplex PCR-restriction fragment length polymorphism (RFLP) for rapid detection of plant mitochondrial DNA polymorphism. Mol Ecol,1998,7:1553-1556.
    [7]Sugiura M. The chloroplast genome. Plant Molecular Biology,1992,19:149-168.
    [8]Sugiura M. The chloroplast chromosomes in land plants. Anraeal Review of Cell Biology,1989,5: 51-70.
    [9]Palmer J D. Comparative organization of chloroplast genomes. Ann Rev Genet,1985,19:325-354.
    [10]胡德昌.柿及其部分近缘种mtDNA和cpDNA多态性分析.华中农业大学,博士学位论文,2007.
    [11]Wolfe K H, Li W H, Sharp P M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA,1987,84:9054-9058.
    [12]Kuroiwa T. The replication, differentiation, and inheritance of plastids with emphasis on the cocept of organelle nuclei. Inter Rev Cytol,1991,128:1-60.
    [13]胡适宜.被子植物质体遗传的细胞学研究.植物学报,1997,39(4);363-371.
    [14]Corriveau J L, Coleman A W. Rapid screening method to detect potential bipatental inheritance of plastid DNA and results for over 200 angiosperm species. Amer J Bot,1988,75:1443-1458.
    [15]Russell S D. Ultrastructure of the sperm cell of Plumbago zeylanica, II quantitative cytology and three-dimensional organization. Planta,1984,162:385-391.
    [16]Meyer B, Stubbe W. Das zahlenverhaltnis von miltterlichen und vaterlichen plastiden in den zygoten von oenothera erythrosepala Borbas(syn.Oe. lamarckiana). Ber Detusch Bot BD,1974,87:29-38.
    [17]胡适宜,国凤利,罗玉英.天竺葵质体和线粒体双亲遗传的细胞学机理-雄性和雌性配子超微结构和DNA荧光的研究.植物学报,1994,36:245-250.
    [18]Guo F L, Hu S Y. Cytological evidence of biparental inheritance of plastids and mitochondria in Pelargonium. Protoplasma,1995,186:201-207.
    [19]Tilney-Bassett R A E. The control of plastid inheritance in Pelargonium. Heridity,1973,30 (1):1-13.
    [20]Tilnye-Bassett R A E. The control of plastid inheritance on Pelargonutm IV. Heredity,1976,37 (1):95-107.
    [21]Tilney-Baasett R A E, Almouslem A B. Variation in plastid inheritance between Pelasgonium cultivars and their hybrids. Heredity,1989,63:145-153.
    [22]Chiu W L. Stubbe W. Sears B B. Plastid inheritance in Oenothera:Organelle genome modifies the extent of biparental plastid transmission. Current Genet,1988,13:181-189.
    [23]Russell S D. Quantitative cytology of the egg and central cell of Plumbago zeylanica and its impact on cytoplasmic inheritance patterns. Theoret Appl Genet,1987,74:693-699.
    [24]Kuroiwa T. The replication.differentiation and inheritance of plastids with emphasis on the cocept of organelle nuclei. Inter Rev Cytol,1991,128:1-60.
    [25]Neale D B, Whecler N C, Allard R W. Paternal of chloroplast DNA in Douglas fir. Can J For Res, 1986,16:1152-1154.
    [26]Hagemann K. Plasid gentetics in higher plants.ln:Hermmann R G ed., Cell Organelles. New York: Springer-Verlag,1992.65-96.
    [27]Schumnni C M. Hancock J F. Paternal inheritance of plastids in Madicago sativa. Theor Appl Genet, 1989,78:862-866.
    [28]Masoud S A, Johnson L B, Sorensen E L. High transmission of paternal plastid DNA in alfalfa plants demonstrated by restriction fragment polymorphic analysis. Theor Appl Genet, 1990,79:49-55.
    [29]Boblenz K, Thomas N, Michael M. Paternal inheritance of plastids in the genus Daucus. Mol Gen Genet,1990,220:489-491.
    [30]Hu Z M, Hu Sh Y. Paternal inheritance of plastid DNA in genus Pharbitis. Acta Bot Sin, 1996,38:253-256.
    [31]Sears B B. Elimination of plastid during spermatogensis and fertilization in the plant kingdom. Plasmid,1980,4:233-255.
    [32]Willemse M T M, van Vent J L. The female gametephyte. In:Johri B M ed., embryology of Angiosperm. Berlin:Springer-Verlag,1984,159-196.
    [33]Huang B Q, Russell S D. Female germ unit:Organization, isolation and function. In Russell S D, Dumas C eds., Sexual Reproduction in Flowering Plants. New York:Academic Press, 1992,223-293.
    [34]Hagemann R, Schroder M B. The cytological basis of the plastid inheritance in angiosperm. Protoplasma,1989,152:57-64.
    [35]Whatley J M. Ultrastructure of plastid inheritance:Green algae to angiosperm. Biol Rev,1982.57: 527-569.
    [36]Corriveau J L, Coleman A W. Rapid screening method to detect potential biparental inheritance of plastid DNA and result for over 200 angiosperm species. Amer J Bot,1988,75:1443-1458.
    [37]Schroder M B. Ultrastructural studies on plastids generative and vegetative cell in Liliaceae 3 plastids distribution during the pollen development in Gasteria verucosa(Mill.)Duval. Protoplasma,1985,124:123-129.
    [38]胡适宜,罗玉英.玉竹雄配子体的发育-着重阐明质体在生殖细胞和营养细胞中的分布和变化.植物学报,1997,39:1-6.
    [39]刘兴梁,胡适宜.菜豆花粉发育中质体和线粒体及其DNA存在的状况-着重阐明质体遗传的细胞学基础.植物学报,1997,39:106-110.
    [40]Clauhs R P, Grun P. Changes in plastid and mitochondria content during maturation of generative cells of Solanum(Solanaceae). Amer J Bot,1977,64:377-383.
    [41]Vaughn K C, Bonte D E, Wilson L R. Organelle alteration as a mechanism for maternal inheritance. Science,1980,208:196-198.
    [42]Schroder M B. Ultrastructural studies on plastids of generative and vegetative cells in Liliacene 4. plastid degeneration during generative cell maturation in Convalaria majalis L.. Biol Zentralbl, 1986,105:427-433.
    [43]Vaughn K C. Organelle transmission in higher plants:organelle alteration as physical exclusion. J Heredity,1981,72:335-337.
    [44]Miyamura S, Kuroiwa T, Nagata T. Disapperance of plastids and mitochondria nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy. Protoplasma, 1987,141:149-159.
    [45]Hagemann R, Schroder M B. New results about the the presence of plastids in generative and sperm cells of Gramineae.In:Sexual Reproduction in seed plants, Ferns and Mosses. Wageningen: PVDVC,1985,53-55.
    [46]Sodmergen, Suzuki T, Kawano S.Behavior of organelle nuclei(nucleoids) in generative and vegetative cells during maturation of pollen in lilum longiflorum and Pelargonium zonale. Protoplasma,1992,168:73-82.
    [47]Nakamura S T,Ikeharn H U, Suzuki T. Fluorescence microscopy of plastid nucleoids and a survey of nuclease C in higher plants with respect to mode of plastid inheritance. Protoplasma,1992,169: 68-74.
    [48]Mogensen H L. Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Prac Natl Acad Sci,1988,85:2594-2597.
    [1]沈同,王镜岩.生物化学.北京:高等教育出版社.1991,102-104
    [2]Fahrendorf T, Ni W, Shorroosh B S, Dixon R A. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavanoid phytoalexin response. Plant Mol Biol,1995,28:885-900.
    [3]Nemoto Y, Sasakuma T. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat(Triticum aestivum L.). Plant Science.2000,158:53-60.
    [4]Van Assche F, Cardinaels C, Clijsters H. Induction of enzyme capacity in plants as a result of heave metal toxicity:dose-response relation in Phaseolus vulgaris L. treated with zinc and cadmium. Environ Pollut,1988,52(2):103-115.
    [5]Slaski J J, Zhang G, Basu U, Stephens J L, Taylor G J. Aluminum resistance in wheat(Triticum aestivum L.) is associated with rapid, AI-induced changes in activities of glucose-6-phosphate dehydrogenase and 6-phosphoglucanate dehydrogenase in root apices. Plant Physiol,1996, 98:477-484.
    [6]Sindelar L, Sindelarova M, Burketova L. Changes in activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase isozymes upon potato virus Y infection in tobacco leaf tissues and protoplast. Plant Phsiol Biochem,1999,37(3):195-201.
    [7]Huang J, Zhang H S, Wang J F, Yang J S. Molecular cloning of rice 6-phosphogluconate dehydrogenase genes that is up regulated by salt-stress. Biology Reports,2003,30:223-227.
    [8]Redinbaugh M G, Campbell W H. Nitrate regulation of the oxidative pentose phosphate pathway in maize(Zea mays L.) root plastids:induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels. Plant Sci.1998,134 (2):129-140.
    [9]Alexandrov N N, Troukhan M E, Brover V V, Tatarinova T. Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol,2006,60 (1):71-87
    [10]Krepinsky K, Plaumann M, Martin W, Schnarrenberger C. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach cyanobacterial genes for chloroplast and cytosolic isoenzymes encoded in eukaryotic chromosomes. Eur J Biochem,2001,268 (9):2678-2686
    [11]杨寅桂.黄瓜耐热性及热胁迫响应基因研究.南京农业大学,博士学位论文,2007.
    [12]Murray M G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res,1980,8(19):4321-4326.
    [13]杨寅桂,庄勇,娄群峰.适于cDNA-AFLP的黄瓜幼叶总RNA快速高效提取方法.江西农业大学学报,2007,29(1):129-133.
    [14]Hayashi H, Huang P, Takada S. Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra L. Biol Pharm Bull,2004,27:1086-1092.
    [15]Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K. Molecular cloning and characterization of triterpene synthases from Medicago truncatula L.and Lotus japonicas L. Plant Mol Biol,2003,51:731-743.
    [16]孙菲菲,侯喜林,李英.不结球白菜硝酸还原酶基因cDNA的克隆及序列分析.南京农业大学学报,2006,29(2):15-19.
    [17]蒋芳玲,侯喜林,史公军.不结球白菜BrLOS2基因cDNA全序列克隆及结构特征分析.南京农业大学学报,2007,30(3):27-32.
    [18]刘鲜艳,刘雅莉,王跃进.百合ACC氧化酶基因全长cDNA的克隆及序列分析.西北植物学报,2008,28(4):0651-0656.
    [19]张艳,柴岩,冯佰利.苦荞和甜荞查尔酮合成酶基因的克隆及序列比较.西北植物学报,2008,28(3):0447-0451
    [20]Reizer A, Deutseher J, Saier M H. Analysis of the gluconate operon of Bacillus subtills. Mol microbiol,1991,5:1081-1089
    [21]侯夫云.水稻戊糖磷酸途径两个关键酶基因的克隆与功能分析.南京农业大学,硕士学位论文.2005.
    [22]黄骥,王建飞,张红生.水稻葡萄糖-6-磷酸脱氢酶cDNA的电子克隆.遗传学报,2002.29(11):1012-1016.
    [23]Jacqueline S K, Michael J E, Phillip M D. Isolation and characterization of a full-length genomic clone encoding a plastidic glucose 6-phosphate dehydrogenase from Nicotiana tabacum. Planta. 2001,12:499-507.
    [24]林善枝,陈晓敏,蔡世英.低温锻炼对香蕉幼苗能量代谢和抗冷性效应的研究.热带作物学报.2001,22(2):17-21.
    [25]朱雪竹,宗良纲,孔繁翔.活性铝对小麦葡萄糖含量及相关酶活性影响的研究.农业环境科学学报,2004,23(3):452-4154.
    [26]Chen J F, Staub J E, Tashiro Y. Successful interspecific hybridization between Cucumis sativus L. and C.hystrix Chakr. Euphytica,1997,96:413-419.
    [27]Chen J F, Adelberg J, Staub J E, Skoyupska H T, Rhodes B B. A new synthetic amphidiploid in Cucumis from C.sativus×C.hystrix Chakr. F1 interspecific hybrid//McCreight J D. Cucurbitaceae 98-evaluation and enhancement of cucurbit germplasm. ASHS press, Alexandria, Va. U.S.A., 1998,336-339.
    [28]Chen J F, Adelberg J. Interspecific hybridization in Cucumis-progress, problem, and perspectives. Hortscience,2000,35 (1):11-15.
    [29]Chen J F, Joseph H, Kirkbride J. A new synthetic species Cucumis(Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia,2000,52:315-319.
    [30]Chen J F, Staub J E, Adelberg J W. Synthesis and prelimary characterization of a new species(amphidiploid) in Cucumis,2002,123:315-322.
    [31]Chen J F, Staub J E, Qian C T. Reproduction and cytogenetic characterization of interspecific hybrids from C.hystrix Chakr.×C.sativus L. Theor Appl Gent,2003,106:688-695.
    [32]陈劲枫,庄飞云,钱春桃.甜瓜属一新物种(双二倍体)合成及定性.武汉植物学研究,2001,19(5):357-362.
    [33]陈劲枫,任刚,余纪柱.甜瓜属远缘杂种回交自交群体的过氧化物酶同工酶分析.武汉植物学研究.2002.20(5):333-337.
    [34]庄飞云,陈劲枫,钱春桃.甜瓜属人工异源四倍体(Cucumis hytivus)染色体组间重组的细胞学及分子标记研究.中国农业科学,2005.38(3):582-588.
    [35]庄飞云,陈劲枫.黄瓜栽培种、近缘野生种、种间杂种及其回交后代的RAPD分析.园艺学报,2003,30(1):47-50.
    [36]庄飞云,陈劲枫,Wolucau J.甜瓜属人工异源四倍体与栽培黄瓜渐渗杂交及其后代遗传变异研究.园艺学报,2006,33(2):266-271.
    [37]袁长春,黎培新,王燕芳,施苏华.用核糖体ITS区序列验证自然杂交种Meconopsis X cookei G.Taylor.遗传学报,2004,31(9):901-907.
    [38]袁长春,何雪宝,袁秋梅,施苏华.绿绒蒿自然杂交种及其亲本cpDNA trnL-trnF基因的遗传学分析.云南植物研究,2007,29(1):103-108.
    [39]郭旺珍,韩志国,张天真.栽培四倍体棉种及其二倍体祖先种的Histone3基因片段序列分析.棉花学报,2004,16(4):195-201.
    [40]李小娟,王留阳,杨惠玲,刘建全.麻花艽和管花秦艽(龙胆科)之间自然杂交类型的分子验证.云南植物研究,2007,29(1):91-97.
    [41]Karsten K, Marlies P, William M. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Eur J Biochom,2001.268:2678-2686.
    [42]Brover V, Troukhan M, Alexandrov N. Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol,2006,60 (1):71-87.
    [1]Gillham N W. Organelle Heredity. Raven Press, New York,1978.
    [2]Boynton J J, Harris E H, Burkhart B D,Lamerson P M,Gillham N W.Transmission of mitochondrial and chloroplast genomes of Chlamydomonas. Proc Natl Acad Sci USA.1987,84:2391-2395.
    [3]Neal D B, Sederoff R R. Parternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine.Thero Appl Genet,1989,77:212-216.
    [4]Erickson L, Kemble R. Paternal inheritance of mitochondria in rapeseed (Brassica napus).Mol Gen Genet,1990,222:135-139.
    [5]Erickson L, Kemble R, Swanson E. The Brassica mitochondrial plasmid can be sexually transmitted. Pollen transfer of a cytoplasmic genetic elementMol Gen Genet,1989.218:419-422.
    [6]Matsuursa S. Paternal inheritance of mitochondrial DNA in cucumber(Cucumis sativus L.).Rep Cucurbit Genet Coop,1995,18:31-33.
    [7]Havey M J. Predominant paternal transmission of the Mitochondrial Genome in cucumber. J hered, 1997,88(3):232-235.
    [8]Havey M J, McCreight J D,Rhodes B,Taurick G. Differential transmission of the Cucumis Organellar genomes.Theor Appl Genet,1998,97:122-128.
    [9]Allen J O, G K Emenhiser, J L Kermicle. Miniature kernel and plant:interaction between teosinte cytoplasmic genomes and maize nuclear genomes. Maydica 1989,34:277-290.
    [10]Chen J F, Staub J E, Tashiro Y. Successful interspecific hybridization between Cucumis sativus L. and C.hystrix Chakr. Euphytica,1997,96:413-419.
    [11]Chen J F, Adelberg J, Staub J E, Skoyupska H T, Rhodes B B. A new synthetic amphidiploid in Cucumis from C.sativus X C.hystrix Chakr. F1 interspecific hybrid//McCreight J D. Cucurbitaceae 98-evaluation and enhancement of cucurbit germplasm. ASHS press, Alexandria, Va. U.S.A.,1998, 336-339.
    [12]Chen J F, Adelberg J. Interspecific hybridization in Cucumis-progress, problem, and perspectives. Hortscience,2000,35(1):11-15.
    [13]Chen J F, Joseph H, Kirkbride J. A new synthetic species Cucumis(Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia,2000,52:315-319.
    [14]Chen J F, Staub J E, Adelberg J W. Synthesis and prelimary characterization of a new species(amphidiploid) in Cucumis,2002,123:315-322.
    [15]Neale D B, Whecler N C, Allard R W. Paternal inheritance of chloroplast DNA in Douglas fir. Can J For Res,1986,16:1152-1154.
    [16]Hagemann R, Schroder M B. The cytological basis of plastid inheritance in angiosperms. Protoplasma,1989,152:57-64.
    [17]Hu S Y. A cytological study of plastid inheritance in angiosperms.Acta Bot Sin,1997,39(4):363-371.
    [18]胡适宜,国风利,罗玉英.天竺葵质体和线粒体双亲遗传的细胞学机理—雄性和雌性配子超微结构和DNA荧光的研究.植物学报,1994,36:245-250.
    [19]国凤利,胡适宜.杜鹃精细胞的超微结构及DNA荧光的观察—着重阐明质体双亲遗传的细胞学基础.植物学报.1996,38:548-552.
    [20]袁长春,何雪宝,袁秋梅.施苏华.绿绒蒿自然杂交种及其亲本cpDNA trnL-trnF基因的遗传学分析.云南植物研究,2007,29(1):103-108.
    [21]郭亚龙,葛颂.线粒体nadl基因内含子在稻族系统学研究中的价值—兼论Porteresia(?)勺系统位置.植物分类学报,2004,42(4):333-344.
    [22]Murray M G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res,1980,8(19):4321-4326.
    [23]Tsukamoto N, Asakura N, Hattori N, Takumi S, Mori N, Nakamura C. Identification of parternal mitochondrial DNA sequences in the nucleus-cytoplasm hybrids of tetroploid and hexaploid wheat with D and D2 plasmons from Aegilops species. Curr Genet 2000,38:208-217.
    [24]Nakamura S, Aoyama H and van Woesik R. Strict paternal transmission of mitochondrial DNA of Cblamydomonas species is explained by selection against maternal nucleoids. Protoplasma.2003, 221:205-210.
    [25]Erickson L, Kemble R. Paternal inheritance of mitochondria in rapeseed (Brassica napus). Mol Gen Genet,1990,222:135-139.
    [26]Matsuursa S, Mizusawa H. Paternal inheritance of mitochondrial DNA in cucumber:Confirmation by PCR method.(Cucumis sativus L.).Rep Cucurbit Genet Coop,1998.21:6-7.
    [27]陈劲枫,庄飞云,娄群峰,徐玉波,钱春桃,任刚,罗向东.Cucumis属植物种间正反杂交差异的研究.园艺学报,2002,29(5):483-485.
    [28]Chat J, Chalak L, Petie R J. Strict parternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theor Appl Genet,1999.99:314-322.
    [29]Vaillancourt R E, Petty A, Mckinnon G E. Maternal inheritance of mitochondria in Eucalptus globulus. Journal of heredity.2004,95 (4):353-355.
    [30]Sears B B. Elimination of plastids during spermatogensis and fertilization in the plant kingdom. Plasmid,1980,4:233-255.
    [31]Whatley J M. Ultrastructure of plastid inheritance:Green algae to angiosperms. Biol Rev, 1982,57:527-569.
    [32]Smith S E. Biparental inheritance of organelle and implication in crop improvement. Plant Breed Rev,1988.6:361-393.
    [33]Schumarm C M, Hancock J F. Paternal inheritance of plastids in Madicago sativa. Theor Appl Genet, 1989.78:862-866.
    [34]Masoud S A, Johnson L B, Sorensen E L. High transmission of paternal plastid DNA in alfalfa plants demonstrated by restriction fragment polymorphic analysis. Thero Appl Genet,1990,79:49-55.
    [35]Boblenz K, Thomas N, Michael M. Paternal inheritance of plastids in the genus Daucas. Mol Gen Genet,1990,220:489-491.
    [36]Hu Zun-min, Hu Shi-yi. Paternal inheritance of plastid DNA in genus Pharbitis. Acta Bot Sin, 1996.38:253-256.
    [37]Hagemann K. Plasid gentetics in higher plants.In:Hermann R G ed., Cell Organelles. New York: Springer-Verlag,1992,65-96.
    [38]Perl-Treves R, Galun E. The Cucumis plastome:physical map, intrageneric variation, and phylogenetic relationships. Theor Appl Genet,1985,71:417-429.
    [39]Corriveau J L, Coleman A W. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer J Bot,1988,75:1443-1458.
    [40]曹清河,陈劲枫,钱春桃.黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定.园艺学报.2005,32(6):1098-1101.
    [41]陈劲枫,林茂松,钱春桃,庄飞云,Stephen Lewis.甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究.南京农业大学学报,2001,24(1):21-24.
    [42]Neale D B, Whecler N C, Allard R W. Paternal inheritance of chloroplast DNA in Douglas fir. Can J For Res,1986,16:1152-1154.
    [43]施苏华,杜稚青,David Bufford,龚沟,黄椰林,何航航,钟扬.用cpDNAmatK基因和nrDNAITS区序列确定我国特有植物四棱草属的系统位置.科学通报,2003,11(48):1176-1180.
    [44]李晓贤,周浙昆.单子叶植物高级分类阶元系统演化matK^ rbcL和18S rDNA序列的证据.植物分类学报,2007,45(2):113-133.
    [1]Joshi C P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res,1987,15(16):6643-6653.
    [2]沈同,王镜岩主编.生物化学.北京:高等教育出版社,1991,121-124.
    [3]Van Assche F, Cardinaels C, Clijsters H. Induction of enzyme capacity in plants as a result of heave metal toxicity:dose-response relation in Phaseolus vulgaris L. treated with zinc and cadmium. Environ Pollut,1988,52(2):103-115.
    [4]Slaski J J, Zhang G, Basu U, Stephens J L, Taylor G J. Aluminum resistance in wheat (Triticum aestivum L.) is associated with rapid, Al-induced changes in activities of glucose-6-phosphate dehydrogenase and 6-phosphoglucanate dehydrogenase in root apices. Plant Physiol,1996, 98:477-484.
    [5]Sindelar L, Sindelarova M, Burketova L.Changes in activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase isozymes upon potato virus Y infection in tobacco leaf tissues and protoplast. Plant Phsiol Biochem,1999,37(3):195-201.
    [6]Juhnke H, Krems B, Kotter P, Entian K D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose-phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 1996,252:456-464.
    [7]Jiao H J, Wang S Y, Civerolo E L. Enzymatic activities of citrus leaves from plants resistant and susceptible to citrus bacterial canker disease. Environ Exp Bot,1992,32:465-470.
    [8]Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,1995,25: 674-681.
    [9]Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Effcient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J.1995,8:457-463.
    [10]Koo Dai-Hoe, Choi Hae-Woon, Cho Jeongki, Hur Yoonkang, Bang Jae-Wook. A high-resolution karyotype of cucumber(Cucumis sativus L.'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome,2005,48(3):534-540.
    [11]Murray M G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res,1980,8(19):4321-4326.
    [12]Mazers G R, Moyret C, Jeanteur P, Theillet C G. Direct sequencing by thermal asymmetric PCR. Nucleic Acids Res,1991,19:4783.
    [13]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res,1999,27(1):297-300.
    [14]Wingender R, Roehrig H, Hoericke C, Wing D, Schell J. Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet. 1989.218(2):315-322.
    [15]Shirsat A, Wilford N, Croy R, Boulter D. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet,1989,215:326-331.
    [16]Mohanty B, Krishnan S P, Swarup S, Bajic V B. Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann Bot (Lond),2005,96: 669-681.
    [17]Sakai H, Aoyama T, Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J.2000,24:703-711.
    [18]Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell.2004,16:1077-1090.
    [19]Rieping M, Schoffl F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet.1992.231:226-232.
    [20]Yanagisawa S. Dofl and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J,2000,21:281-288.
    [21]Terzaghi W B, Cashmore A R. Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 1995,46:445-474.
    [22]Rinehart J A, Petersen M W, John M E. Tissue-specific and developmental regulation of cotton gene FbL2A. Plant Physiol,1996,112:1331-1334.
    [23]Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics,1988,120:621-623.
    [24]Rosenthal A, Jones D S C. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res,1990,18:3095-3096.
    [25]Devon R S, Porteous D, Brookes A J. Splinkerettes-improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res,1995,23:1644-1645.
    [26]Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res,1995,23:1087-1088.
    [27]Balavoine G. Identification of members of several homeobox genes in a planarian using a ligation-mediated polymerase chain reaction technique. Nucleic Acids Res,1996,24:1547-1553.
    [28]Zhang X H, Chiang V L. Single-stranded DNA ligation by T4 RNA ligase for PCR cloning of 5'-noncoding fragments and coding sequence of a specific gene. Nucleic Acids Res,1996,24: 990-991.
    [29]R Terauchi, G Kahl. Rapid isolation of promoter sequences by TAIL-PCR:the 5"-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet,2000,263:554-560.
    [30]韩兆雪,吴芳,赵桃,杨凡.钱刚,余懋群.青稞B组醇溶蛋白基因5’上游调控区的TAIL-PCR克隆及序列分析.麦类作物学报.2007,27(4):613-618.
    [31]陈军营,孙佩,王德勤,陈新建.一种改良的克隆小麦GLP3基因启动子的TAIL-PCR技术.植物生理学通讯.2007,43(4):754-758.
    [32]宋达峰,韩凝,边红武,朱睦元.用改良(?)TAIL-PCR技术分析转基因烟草cbfl基因插入区的侧翼序列.作物学报,2005,31(10):1377-1379.
    [33]Qin G J. Kang D M, Dong YY, Shen Y P. Obtaining and analysis of flanking sequences from T-DNA transformant of Arabidopsis, Plant Science,2003.165(5):941-949.
    [1]Chen J F, Staub J E, Tashiro Y, Isshiki S, Miyazaki S. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 1997,96:413-419.
    [2]罗向东,戴亮芳,陈龙正,钱春桃,陈劲枫.野黄瓜(Cucumis hystrix Chakr.)与3种不同基因型栽培黄瓜(C. sativus L.)(?)中间杂交及杂种鉴定.武汉植物学研究,2006,24(3):207-211.
    [3]庄飞云,陈劲枫,钱春桃,李式军,任刚,王志军.甜瓜属种间杂交新种及其后代对低温的适应性反应.南京农业大学学报,2002,25(2):27-30.
    [4]钱春桃,陈劲枫,庄飞云,赵飞,徐玉波,李式军.弱光条件下甜瓜属种间杂交新种的某些光合特性.植物生理学通讯,2002,38(4):336-338.
    [5]曹清河,陈劲枫,钱春桃.黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定.园艺学报,2005,32(6):1098-1101.
    [6]陈劲枫,林茂松,钱春桃,庄飞云, Stephen Lewis.甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究.南京农业大学学报,2001,24(1):21-24.
    [7]Cancado G M A, Loguercio L L, Martins P R. Hematoxyoin staining as a phenotyoic index for aluminum tolerance selection in tropical maize (Zea mays L.).Theor Appl Genet,1999,99:747-754.
    [8]张志良.植物生理学实验指导(第二版).北京:高等教育出版社,1990,76-79
    [9]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,35-39
    [10]白宝璋,汤学军.植物生理学测试技术.北京:中国科学技术出版社,1993,132-135
    [11]刘鸿先,曾韶西,王以柔.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响.植物生理学报,1985,11(1):48-57.
    [12]李合生,孙群,赵世杰.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    [13]徐朗莱,叶茂炳.过氧化物酶活力连续记录测定法.南京农业大学学报,1989,12(3):82-83.
    [14]段伟,李新国,孟庆伟,赵世杰.Photoinhibiton mechanisms of plant under low temperature西北植物学报.2003,23(6):1017-1023.
    [15]APEL K, HIRT H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction.Annul Rev Plant Bio,2004,55:401-427.
    [16]Liu K L, Han H R, Xu Y J. Exogenousnitric oxide alleviates salt stress-induced membrane lipid peroxidation in rice seedling roots. Chinese J Rice Sci,2005,19(4):333-337.
    [17]刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994.
    [18]蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用.植物生理学报,1997,23(4).347-352.
    [19]Larsen P B, Stenzler L M, Tai C Y. Molecular and physiological analysis of Arabidopsis mutants exhibiting altered sensitivities to aluminum. Plant and Soil,1997,192:3-7.
    [20]Zheng S J, Yang J L. Target sites of aluminum phytotoxicity. Biol Plant,2005,49:321-331.
    [21]Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants.Plant Physiol,1995,107:315-32.
    [22]Lazof D B, Goldsmith J G, Rufty T W. Rapid uptake of aluminum into cells of intact soybean root tips:amicro analytical study using secondary ion mass spectrometry. Plant Physiology,1994,106 (3): 1107-1114.
    [23]Snowden K C, Gardner R C. Five genes induced by aluminum in wheat(Triticum aestivum L.) roots. Plant Physiol,1993,103:855-861.
    [24]Cruz Ortega R, Cusman J C, Ownby J. cDNA clones encoding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol,1997,114:1453-1460.
    [25]汤华,郑用琏,贺立源.玉米耐铝毒基因的分离.植物生理与分子生物学学报,2005,31(5):507-514.
    [26]谷俊涛,韩胜芳,柏贵华.铝胁迫条件下小麦根系特异表达基因的研究.作物学报,2007,33(6):1025-1028.
    [27]Pellet D M, Papernik L A, Kochian L V. Multiple aluminum-resistance in wheat:roles of root apical phosphate and malate exudation.Plant Physiol,1996,112:591-597.
    [28]Diatchenko L, Lau Y F, Campbell A P. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996.93:6025-6030.
    [29]lturbe-Ormaetxe I, Haralampidis K, Papadopoulou K. Molecular cloning and characterization of triterpene synthases from Medicago truncatula L. and Lotus japonicus L. Plant Mol Biol,2003.51: 731-743.
    [30]Hayashi H, Huang P, Takada S. Differential expression of three oxidosqualene cyclase mRNAs in Glvcyrrhiza glabra L. Biol Pharm Bull,2004,27:1086-1092.
    [31]Hou F Y, Huang J, Lu J F. Isolation and Expression Analysis of Plastidic Glucose-6-phosphate Dehydrogenase Gene from Rice(Oryza sativa L.). Acta Genetica Sinica,2006,33 (5):441-448.
    [32]黄骥,王建飞,张红生.水稻葡萄糖-6-磷酸脱氢酶cDNA的电子克隆.遗传学报.2002,29(11):1012-1016.
    [1]Kennard W C, Potter K, Dijkhuizen A, Meglic V, Staub J E. Linkages among RFLP, RAPD. isozyme, disease resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet,1994,89:42-48.
    [2]杨泽俊.瓜类枯萎病的防治.中国西瓜甜瓜,2003,6:40.
    [3]曹清河,陈劲枫,钱春桃.黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定.园艺学报,2005,32(6):1098-1101.
    [4]陈劲枫,林茂松,钱春桃,庄飞云.Stephen Lewis.甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究.南京农业大学学报,,2001,24(1):21-24.
    [5]钱春桃,陈劲枫,庄飞云,赵飞,徐玉波,李式军.弱光条件下甜瓜属种间杂种的某些光合特性.植物生理学通讯.2002,38(4):336-338.
    [6]Chen J F, Kirkbride J H. A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia,2000,52:315-319.
    [7]Hayashi H, Huang P, Takada S. Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra L. Biol Pharm Bull.2004,27:1086-1092.
    [8]Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K. Molecular cloning and characterization of triterpene synthases from Medicago truncatula L.and Lotus japonicas L. Plant Mol Biol,2003,51:731-743.
    [9]Gill R, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags(ESTs). Biotechnol Annu Rev,2000,5:25-44.
    [10]黄骥,王建飞,张红生.水稻葡萄糖-6-磷酸脱氢酶cDNA的电子克隆.遗传学报,,2002,29(11):1012-1016.
    [11]李小娟,王留阳,杨惠玲,刘建全.麻花艽和管花秦艽(龙胆科)之间自然杂交类型的分子验证.云南植物研究,2007,29(1):91-97.
    [12]郭旺珍,韩志国,张天真.栽培四倍体棉种及其二倍体祖先种的Histone3基因片段序列分析.棉花学报,2004,16(4):195-201.
    [13]袁长春,何雪宝,袁秋梅,施苏华.绿绒蒿自然杂交种及其亲本cpDNA trnL-trnF基因的遗传学分析.云南植物研究,2007,29(1):103-108.
    [14]袁长春,黎培新,王燕芳,施苏华.用核糖体ITS区序列验证自然杂交种Meconopsis X cookei G.Taylor.遗传学报.2004,31(9):901-907.
    [15]Karsten K, Marlies P, William M. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Eur J Biochom,2001,268:2678-2686.
    [16]Huang J, Zhang H S, Wang J F, Yang J S. Molecular cloning of rice 6-phosphogluconate dehydrogenase genes that is up regulated by salt-stress. Biology Reports,2003.30:223-227.
    [17]Tsukamoto N, Asakura N, Hattori N, Takumi S, Mori N, Nakamura C. Identification of parternal mitochondrial DNA sequences in the nucleus-cytoplasm hybrids of tetroploid and hexaploid wheat with D and D2 plasmons from Aegilops species. Curr Genet 2000,38:208-217.
    [18]Nakamura S.Aoyama H, and van Woesik R. Strict paternal transmission of mitochondrial DNA of Cblamydomonas species is explained by selection against maternal nucleoids. Protoplasma,2003, 221:205-210.
    [19]Erickson L, Kemble R. Paternal inheritance of mitochondria in rapeseed (Brassica napus). Mol Gen Genet,1990,222:135-139.
    [20]Matsuursa S, Mizusawa H. Paternal inheritance of mitochondrial DNA in cucumber:Confirmation by PCR method.(Cucumis sativus L.).Rep Cucurbit Genet Coop,1998.21:6-7.
    [21]Havey M J, McCreight J D.Rhodes B.Taurick G. Differential transmission of the Cucumis Organellar genomes.Theor Appl Genet,1998.97:122-128.
    [22]Masoud S A, Johnson L B, Sorensen E L. High transmission of paternal plastid DNA in alfalfa plants demonstrated by restriction fragment polymorphic analysis. Thero Appl Genet. 1990,79:49-55.
    [23]Boblenz K, Thomas N, Michael M. Paternal inheritance of plastids in the genus Daucas. Mol Gen Genet,1990,220:489-491.
    [24]Hu Zun-min, Hu Shi-yi. Paternal inheritance of plastid DNA in genus Pharbitis. Acta Bot Sin, 1996.38:253-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700