用户名: 密码: 验证码:
低温好氧颗粒污泥形成过程及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国北方地区,冬季漫长,温度较低,气候恶劣,显著影响活性污泥对污水中污染物的去除效能。与传统的活性污泥工艺相比,好氧颗粒污泥技术具有较好的沉降性能,较低的投资成本和较高的生物量以及污染物去除效能,同时,其内部复杂而稳定的结构能够限制基质和氧气的传递并形成温度梯度,使其有效抵御低温造成的冲击,实现污水中氮磷的同步高效去除。
     在10℃的低温条件下,低温序批气提式反应器(Sequencing Batch Airlift Reactor,SBAR)经40d的启动期,成功培养出具有良好沉降性能,较高生物量的好氧颗粒污泥,污泥代谢产生EPS中的蛋白质类物质是活性污泥颗粒化的重要因素。随着污泥相关疏水性和强度逐渐提高,好氧颗粒污泥结构更加紧密,有利于保持颗粒污泥的稳定性。通过对低温SBAR运行参数的优化,得到低温好氧颗粒污泥最适培养条件,即OLR为2.4kg/m3·d(进水COD为600-700mg/L), HRT为3h,曝气量为100L/h。好氧颗粒污泥反应器在此条件下稳定运行达100d以上,其对污染物均具有较好的去除效能,COD,NH4+-N和P043--P的去除率分别达到88.5%、97.8%和97.5%。耐冷菌Rhodobacter changlensis是污泥中的土著菌;Sterolibacterium denitrificans、Dechloromonas denitrificans、 Blastobacter denitrificans、Pseudomonas trivialis和Bosea minatitlanensis在低温好氧颗粒污泥反应器运行稳定时占优势。
     低温条件下污泥微生物活性较低以及好氧颗粒污泥反应器运行条件较为复杂,因此选择四种快速培养低温好氧颗粒污泥的方式,以加速好氧颗粒污泥反应器的启动,即贮存颗粒污泥强化,金属离子强化,海藻酸钠强化和动物骨胶强化的方式,结果表明以上四种策略都可以缩短低温好氧颗粒污泥形成时间,加速低温好氧颗粒污泥反应器的启动(平均提前7-15d)同时有利于低温SBAR的长期稳定运行。其中以动物骨胶强化低温好氧颗粒污泥形成的策略最为有效,低温活性污泥完全颗粒化仅需要26-28d,对污水中COD, NH4+-N和P043--P的去除率分别达到86.3%,90.6%和93.8%。
     分别利用含盐生活污水、制糖工业废水、含油工业废水和屠宰工业废水培养低温好氧颗粒污泥,通过研究发现,活性污泥在其颗粒化过程中,相关疏水性、zeta电位和污泥EPS内蛋白质类物质含量明显升高,低温好氧颗粒污泥的形成机理为低温活性污泥的颗粒化过程,就是微生物的增长和其生长环境选择的过程。疏水性活性污泥聚集体之间的吸附作用,活性污泥聚集体之间的电力吸附作用,以及EPS的粘附作用是活性污泥微生物聚集的重要因素。粘性剪切力的存在是活性污泥聚集体由不规则形态变为颗粒形态的重要原因,SBAR内循环管中流体扰动所产生的粘性剪切力对活性污泥聚集体的颗粒化作用较强。冷激蛋白和冷活性酶的合成是好氧颗粒污泥可以抵御低温,发挥生物活性的重要因素。
     通过对低温好氧颗粒污泥进行红外光谱分析发现,低温好氧颗粒污泥的主要官能团与絮状活性污泥较为接近(均含有多糖类-OH化合物,脂肪族C-H化合物和酰胺类化合物),只存在细微差别,说明低温好氧颗粒污泥适宜处理实际废水。而低温好氧颗粒污泥的荧光光谱谱图显示,当活性污泥完全颗粒化之后,其溶解性微生物产物含量明显提高,表明污泥微生物具有良好的活性;其EPS内蛋白质类物质含量的升高和稳定存在,对低温好氧颗粒污泥保持完整形态和稳定结构至关重要。
     利用实际废水培养成熟的低温好氧颗粒污泥呈黑色,平均粒径0.8mm,系统约70d启动成功,具有较好的沉降性能和较高的生物量。低温好氧颗粒污泥EPS内较高浓度蛋白质类物质的稳定存在是活性污泥颗粒化的重要因素,而EPS内油脂类物质的存在不会影响低温好氧颗粒污泥的结构和强度。低温好氧颗粒污泥对进水水质的变化具有较强的抗冲击能力,系统运行约120d达到稳定,其COD,NH4+-N和PO43--P去除率分别达到88.2%,94.0%和92.5%。进水中较高浓度Mg,Ca和Fe等金属离子的存在以及EPS对P的吸附,与生物除磷作用一起完成污水中PO43--P的高效去除。活性污泥完全颗粒化后,污泥内AOB,NOB和PAO得到了有效的富集,其中NOB的含量高于AOB,PAO以PAOI为主,其含量高达90%以上。Enterobaceter ludwigii、Stenotropomonas humi、Zoogloea ramigera、Malikia spinosa和Comamonas denitrificans在系统稳定运行时占优势,表明好氧颗粒污泥在低温条件下对污水中氮磷具有良好的去除效能。
In northern China, with the long winter, low temperature and severe weather, it is remarkably difficult for the activated sludge to possess better capacity of nutrients conversion. Compared with activated sludge process, aerobic granular sludge (AGS) obtained better settling property, lower cost and higher biomass retention and contaminants removal efficiency, furthermore, the transfer limitation of substance and oxygen and the formation of temperature gradient inside AGS would be better for microorganisms to tolerate the shock of organic loading and temperature, and finally achieved relatively higher simultaneous nitrogen and phosphorus removal efficiency.
     Aerobic granular sludge was successfully cultivated in sequencing batch airlift reactor (SBAR) at10℃after40days, the protein content in extracellular polymeric substance (EPS) from AGS was considered as the main factor in granulation. Along with the enhancement of relative hydrophobicity and physical strength, the structure of AGS became more compact which could be helpful for AGS to keep stable. The autofit condition for cultivating AGS was gained by the optimization of SBAR operation, which means OLR was2.4kg/m3·d (influent COD600-700mg/L), HRT was3h and aeration rate was100L/h. SBAR operation can be stabilized for more than100days, moreover, AGS accomplished better contaminants removal capability, the respective COD, NH4+-N and PO43--P removal efficiencies were88.5%,97.8%and97.5%. Rhodobacter changlensis was a kind of psychrotrophs, which was the indigenous flora as well, in addition, Sterolibacterium denitrificans, Dechloromonas denitrificans, Blastobacter denitrificans, Pseudomonas trivialis and Bosea minatitlanensis were the dominant community in SBAR at low temperature.
     It is difficult to cultivate aerobic granular sludge at low temperature since the bioactivity of AGS was low and the operation of SBAR was complicated. In order to implement the rapid start-up and steady operation of SBAR, four strategies had been selected:1) enhanced by the stored AGS;2) enhanced by metal ions, such as Mg2+and Al3+;3) enhanced by sodium alginate and4) enhanced by bone glue. The results demonstrated that the above strategies could enhance AGS formation by 7-15days, as well as the long-term and stable operation of SBAR. Furthermore, the granules enhanced by bone glue was more effective (cultivated in26-28days) which had the ability to contribute and improve the biological process, the COD, NH4+-N and PO43--P removal efficiencies were86.3%,90.6%and93.8%, respectively.
     The formation process and sludge characteristics of AGS that cultivated in domestic sewage, saline sewage, normal molasses wastewater, oily wastewater and mixed wastewater combined by domestic sewage and slaughter wastewater were discussed. Relative hydrophobicity, zeta potential and protein content in EPS all increased during the formation process of aerobic granular sludge at low temperature. Therefore, the formation mechanisms of aerobic granular sludge might be concluded:the granulation process of activated sludge was the process of microorganism growth and environment selection. The chemical attraction of hydrophobic sludge aggregates, the electric adsorption of sludge aggregates and the conglutination of EPS were all important during the formation process of aerobic granular sludge. The viscous shear force was significant to lead the sludge aggregates to granular morphology, and the shear force caused by fluid disturbance in internal circulation tube was vital. In addition, it was found that the microorganisms of AGS can tolerate low temperature and possess better microbial activity due to the synthesis of cold shock protein and psychrophilic enzyme.
     It was notable that the Fourier Transform Infrared (FT-IR) spectra of ASP and AGS were almost the same, both the two kinds of sludge possessed polysaccharides compounds, lipid compounds and amide compounds, which indicated that aerobic granular sludge was suitable for treating real wastewater as activated sludge. Moreover, the Excitation-Emission Matrix (EEM) spectra of ASP and AGS demonstrated that microorganisms could gain better bioactivity due to the higher concentration of soluble microbial by-product-like and the stability of protein content in EPS would be of great significance to sustain AGS with the integrated morphology and compact structure.
     The aerobic granular sludge was cultivated in real wastewater for almost70days due to the complex components; the AGS was black with the mean diameter of0.8mm, however, the settling property and biomass retention could still be retained. Likewise, the existence of protein content in EPS was important in the formation process of aerobic granular sludge, furthermore, the lipid content in EPS would not influence the structure and strength of AGS. With the better shock resistance of influent, aerobic granular sludge technology gradually became stable which the contaminants removal capacity advanced as well, the COD, NH4+-N and PO43--P removal efficiencies were88.2%,94.0%and92.5%, respectively. The comparatively higher PO43--P removal efficiency was obtained by the combination of Mg, Ca and Fe with P, the adsorption of EPS with phosphorus and the biological phosphorus removal process. Ammonium oxidation bacteria (AOB), nitrite oxidation bacteria (NOB) and phosphorus accumulation organisms (PAO) were all effectively enriched after the granulation of activated sludge, among which NOB content is higher than AOB and PAO I (content higher than90%) was predominant in PAO. Enterobaceter ludwigii, Stenotropomonas humi, Zoogloea ramigera, Malikia spinosa and Comamonas denitrificans were the dominant community in SBAR at low temperature, indicated that AGS possessed better NH4+-N and PO43--P removal efficiencies.
引文
[1]国家环境保护总局.2012年中国环境状况公报[M],2013.
    [2]陈卫,张金松.城市水系统运营与管理[M].北京:中国建筑工业出版社,2006.
    [3]田文龙,刘瑶环.我国污水处理事业的现状和发展趋势[J].中国科技信息,2006,3:110-111.
    [4]G. Lettinga, A. F. M. van Velsen, S. W. Hobma. Use of the Upflow Sludge Blanket Reactor Concept for Biological Waste Water Treatment Especially for Anaerobic Treatment[J]. Biotechnology Bioengineering,1980,22(4):699-734.
    [5]J.J. Heijnen, M. C. M. van Loosdrecht. Method for Acquiring Grain-shaped Growth of a Microorganism in a Reactor[P]. European patent EP0826639,1998.
    [6]张白杰,戴爱临.国内城市污水低温生物处理试验[J].环境工程,1984,3(1):11-16.
    [7]张白杰,戴爱临.国内城市污水低温生物处理试验[J].环境工程,1984,3(2):19-22.
    [8]M. Magresin, G. Felle, C. Gerdya. Cold-Adapted Microogranisms:Adaptation Strategies and Biotechnological Potential [J]. Environmental Microbiology, New York, Wiley,2002,2:871-885.
    [9]B. Andrea, S. Richard, J. R. Nicholas. Antarctic Bacteria Inhibit Growth of Food-borne Microogranisms at Low Temperuatres[J]. FEMS Microbiology Ecology,2004,48(2):157-167.
    [10]白晓慧,王宝贞.寒冷地区城市污水处理厂改进工艺的运行效果[J].中国环境科学,2001,21(1):70-73.
    [11]任南琪,马放,杨基先.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [12]刘建平,肖春华.寒冷地区污水处理浅析[J].低温建筑技术,2003,25(4):89-90.
    [13]贲岳,陈忠林,徐贞贞.低温生活污水处理系统中耐冷菌的筛选及动力学研究[J].环境科学,2008,29(11):3189-3193.
    [14]G. T. Daigger, H. C. Lin废水生物处理[M].北京:化学工业出版社,2003.
    [15]S. Uemura, H. Harada. Treatment of Sewage by a UASB Reactor under Moderate to Low Temperature Conditions [J]. Bioresource Technology,2000,72(3):275-282.
    [16]陈滢,彭永臻.SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制[J].环境科学学报,2005,25(1):105-108.
    [17]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社1998.
    [18]暴瑞玲.低温条件下好氧颗粒污泥同步脱氮除磷效能及其过程研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [19]V. M. Monsalvo, A. F. Mohedano, J. A. Casas. Cometabolic Biodegradation of4-chlorophenol by Sequencing Batch Reactors at Different Temperatures [J]. Bioresource Technology,2009,100(20):4572-4578.
    [20]J.i Tsuge, H. Hiratsuka, H. Kamimiya. Glycosphingolipids as a Possible Signature of Microbial Communities in Activated Sludge and the Potential Contribution of Fungi to Wastewater Treatment under Cold Conditions [J]. Bioscience Biotechnology Biochemistry,2008,72(10):2667-2674.
    [21]D. W. Choo, T. Kurihara, T. Suzuki. A Cold-adapted lipase of an Alaskan Psychrotroph, Pseudomonas sp. Strain B11-1:Gene Cloning and Enzyme Purification and Characterization [J]. Applied Environmental Mocrobiology,1998,64(2):486-491.
    [22]R. J. M. Russell, U. Gerike, M. J. Danson. Sturctural Adaptations of the Cold-Active Citrate Synthase from an Antarctic Bacterium[J]. Sturcture,1998,6(3):351-361.
    [23]F. R. Delrue, S. C. Mande, S. Moyens. Cloning and Overexpression of the Triosephosphate Isomerase Genes from Psychrophilic and Thermophillic Bacteria[J]. Journal of Molecular Biology,1993,229(1):85-93.
    [24]V. Lenka, S. Martin, S. Radek. Comparison of Denitrification at Low Temperature Using Encapsulated Paracoccus Denitrificans, Pseudomonas Fluorescens and Mixed Culture[J]. Bioresource Technology,2011,102(7):4661-4666.
    [25]J. Guo, Y. Peng, H. Huang. Short-and Long-term Effects of Temperature on Partial Nitrification in a Sequencing Batch Reactor Treating Domestic Wastewater[J]. Journal of Hazardous Materials,2010,179(1-3):471-479.
    [26]N. Li, N. Ren, X. Wang. Effect of Temperature on Intracellular Phosphorus Absorption and Extra-cellular Phosphorus Removal in EBPR Process[J]. Bioresource Technology,2010,101(15):6265-6268.
    [27]C. M. Lopez-Vazquez, M. Christine, M. C. M. van Loosdrecht. Temperature Effects on Glycogen Accumulating Organisms[J]. Water Research,2009, 43(11):2852-2864.
    [28]C. M. Lopez-Vazquez, Y. Song, M. C. M. van Loosdrecht. Temperature Effects on the Aerobic Metabolism of Glycogen Accumulating Organisms[J]. Biotechnology Bioengineering,2008,101(2):295-306.
    [29]J. Guo, J. Wang, F. Ma. Application of Bioaugmentation in the Rapid Start-up and Stable Operation of Biological Processes for Municipal Wastewater Treatment at Low Temperatures [J]. Bioresource Technology,2010,101(17):6622-6629.
    [30]Z. Xu, H. Chen, H. Wu.7mT Static Magnetic Exposure Enhanced Synthesis of Poly-3-hydroxybutyrate by Activated Sludge at Low Temperature and High Acetate Concentration[J]. Process Safety and Environmental Protection,2010,88(4):292-296.
    [31]P. L. McCarty. The Development of Anaerobic Treatment and its Future [J]. Water Science and Technology,2001,44(8):149-156.
    [32]W. Guo, N. Ren. Biohydrogen Production from Ethanol-type Fermentation of Molasses in an Expanded Granular Sludge Bed Reactor[J]. International Journal Hydrogen Energy,2008,33(19):4981-4988.
    [33]W. Guo, N. Ren. Simultaneous Biohydrogen Production and Starch Wastewater Treatment in an Acidogenic Expanded Granular Sludge Bed Reactor by Mixed Culture for Long-term Operation[J]. International Journal Hydrogen Energy,2008,33(24):7397-7404.
    [34]李建政,朱葛夫,欧阳红.利用厌氧折流反应系统进行有机废水发酵制氢[J].化工学报.2004,55(增刊):70-74.
    [35]J. Li, B.Li, G. Zhu. Hydrogen Production from Diluted Molasses by Anaerobic Hydrogen Producing Bacteria in an Anaerobic Baffled Reactor[J]. International Journal of Hydrogen Energy,2007,32(15):3274-3283.
    [36]C. Scully, G. Collins, V. O'Flaherty. Anaerobic Biological Treatment of Phenol at9.5-15degrees in an Expanded Granular Sludge Bed-based Bioreactor[J]. Water Research,2006,40(20):3737-3744.
    [37]J. O'Reilly, F. A. Chinalia, V. O'Flaherty. Cultivation of Low-temperature, Anaerobic, Wastewater Treatment Granules[J]. Letters in Applied Microbiology,2009,49(4):421-426.
    [38]A. Enright, G. Collins, V. O'Flaherty. Effect of Seed Sludge and Operation Conditions on Performance and Archaeal Community Structure of Low-temperature Anaerobic Solvent-degrading Bioreactors[J]. System Applied Microbiology,2009,32(1):65-79.
    [39]G. Akila, T. S. Chandra. Performance of an UASB Reactor Treating Synthetic Wastewater at Low-temperature Using Cold-adapted Seed Slurry[J]. Process Biochemistry,2007,42(3):466-471.
    [40]G. Collins, C. Foy, V. O'Flaherty. Anaerobic Treatment of2,4,6-trichlorophenol in an Expanded Granular Sludge Bed-anaerobic Filter Bioreactor[J]. FEMS Microbiology Ecology,2005,53(1):167-178.
    [41]A. Enright, S. McHugh, V. O'Flaherty. Low-Temperature Anaerobic Biological Treatment of Solvent Containing Pharmaceutical Wastewater[J]. Water Research,2005,39(19):4587-4596.
    [42]A. Enright, G. Collins, V. O'Flaherty. Low-temperature Anaerobic Biological Treatment of Toluene-containing Wastewater[J]. Water Research,2007,41(7):1465-1472.
    [43]A. Siggins, A. Enright, V. O'Flaherty. Low-temperature Anaerobic Treatment of a Trichloroethylene-contaminated Wastewater:Microbial Community Development[J]. Water Research,2011,45(13):4035-4046.
    [44]A. Siggins, A. Enright, V. O'Flaherty. Methanogenic Community Development in Anaerobic Granular Bioreactors Treating Trichloroethylene-Contaminated Wastewater at37degree and15degree[J]. Water Research,2011,45(8):2452-2462.
    [45]G. Collins, S. Mchugh, V. O'Flaherty. New Low-temperature Applications of Anaerobic Wastewater Treatment[J]. Journal of Environmental Science and Health, Part A,2007,41(5):881-895.
    [46]S. V. Kalyuzhnyi, A. Marina, V. I. Sklyar. One-and Two-Stage Upflow Anaerobic Sludge-Bed Reactor Pretreatment of Winery Wastewater at4-10degrees[J]. Applied Biochemistry and Biotechnology,2001,90(2):107-124.
    [47]I. Tsushima, W. Yoochatchaval, H. Yoshida. Microbial Community Structure and Population Dynamics of Granules Developed in EGSB for the Anaerobic Treatment of Low-strength Wastewater at Low Temperature[J]. Journal of Environmental Science and Health, Part A,2010,45(6):754-766.
    [48]R. M. McKeown, C. Scully, V. O'Flaherty. Long-term Low-temperature, Anaerobic Biotreatment of Acidified Wastewaters:Bioprocess Performance and Physiological Characteristics[J]. Water Research,2009,43(6):1611-1620.
    [49]黄霞,俞毓敏,王蕾.固定化细胞技术在废水处理中的应用[J].环境科学,1993,14(1):41-48.
    [50]沈耀良.固定化微生物技术及其在废水处理中的应用[J].污染防治技术,1995,8(1):12-18.
    [51]G. Li, Z. Zhang. Anaerobic Biological Treatment of Alginate Production Wastewaters in a Pilot-scale Expended Granular Sludge Bed Reactor under Moderate to Low Temperatures[J]. Water Environment Research,2010,82(8):725-732.
    [52]J. P. Bassin, R. Kleerebezem, M. C. M. van Loosdrecht. Simultaneous Nitrogen and Phosphate Removal in Aerobic Granular Sludge Reactors Operated at Different Temperatures [J]. Water research,2012,46(12):3805-3816.
    [53]R. Bao, S. Yu, J.Wu. Contaminants Conversion Processes and Removal by Aerobic Granular Sludge at Low Temperature[J]. Journal of Biotechnology,2008,136:670.
    [54]R. Bao, S. Yu, X. Zuo. Shut-cut Nitrification Characteristics of Aerobic Granule in a Sequencing Batch Airlift Reactor at Low Temperature[J]. Journal of Harbin Institute of Technology,2009,16(4):570-575.
    [55]M. Winkler, R. Kleerebezem, M. C. M. van Loosdrecht. Segregation of Biomass in Cyclic Anaerobic/Aerobic Granular Sludge Allows the Enrichment of Anaerobic Ammonium Oxidizing Bacteria at Low Temperatures[J]. Environmental Science Technology,2011,45(17),7330-7337.
    [56]暴瑞玲,于水利,吴佳培,严晓菊SBAR反应器的好氧颗粒污泥低温培养及运行特性[J].中国给水排水,2009,25(3):23-27.
    [57]Y. Wang, S. Yu. Simultaneous COD, Nitrogen and Phosphate Removal in an Aerobic Granular Sludge Membrane Bioreactor[C].3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing,2009,6:1-4.
    [58]暴瑞玲,于水利,王玉兰,左行涛,王娟.温度对好氧颗粒污泥脱氮性能及颗粒稳定性的影响[J].中国环境科学,2009,29(7):697-701.
    [59]M. K. de Kreuk, M. Pronk, M. C. M. van Loosdrecht. Formation of Aerobic Granules and Conversion Processes in an Aerobic Granular Sludge Reactor at Moderate and Low Temperature[J]. Water Research,2005,39(18):4476-4484.
    [60]C. T. M. J. Frijters, D. H. Eikelboom, A. Mulder. Treatment of Municipal Wastewater in a Circox Airlift Reactor with Integrated Denitrification[J]. Water Science Technology,1997,36(1):173-181.
    [61]R. Bao, S. Yu, W. Shi. Aerobic Granules Formation and Nutrients Removal Characteristics in Sequencing Batch Airlift Reactor at Low Temperature[J]. Journal of Hazardous Materials,2009,168(2-3):1334-1340.
    [62]R. Bao, X. Yan, S. Yu. Performance of Denitrifying Phosphorus Removal by Aerobic Granular Sludge at Low Temperature[C].2011International Conference on Green Building, Materials and Civil Engineering,2011,71-78:2966-2969.
    [63]A. Sunil, D. Lee, K. Y. Show. Aerobic Granular Sludge:Recent Advances[J]. Biotechnology Advances,2008,26(5):411-423.
    [64]彭永臻,吴蕾,马勇.好氧颗粒污泥的形成机制、特性及应用研究进展[J].环境科学,2010,31(2):273-281.
    [65]A. Zita, M. Hermansson. Determination of Bacterial Cell Surface Hydrophobicity of Single Cells in Cultures and in Wastewater in situ[J]. FEMS Microbiology Letters,1997,152(2):299-306.
    [66]B. M. Wilen, M. Onuki, T. Mino. Microbial Community Structure in Activated Sludge Floc Analysed by Fluorescence in situ Hybridization and its Relation to Floe Stability[J]. Water Research,2008,42(8-9):2300-2308.
    [67]张英,郎咏梅,赵玉晓,李善评.由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J].山东大学学报(工学版),2006,36(4):56-59.
    [68]Y. Liu, J. Tay. State of the Art of Biogranulation Technology for Wastewater Treatment[J]. Biotechnol Advances,2004,22(7):533-563.
    [69]J. Tay, Q. Liu, Y. Liu. Characteristics of Aerobic Granules Grown on Glucose and Acetate in Sequential Aerobic Sludge Blanket Reactors[J]. Environmental Technology,2002,23(8):931-936.
    [70]J. Tay, S. Pan, Y. He. Effect of Organic Loading Rate on Aerobic Ganulation: Part II. Characteristics of Aerobic Granules[J]. Journal Environmental Engineering,2004,130(10):1102-1109.
    [71]Y. Zheng, H. Yu, G. Sheng. Physical and Chemical Characteristics of Granular Activated Sludge from a Sequencing Batch Airlift Reactor[J]. Process Biochemistry,2005,40(2):645-650.
    [72]A. Sunil, M. Chen, D. Lee. Degradation of Phenol by Aerobic Granules and Isolated Yeast Candida Tropicalis[J]. Biotechnology Bioengineering,2007,96(5):844-852.
    [73]N. Schwarzenbeck, J. M. Borges, P. A. Wilderer. Treatment of Dairy Effluents in an Aerobic Granular Sludge Sequencing Batch Reactor[J]. Applied Microbiology Biotechnology,2005,66(6):711-718.
    [74]S. Wang, X. Liu, H. Yu. Aerobic Granulation with Brewery Wastewater in a Sequencing Batch Reactor[J]. Bioresource Technology,2007,98(11):2142-2147.
    [75]S. Wang, X. Liu, W. Gong. Aerobic Granulation for2,4-dichlorophenol Biodegradation in a Sequencing Batch Reactor[J]. Chemosphere,2007,69(5):769-775.
    [76]H. Jiang, J. Tay, A. M. Maszenan. Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation[J]. Applied Environmental Microbiology,2004,70(11):6767-6775.
    [77]A. Sunil, D. Lee, N. Ren. Biodegradation of Pyridine Using Aerobic Granules in the Presence of Phenol[J]. Water Research,2007,41(13):2903-2910.
    [78]A. Sunil, D. Lee. Single-culture Aerobic Granules with Acinetobacter Calcoaceticus[J]. Applied Microbiology Biotechnology,2008,78(3):551-557.
    [79]E. M. Mahoney, L. K. Varangu, W. L. Cairns. The Effect of Calcium on Microbial Aggregation during UASB Reactor Start-up[J]. Water Science Technology,1987,19(1-2):249-260.
    [80]H. Jiang, J. Tay, Y. Liu. Ca2+Augmentation for Enhancement of Aerobically Grown Microbial Granules in Sludge Blanket Reactors[J]. Biotechnology Letters,2003,25(2):95-99.
    [81]X. Li, Q. Liu, Q. Yang. Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by Mg2+Augmentation[J]. Bioresource Technology,2009,100(1):64-67.
    [82]B. S. McSwain, R. L. Irvine, P. A. Wilderer. The Influence of Settling Time on the Formation of Aerobic Granules[J]. Water Science Technology,2004,50(10):195-202.
    [83]J. J. Beun, A. Hendriks, M. C. M. van Loosdrecht. Aerobic Granulation in a Sequencing Batch Reactor[J]. Water Research,1999,33(10):2283-2290.
    [84]J. C. Williams, F. L. de los Reyes. Microbial Community Structure of Activated Sludge during Aerobic Granulation in an Annular Gap Bioreactor[J]. Water Science Technology,2006,54(1):139-146.
    [85]S. Yang, X. Li, H. Yu. Formation and Characterisation of Fungal and Bacterial Granules under Different Feeding Alkalinity and pH Conditions[J]. Process Biochemistry,2008,43(1):8-14.
    [86]Y. Liu, J. Tay. Influence of Cycle Time on Kinetic Behaviors of Steady-state Aerobic Granules in Sequencing Batch Reactors[J]. Enzyme Microbiology Technology,2007,41(4):516-522.
    [87]Y. Liu, J. Tay. Characteristics and Stability of Aerobic Granules Cultivated with Different Starvation Time[J]. Applied Microbiology Biotechnology,2007,75(1):205-210.
    [88]Y. Zheng, H. Yu, S. Liu. Formation and Instability of Aerobic Granules under High Organic Loading Conditions[J]. Chemosphere,2006,63(10):1791-1800.
    [89]Z. Wang, Y. Li, Y. Liu. The Influence of Short-term Starvation on Aerobic Granules[J]. Process Biochemistry,2006,41(12):2373-2378.
    [90]B. S. McSwain, R. L. Irvine, P. A. Wilderer. The Effect of Intermittent Feeding on Aerobic Granule Structure[J]. Water Science Technology,2004,49(11-12):19-25.
    [91]Y. Liu, J. Tay. Influence of Starvation Time on Formation and Stability of Aerobic Granules in Sequencing Batch Reactors[J]. Bioresource Technology,2008,99(5):980-985.
    [92]G. Chen, K. A. Strevett. Impact of Carbon and Nitrogen Conditions on E. coli Surface Thermodynamics[J]. Colloids Surfzce B:Biointerfaces,2003,28(2-3):135-146.
    [93]L. Qin, J. Tay, Y. Liu. Selection Pressure is a Driving Force of Aerobic Granulation in Sequencing Batch Reactors[J]. Process Biochemistry,2004,39(5):579-584.
    [94]L. Qin, Y. Liu, J. Tay. Effect of Settling Time on Aerobic Granulation in Sequencing Batch Reactor[J]. Biochemical Engineering Journal,2004,21(1):47-52.
    [95]H. Jiang, J. Tay, S. Tay. Aggregation of Immobilized Activated Sludge Cells into Aerobically Grown Microbial Granules for the Aerobic Biodegradation of Phenol[J]. Letters of Applied Microbiology,2002,35(5):439-445.
    [96]Y. Lin, Y. Liu, J. Tay. Development and Characteristics of Phosphorous-accumulating Granules in Sequencing Batch Reactor[J]. Applied Microbiology Biotechnology,2003,62(4):430-435.
    [97]L. Hu, J. Wang, X. Wen. The Formation and Characteristics of Aerobic Granules in Sequencing Batch Reactor by Seeding Anaerobic Granules[J]. Process Biochemistry,2005,40(1):5-11.
    [98]A. Sunil, D. Lee, J. Lai. Effects of Aeration Intensity on Formation of Phenol-fed Aerobic Granules and Extracellular Polymeric Sub stances [J]. Applied Microbiology Biotechnology,2007,77(1):175-182.
    [99]Y. Liu, Q. Liu. Causes and Control of Filamentous Growth in Aerobic Granular Sludge Sequencing Batch Reactors[J]. Biotechnol Advances,2006,24(1):115-127.
    [100]J. Li, K. Garny, C. Lindenblatt. Comparison of some Characteristics of Aerobic Granules and Sludge Flocs from Sequencing Batch Reactors[J]. Water Science Technology,2007,55(8-9):403-411.
    [101]X. Li, Y. Li, H. Liu. Characteristics of Aerobic Biogranules from Membrane Bioreactor System[J]. Journal of Membrane Science,2007,287(2):294-299.
    [102]Y. Liu, Y. Lin, S. Yang. A Balanced Model for Biofilms Developed at Different Growth and Detachment Forces[J]. Process Biochemistry,2003,38(12):1761-1765.
    [103]Y. Mu, H. Yu. Rheological and Fractal Characteristics of Granular Sludge in an Upflow Anaerobic Reactor[J]. Water Research,2006,40(19):3596-3602.
    [104]Y. Mu, T. Ren, H. Yu. Drag Coefficient of Porous and Permeable Microbial Granules[J]. Environmental Science Technology,2008,42(5):1718-1723.
    [105]A. Sunil, C. Chang, D. Lee. Hydraulic Characteristics of Aerobic Granules Using Size Exclusion Chromatography[J]. Biotechnology Bioengineering,2008,99(4):791-799.
    [106]Y. Liu, S. Yang, J. Tay. Cell Hydrophobicity is a Triggering Force of Biogranulation[J]. Enzyme Microbiology Technology,2004,34(5):371-379.
    [107]J. E. Schmidt, B. K. Ahring. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket Reactors[J]. Applied Microbiology Biotechnology,1994,42(2-3):457-462.
    [108]J. Tay, Q. Liu, Y. Liu. The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules[J]. Applied Microbiology Biotechnology,2001,57(1-2):227-233.
    [109]B. S. McSwain, R. L. Irvine, P. A. Wilderer. Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge[J]. Applied Environmental Microbiology,2005,71(2):1051-1057.
    [110]A. S.Whiteley, M. J. Bailey. Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System[J]. Applied Environmental Microbiology,2000,66(6):2400-2407.
    [111]J. Snaidr, R. Amann, I. Huber. Phylogenetic Analysis and in situ Identification of Bacteria in Activated Sludge[J]. Applied Environmental Microbiology,1997,63(7):2884-2896.
    [112]Z. Hu, T. Lotti, M. C. M. van Loosdrecht. Nitrogen Removal by a Nitritation-anammox Bioreactor at Low Temperature[J]. Applied Environmental Microbiology,2013.
    [113]C. Tang, P. Zheng, C. Wang. Performance of High-loaded ANAMMOX UASB Reactors Containing Granular Sludge[J]. Water Research,2011,45(1):135-144.
    [114]S. Yang, J. Tay, Y. Liu. Inhibition of Free Ammonia to the Formation of Aerobic Granules[J]. Biochemical Engineering Journal,2004,17(1):41-48.
    [115]J. J. Beun, J. J. Heijnen, M. C. M. van Loosdrecht. N-removal in a Granular Sludge Sequencing Batch Airlift Reactor[J]. Biotechnology Bioengineering,2001,75(1):82-92.
    [116]A. Jang, Y. Yoon, P. L. Bishop. Characterization and Evaluation of Aerobic Granules in Sequencing Batch Reactor[J]. Journal of Biotechnology,2003,105(1-2):71-82.
    [117]A. Mosquera-Corral, M. K. de Kreuk, M. C. M. van Loosdrecht. Effects of Oxygen Concentration on N-removal in an Aerobic Granular Sludge Reactor[J]. Water Research,2005,39(12):2676-2686.
    [118]C. Picioreanu, M. C. M. van Loosdrecht, J. J. Heijnen. Mathematical Modeling of Biofilm Structure with a Hybrid Differential-discrete Cellular Automaton Approach[J]. Biotechnology Bioengineering,1998,58(1):101-116.
    [119]M. K. de Kreuk, J. J. Heijnen, M. C. M. van Loosdrecht. Simultaneous COD, Nitrogen, and Phosphate Removal by Aerobic Granular Sludge[J]. Biotechnology Bioengineering,2005,90(6):761-769.
    [120]C. M. Lopez-Vazquez, M. Christine, M. C. M. van Loosdrecht. Modeling the PAO-GAO Competition:Effects of Carbon Source, pH and Temperature[J]. Water Research,2009,43(2):450-462.
    [121]C. M. Lopez-Vazquez, M. Christine, M. C. M. van Loosdrecht. Factors Affecting the Microbial Populations at Full-scale Enhanced Biological Phosphorus Removal Wastewater Treatment Plants in The Netherlands[J]. Water Research,2008,42(10-11):2349-2360.
    [122]A. Oehmen, C. M. Lopez-Vazquez, M. C. M. van Loosdrecht. Modelling the Population Dynamics and Metabolic Diversity of Organisms Relevant in Anaerobic/Anoxic/Aerobic Enhanced Biological Phosphorus Removal Processes[J]. Water Research,2010,44(15):4473-4486.
    [123]D. P. Cassidy, E. Belia. Nitrogen and Phosphorus Removal from an Abattoir Wastewater in a SBR with Aerobic Granular Sludge[J]. Water Research,2005,39(19):4817-4823.
    [124]R. Lemaire, Z. Yuan, L. L. Blackall. Microbial Distribution of Accumulibacter spp. and Competibacter spp. in Aerobic Granules from a Lab-scale Biological Nutrient Removal System[J]. Environmental Microbiology,2008,10(2):354-363.
    [125]L. M. M. de Bruin, M. K. de Kreuk, M. C. M. van Loosdrecht. Aerobic Granular Sludge Technology:Alternative for Activated Sludge?[J]. Water Science Technology,2004,49(11-12):1-7.
    [126]G. H. de Villiers, H. M. Ibala. Aerobic Granulation in a Sequencing Batch Reactor with a Petrochemical Effluent as Substrate[C]. IWA:Cape Town,2003.
    [127]A. Mosquera-Corral, A. Montras, M. C. M. van Loosdrecht. Degradation of Polymers in a Biofilm Airlift Suspension Reactor[J]. Water Research,2003,37(3):485-492.
    [128]M. K. de Kreuk, N. Kishida, M. C. M. van Loosdrecht. Behavior of Polymeric Substrates in an Aerobic Granular Sludge System[J]. Water Research,2010, 44(20):5929-5938.
    [129]N. Schwarzenbeck, R. Erley, P. A. Wilderer. Aerobic Granular Sludge in an SBR-system Treating Wastewater Rich in Particulate Matter[J]. Water Science Technology,2004,49(11-12):41-46.
    [130]B. Y. Moy, J. Tang, S. K. Toh. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters of Applied Microbiology,2002,34(6):407-412.
    [131]A. Lodi, C. Solisoio, A. Converti. Cadmium, Zinc, Copper, Silver and Chromium (Ⅲ) Removal from Wastewaters by Sphaerotilus Natans[J]. Bioprocess Engineering,1998,19(3):197-203.
    [132]J. Taniguchi, H. Hemmi, K. Tanahashi. Zinc Biosorption by a Zinc-resistant Bacterium, Brevibacterium sp. Strain, HZM-1[J]. Applied Microbiology Biotechnology,2000,54(4):581-588.
    [133]E. Valdman, S. G. F. Leite. Biosorption of Cd, Zn and Cu by Saragssum sp. Waste Biomass[J]. Bioprocess Engineering,2000,22(2):171-173.
    [134]Y. Liu, H. Xu, S. Yang. A General Model for Biosorption of Cd2+Cu2+and Zn2+by Aerobic Granules[J]. Journal of Biotechnology,2003,102(3):233-239.
    [135]Y. Liu, S. Yang, H. Xu. Biosorption Kinetics of Cadmium (Ⅱ) on Aerobic Granular Sludge[J]. Process Biochemistry,2003,38(7):997-1001.
    [136]H. Xu, Y. Liu, J. Tay. Effect of pH on Nickel Biosoption by Aerobic Granular Sludge [J]. Bioresource Technology,2005,97(2):359-363.
    [137]X. Sun, C. Liu, Y. Ma. Enhanced Cu (Ⅱ) and Cr(Ⅵ) Biosorption Capacity on Poly (ethylenimine) Grafted Aerobic Granular Sludge [J]. Colloids Surface B,2011,82(2):456-462.
    [138]B. E. Rittmann, P. L. McCarty. Environmental Biotechnology:Principles and Applications[M]. New York:McGraw-Hill,2001.
    [139]S. Tay, B. Y. Moy, J. Tay. Rapid Cultivation of Stable Aerobic Phenol-degrading Granules Using Acetate-fed Granules as Microbial Seed[J]. Journal of Biotechnol,2005,115(4):387-395.
    [140]S. Tay, B. Y. Moy, J. Tay. Comparing Activated Sludge and Aerobic Granules as Microbial Inocula for Phenol Biodegradation[J]. Applied Microbiology Biotechnology,2005,67(5):708-713.
    [141]D. H. Stuermer, D. J. Ng, C. J. Morris. Organic Contaminants in Groundwater near an Underground Coal Gasification Site in Northeastern Wyoming[J]. Environmental Science Technology,1982,16(9):582-587.
    [142]S. Yi, W. Zhuang, J. Tay. Biodegradation of p-nitrophenol by Aerobic Granules in a Sequencing Batch Reactor[J]. Environmental Science Technology,2006,40(7):2396-2401.
    [143]L. Zhang, J. Chen, F. Fang. Biodegradation of Methyl t-butyl ether by Aerobic Granules under a Cosubstrate Condition[J]. Applied Microbiology Biotechnology,2008,78(3):543-550.
    [144]Y. V. Nancharaiah, H. M. Joshi, T. Mohan. Aerobic Granular Biomass:a Novel Biomaterial for Efficient Uranium Removal [J]. Current Science,2006,91(4):503-509.
    [145]N. Schwarzenbeck, R. Erley, B. S. McSwain. Treatment of Malting Wastewater in a Granular Sludge Sequencing Batch Reactors[J]. Acta Hydrochimica et hydrobiologica,2004,32(1):16-24.
    [146]P. E. Kolenbrander, R. N. Andersen, L. V. Holdeman. Coaggregation of Oral Bacteroide Species with Other Bacteria:Central Role in Coaggregation Bridges and Competitions[J]. Infection Immunology,1985,48(3):741-746.
    [147]R. J. Palmer, K. Kazmerzak, P. E. Kolenbrander. Mutualism Versus Independence:Strategies of Mixed-species Oral Biofilms in vitro Using Saliva as the Sole Nutrient Source[J]. Infection Immunology,2001,69(9):5794-5804.
    [148]J. Tay, Q. Liu, Y. Liu. Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor[J]. Journal of Applied Microbiology,2001,91(1):168-175.
    [149]Y. Liu, J. Tay. The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge[J]. Water Research,2002,36(7):1653-1665.
    [150]Y. Liu, S. Yang, J. Tay. Aerobic Granules:a Novel Zinc Biosorbent[J]. Letter of Applied Microbiology,2002,35(6):548-551.
    [151]J. Tay, S. Yang, Y. Liu. Hydraulic Selection Pressure-induced Nitrifying Granulation in Sequencing Batch Reactors[J]. Applied Microbiology Biotechnology,2002,59(2-3):332-337.
    [152]Q. Wang, G. Du, J. Chen. Aerobic Granular Sludge Cultivated under the Selective Pressure as a Driving Force[J]. Process Biochemistry,2004,39(5):557-563.
    [153]X. Wang, H. Zhang, F. Yang. Improved Stability and Performance of Aerobic Granules under Stepwise Increased Selection Pressure[J]. Enzyme Microbiology Technology,2007,41(3):205-211.
    [154]F. Trinet, R. Heim, D. Amar. Study of Biofilm and Fluidization of Bioparticles in a Three-phase Fluidized-bed Reactor[J]. Water Science Technology,1991, 23(7-9):1347-1354.
    [155]Y. Q. Liu, Y. Liu, J. Tay. The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules[J]. Applied Microbiology Biotechnology,2004,65(2):143-148.
    [156]J. W. Costerton, R. T. Irvin, K. J. Cheng. The Bacterial Glycocalyx in Nature and Disease[J]. Annual Review Microbiology,1981,35:299-324.
    [157]M. Cammarota, G. L. SantAnna. Metabolic Blocking of Exopolysaccharides Synthesis:Effects on Microbial Adhesion and Biofilm Accumulation[J]. Biotechnol Letters,1998,20(1):1-4.
    [158]I. W. Sutherland. Polysaccharases for Microbial Exopolysaccharides[J]. Carbohydrate Polymers,1999,38(4):319-328.
    [159]X. Zhang, P. L. Bishop. Biodegradability of Biofilm Extracellular Polymeric Substances[J]. Chemosphere,2003,50(1):63-69.
    [160]H. Ruijssenaars, F. Stingele, S. Hartmans. Biodegradability of Food-associated Extracellular Polysaccharides[J]. Current Microbiology,2000,40(3):194-199.
    [161]P. Bossier, W. Verstraete. Triggers for Microbial Aggregation in Activated Sludge?[J]. Applied Microbiology Biotechnology,1996,45(1-2):1-6.
    [162]T. Castellanos, F. Ascencio, Y. Bashan. Starvation-induced Changes in the Cell Surface of Azospirillum Lipoferum[J]. FEMS Microbiology Ecology,2000,33(1):1-9.
    [163]J. Tay, Q. Liu, Y. Liu. The Role of Cellular Polysaccharides in the Formation and Stability of Aerobic Granules[J]. Letters of Applied Microbiology,2001,33(3):222-226.
    [164]C. Di Iaconi, R. Ramadori, A. Lopez. Influence of Hydrodynamic Shear Forces on Properties of Granular Biomass in a Sequencing Batch Biofilter Reactor[J]. Biochemical Engineering Journal,2006,30(2):152-157.
    [165]M. Chen, D. Lee, J. Tay. Distribution of Extracellular Polymeric Substances in Aerobic Granules[J]. Applied Microbiology Biotechnology,2007,73(6):1463-1469.
    [166]Z. Wang, Y. Liu, J. Tay. Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules[J]. Applied Microbiology Biotechnology,2005,69(4):469-473.
    [167]A. Sunil, D. Lee, J. Tay. Extracellular Polymeric Substances and Structural Stability of Aerobic Granule[J]. Water Research,42(6-7):1644-1650.
    [168]W. E. Holben, K. Noto, Y. Suwa. Molecular Analysis of Bacterial Communities in a Three-compartment Granular Activated Sludge System Indicates Community-level Control by Incompatible Nitrification Processes[J]. Applied Environmental Microbiology,1998,64(7):2528-2532.
    [169]X. Hao, M. C. M. van Loosdrecht, J. J. Heijnen. Model-based Evaluation of Kinetic, Biofilm and Process Parameters in a One-reactor Ammonium Removal Process[J]. Biotechnology Bioengineering,2002,77(3):266-277.
    [170]S. Tsuneda, T. Nagano, T. Hoshino. Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor[J]. Water Research,2003,37(20):4965-4973.
    [171]S. Yang, J. Tay, Y. Liu. Respirometric Activities of Heterotrophic and Nitrifying Populations in Aerobic Granules Developed at Different Substrate N/COD Ratios[J]. Current Microbiology,2004,49(1):42-46.
    [172]S. Yang, Q. Liu, J. Tay. Growth Kinetics of Aerobic Granules Developed in Sequencing Batch Reactors[J]. Letters of Applied Microbiology,2004,38(2):106-112.
    [173]M. Vel, J. Keller, Z. Yuan. Effect of Free Ammonia on the Respiration and Growth Processes of an Enriched Nitrobacter Culture[J]. Water Research,2007,41(4):826-834.
    [174]H. Jiang, J. Tay, A. M. Maszenan. Enhanced Phenol Biodegradation and Aerobic Granulation by Two Coaggregating Bacterial Strains[J]. Environmental Science Technology,2006,40(19):6137-6142.
    [175]H. Jiang, S. Tay, A. M. Maszenan. Physiological Traits of Bacterial Strains Isolated from Phenol-degrading Aerobic Granules[J]. FEMS Microbiology Ecology,2006,57(2):182-191.
    [176]B. Ni, H. Yu, Y. Sun. Modeling Simultaneous Autotrophic and Heterotrophic Growth in Aerobic Granules[J]. Water Research,2008,42(6-7):1583-1594.
    [177]B. Ni, H. Yu. Storage and Growth of Denitrifiers in Aerobic Granules:Part I. Model Development[J]. Biotechnology Bioengineering,2008,99(2):314-323.
    [178]B. Ni, H. Yu, W. Xie. Storage and Growth of Denitrifiers in Aerobic Granules: Part II. Model Calibration and Verification[J]. Biotechnology Bioengineering,2008,99(2):324-332.
    [179]K. Su, H. Yu. Formation and Characterization of Aerobic Granules in a Sequencing Batch Reactor Treating Soybean-processing Wastewater[J]. Environmental Science Technology,2005,39(8):2818-2827.
    [180]B. Ni, H. Yu. Mathematical Modeling of Aerobic Granular Sludge:A Review[J]. Biotechnology Advances,2010,28(6):895-909.
    [181]M. K. de Kreuk, C. Picioreanu, M. C. M. van Loosdrecht. Kinetic Model of a Granular Sludge SBR:Influences on Nutrient Removal [J]. Biotechnology Bioengineering,2007,97(4):801-815.
    [182]M. K. de Kreuk, N. Kishida, M. C. M. van Loosdrecht. Aerobic Granular Sludge---State of the Art[J]. Water Science Technology,2007,55(8-9):75-81.
    [183]J. Xavier, M. K. de Kreuk, M. C. M. van Loosdrecht. Multi-scale Individual-based Model of Microbial and Bioconversion Dynamics in Aerobic Granular Sludge[J]. Environmental Science Technology,2007,41(18):6410-6417.
    [184]韩晓云.低温生物膜及其微生物特性的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2006.
    [185]衣雪松.聚偏氟乙烯改性膜处理油田三次采出水的抗污染特性与机制[D].哈尔滨:哈尔滨工业大学博士学位论文,2012.
    [186]韩春威.水解酸化-好氧工艺处理屠宰废水的试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [187]国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2006.
    [188]D. Gao, X. Yuan, H. Liang. Reactivation Performance of Aerobic Granules under Different Storage Strategies[J]. Water Research,2012,46(10):3315-3322.
    [189]A. Laguna, A. Ouattara, R. O. Gonzalez. A Simple and Low Cost Technique for Determining the Granulometry of Upflow Anaerobic Sludge Blanket Reactor Sludge[J]. Water Science Technology,1999,40(8):1-8.
    [190]M. Moreau, Y. Liu, B. Capdeville. Kinetic Behaviors of Heterotrophic and Autotrophic Biofilm in Wastewater Treatment Processes[J]. Water Science Technology,1994,29(10-11):385-391.
    [191]J. C. Ochoa, J. Colprim, B. Palacios. Active Heterotrophic and Autotrophic Biomass Distribution between Fixed and Suspended Systems in a Hybrid Biological Reactor[J]. Water Science Technology,2002,46(1-2):397-404.
    [192]李善评,赵玉晓,乔鹏.好氧颗粒污泥的培养及基质降解和污泥生长动力学分析[J].山东大学学报:工学版,2008,38(3):95-98.
    [193]王志平,刘莉莉,秦梅.乙醇好氧颗粒污泥培养及其基质降解动力学[J].哈尔滨理工大学学报,2007,12(3):133-136.
    [194]S. Ghafari, H. A. Aziz, M. H. Isa. Application of Response Surface Methodology to Optimize Coagulation/flocculation Treatment of Leachate Using Poly-aluminum Chloride and Alum[J]. Journal of Hazardous Materials,2009,163(2-3):650-656.
    [195]W. Guo, N. Ren, X. Wang. Optimization of Culture Conditions for Hydrogen Production by Ethanoligenens harbinense B49Using Response Surface Methodology[J]. Bioresource Technology,2009,100(3):1192-1196.
    [196]M. S. Tanyildizi, D. Ozer, M. Elibol. Optimization of Amylase Production by Bacillus sp. Using Response Surface Methodology[J]. Process Biochemistry,2005,40(7):2291-2296.
    [197]李超敏,韩梅,张良.细胞固定化技术---海藻酸钠包埋法的研究进展[J].安徽农业科学,2006,34(7):1281-1284.
    [198]J. Wu, Q. Ruan, H. Y. Lam. Effects of Surface-active Medium Additives on Insect Cell Surface Hydrophobicity Relating to Cell Protection against Bubble Damage[J]. Enzyme and Microbial Technology,1997,21(5):341-348.
    [199]S. E. Coutser, T. E. Cloete. Biofouling and Biocorrosion in Industrial Water Systems[J]. Critical Review Microbiology,2005,31(4):213-232.
    [200]付英,于水利.聚硅酸铁水解规律及混凝机理的探讨[J].环境科学,2007,28(1):113-119.
    [201]郭瑾,马军.不同性质天然有机物对水中颗粒稳定性影响的机理研究[J].环境科学,2006,27(3):461-468.
    [202]M. Dubois, K. A. Gilles, J. K. Hamilton. Colorimetric Method for Determination of Augars and Related Sub stances [J]. Analytical Chemistry,1956,28(3):350-356.
    [203]O. H. Lowry, N. J. Rosebrough, A. L. Farr. Protein Measurement with the Folin Phenol Reagent[J]. Journal of Biological Chemistry,1951,193(1):265-275.
    [204]李旺,王占彬,武晓红.几种粗脂肪测定方法的优缺点[J].江西饲料,2005,31(6):24-26.
    [205]孙晓璐,孙玉梅,曹芳.对产油脂酵母的细胞破碎方法及油脂提取效果的比较[J].河南工业大学学报(自然科学版),2007,28(4):67-69.
    [206]APHA. Standard Methods for the Examination of Water and Wastewater,20th ed[M]. American Public Health Association, Washington DC, USA,1998.
    [207]J. Tong, Y. Chen. Enhanced Biological Phosphorus Removal Driven by Short-chain Fatty Acids Produced From Waste Activated Sludge Alkaline Fermentation[J]. Environmental Science Technology,2007,41(20):7126-7130.
    [208]D. Cvijovic. Another Discrete Fourier Transform Pairs Associated with the Lipschitz-Lerch Zeta Function[J]. Applied Mathematics and Computation,2012,218(12):6744-6747.
    [209]涂剑成.污水厂污泥中重金属脱除技术及污泥特性变化的研究[D].哈尔 滨:哈尔滨工业大学博士学位论文,2011.
    [210]魏亮亮.改良土壤含水层处理系统对溶解性有机物的去除效能[D].哈尔滨:哈尔滨工业大学博士学位论文,2011.
    [211]W. Chen, P. Westerhoff, J. A. Leenheer. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter[J]. Environmental Science Technology,2003,37(24):5701-5710.
    [212]M. S. Moussa, D. U. Sumanasekera, M. C. M. van Loosdrecht. Long Term Effects of Salt on Activity, Population Structure and Floc Characteristics in Enriched Bacterial Cultures of Nitrifiers [J]. Water Research,2006,40(7):1377-1388.
    [213]M. Winkler, J.P. Bassina, M. C. M. van Loosdrecht. Selective Sludge Removal in a Segregated Aerobic Granular Biomass System as a Strategy to Control PAO-GAO Competition at High Temperatures [J]. Water Research,2011,45(11):3291-3299.
    [214]D. Vejmelkova, Y. Dimitry, M. C. M. van Loosdrecht. Analysis of Ammonia-Oxidizing Bacteria Dominating in Lab-scale Bioreactors with High Ammonium Bicarbonate Loading[J]. Applied Microbiology and Biotechnology,2012,93(1):401-410.
    [215]单国彬,金文标,林估侃.变性梯度凝胶电泳在环境微生物生态学中的应用[J].生态学杂志,2006,25(10):1257-1264.
    [216]G. Muyzer, E. C. D. Waal. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction Amplified Genes Coding for16S rRNA[J]. Applied Environmental Microbiology,1993,59(3):695-700.
    [217]杨洋,左剑恶,全哲学UASB反应器中厌氧氨氧化污泥的种群分析[J].中国环境科学,2006,26(1):52-56.
    [218]马超.产氢产乙酸优势菌群的选育及其生理生态特性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008.
    [219]L. Raskin, J. M. Stromley, B. E. Rittmann. Group-specific16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens[J]. Applied Environmental Microbiology,1994,60(4):1232-1240.
    [220]邢德峰,任南琪,宋佳秀.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响[J].环境科学,2006,27(7):1424-1428.
    [221]B. J. Bassam, G. Caetano-Anolles, P. M. Gresshoff. Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels[J]. Analytical Biochemistry,1991,196(1):80-83.
    [222]万春黎.电渗析-微生物技术修复油污土壤的效能及影响因素研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010.
    [223]N. Berent, D. Peng, J. Delgenies. Nitrification at Low Oxygen Concentration in Biofilm Reactor[J]. Journal of Environmental Engineering,2001,127(3):266-271.
    [224]J.J. Beun, M. C. M. van Loosdrecht, J. J. Heijnen. Aerobic Granulation in a Sequencing Batch Airlift Reactor[J]. Water Research,2002,36(3):702-712.
    [225]N. Unal. Factors Affecting the Treatment Efficiency of Medium Strength Wastewaters in UASB Reactors [D]. Turkey:Dokuz Eylul University,1999.
    [226]S. R. Guiot, A. Pauss, J. W. Costerton. A Structured Model of the Anaerobic Granule Consortium [J]. Water Science Technology,1991,21(1):1-10.
    [227]M. Robert, K. Stephen, H. Brown. Enzymes from High-temperature Microorganisms[J]. Current Opinion in Biotechnology,1993,4(2):188-192.
    [228]C. Gerday. Psychrophilic Enzymes:a Thermodynamic Challenge[J]. Biochimica et Biophysica Acta,1997,1342(2):119-131.
    [229]Y. Liu, S. Yang, Q. Liu. The Role of Cell Hydrophobicity in the Formation of Aerobic Granules[J]. Current Microbiology,2003,46(4):270-274.
    [230]A. Li, S. Yang, X. Li. Microbial Population Dynamics During Aerobic Sludge Granulation at Different Organic Loading Rates[J]. Water Research,2008,42(13):3552-3560.
    [231]J. Hu, S. Ong, W. Ng. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors [J]. Water Research,2003,37(14):3463-3471.
    [232]Y. Wang, F. Jiang F, Z. Zhang. The Long-term Effect of Carbon Source on the Competition between Polyphosphorus Accumulating Organisms and Glycogen Accumulating Organism in a Continuous Plug-flow Anaerobic/Aerobic Process[J]. Bioresource Technology,2010,101(1):98-104.
    [233]K. Keiding, P. Nielsen. Desorption of Organic Macromolecules from Activated Sludge:Effect of Ionic Composition[J]. Water Research,1997,31(7):1665-1672.
    [234]L. B. Barber, J. A. Leenheer, T. I. Noyes. Nature and Transformation of Dissolved Organic Matter in Treatment Wetlands[J]. Environmental Science Technology,2011,35(24):4805-4816.
    [235]G. Sheng, H. Yu. Characterization of Extracellular Polymeric Substances of Aerobic Sludge Using Three-dimensional Excitation and Emission Matrix Fluorescence Spectroscopy[J]. Water Research,2006,40(6):1233-1239.
    [236]D. Peng, B. Nicolas, D. Jean-philippe. Aerobic Granular Sludge-a Case Report[J]. Water Research,1999,33(3):890-893.
    [237]Tijhuis L, van Loosdrecht MCM, Heijnen JJ. Formation and Growth of Heterotrophic Aerobic Biofilms on Small Suspended Particles in Airlift Reactors[J]. Biotechnology Bioengineering,1994,44(5):595-608.
    [238]杨艳玲,范茜,李星.铁铝复合吸附剂去除水中痕量磷效能及机理[C].哈尔滨:第十一届海峡两岸环境保护学术研讨会论文集(上册),2007:85-89.
    [239]F. Guzman, F. Gonzalez, R. Martinez. Implementing Lecane Quadridentata Acute Toxicity Tests to Assess the Toxic Effects of Selected Metals (Al, Fe and Zn)[J]. Ecotoxicological Environmental Safety,2010,73(3):287-295.
    [240]H. Siegrist, W. Gujer. Mass Transfer Mechanisms in a Heterotrophic Biofilm[J]. Water Research,1985,19(11):1369-1378.
    [241]U. Sudarno, J. Winter, C. Gallert. Effect of Varying Salinity, Temperature, Ammonia and Nitrous Acid Concentrations on Nitrification of Saline Wastewater in Fixed-bed Reactors[J]. Bioresource Technology,2011,102(10):5665-5673.
    [242]J. Campos, A. Mosquera-Corral, R. Mendez. Nitrification in Saline Wastewater with High Ammonia Concentration in an Activated Sludge Unit[J]. Water Research,2002,36(10):2555-2560.
    [243]N. Ren, J. Li, B. Li. Biohydrogen Production from Molasses by Anaerobic Fermentation with a Pilot-scale Bioreactor System [J]. International Journal of Hydrogen Energy,2006,31(15):2147-2157.
    [244]J. Li, N. Ren, B. Li. Anaerobic Biohydrogen Production from Monosaccharides by a Mixed Microbial Community Culture [J]. Bioresource Technology,2008,99(14):6528-6537.
    [245]Y. Wang, Y. Peng, T. Stephenson. Effect of Influent Nutrient Ratios and Hydraulic Retention Time (HRT) on Simultaneous Phosphorus and Nitrogen Removal in a Two-sludge Sequencing Batch Reactor Process[J]. Bioresource Technology,2009,100(14):3506-3512.
    [246]Y. G. Chen, Y. S. Chen, Q. Xu. Comparison between Acclimated and Unacclimated Biomass Affecting Anaerobic-Aerobic Transformations in the Biological Removal of Phosphorus [J]. Process Biochemistry,2005,40(2):723-732.
    [247]T. Kuba, M. C. M. van Loosdrecht. Occurrence of Denitrifying Phosphorus Removal Bacteria in Modified UCT-Type Wastewater Treatment Plants[J]. Water Research.1997,31(4):777-786.
    [248]D. Lee, C. Jeon, J. Park. Biological Nitrogen Removal with Enhanced Phosphorus Uptake in a Sequencing Batch Reactor Using Single Sludge System[J]. Water Research,2001,35(16):3968-3976.
    [249]吕慧PVDF纳米改性膜制备及其对采油废水处理效能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [250]X. Yi, W. Shi, S. Yu. Isotherm and Kinetic Behavior of Adsorption of Anion Polyacrylamide from Aqueous Solution Using Two Kinds of PVDF UF Membranes[J]. Journal of Hazardous Materials,2011,189(1-2):495-501.
    [251]X. Yi, W. Shi, S. Yu. Comparative Study of Anion Polyacrylamide Adsorption-Related Fouling of a PVDF UF Membrane and a Modified PVDF UF Membrane[J]. Desalination,2012,286:254-262.
    [252]S. Yu, Y. Lu, B. Cai. Treatment of Oily Wastewater by Organic-inorganic Composite Tubular Ultrafiltration (UF) Membranes[J]. Desalination,2006,196(1-3):76-83.
    [253]A. Rahimpour, B. Rajaeian, A. Hosienzadeh. Treatment of Oily Wastewater Produced by Washing of Gasoline Reserving Tanks Using Self-made and Commercial Nanofiltration Membranes[J]. Desalination,2011,265(1-3):190-198.
    [254]杨基先,马放,张立秋.利用工程菌处理含油废水的可行性研究[J].东北师大学报自然科学版,2001,33(2):89-92.
    [255]J. Jeganathan, G. Nakhla, A. Bassi. Oily Wastewater Treatment Using a Novel Hybrid PBR-UASB System[J]. Chemosphere,2007,67(8):1492-1501.
    [256]X. Yi, W. Shi, S. Yu. Optimization of Complex Conditions by Response Surface Methodology for APAM-O/W Emulsion Removal from Aqua Solutions Using Nano-sized TiO2/AlO3PVDF Ultrafiltration Membrane[J]. Journal of Hazardous Materials,2011,193:37-44.
    [257]赫俊国,李建政,张金松.生物膜-活性污泥共生系统处理屠宰废水的研究[J].哈尔滨工业大学学报,2003,35(4):424-427.
    [258]T. Cloete, D. Oosthuizen. The Role of Extracellular Exopolymers in the Removal of Phosphorus from Activated Sludge[J]. Water Research,2001,35(15):3595-3598.
    [259]李建政,任南琪.污染控制微生物生态学[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [260]S. Zhang, X. Yu, F. Guo. Effect of Interspecies Quorum Sensing on the Formation of Aerobic Granular Sludge[J]. Water Science and Technology,2011,64(6):1284-1290.
    [261]黄昆.表面张力[J].物理通报,1953,4:155-166.
    [262]G. Sheng, H. Yu, X. Li. Extracellular Polymeric Substances of Microbial Aggregates in Biological Wastewater Treatment Systems:A review[J]. Biotechnology advances,2010,28(6):882-894.
    [263]B. M. Wilen, B. Jin, P. Lant. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research,2003,37(9):127-139.
    [264]孙其诚,王光谦.颗粒物质理学导论[M].北京:科学出版社,2009.
    [265]林建忠,阮晓东.流体力学[M].北京:清华大学出版社,2005.
    [266]林学政,边际,黄晓航.冷激蛋白在极地微生物冷适应中的作用[J].生命的化学,2004,24(5),406-408.
    [267]郭建军,龚兴国.冷激蛋白的研究进展[J].生物化学与生物物理进展,2002,29(5):691-695.
    [268]吴虹,郑穗平,杨汝德.低温微生物适应低温的分子机制[J].生命的化学,2001,21(2):163-164.
    [269]辛明秀,周培瑾.冷适应微生物产生的冷活性酶[J].微生物学报,2000,40(6):661-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700