用户名: 密码: 验证码:
节杆菌电转化方法的优化及6-磷酸海藻糖酯酶基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节杆菌是土壤中最常分离到的土著性需氧微生物。节杆菌属的成员不仅可以降解各种环境污染物,而且有能力抵御各种环境压力,例如低温、干燥、饥饿、电离辐射、高渗透压等。有报道指出,节杆菌的抗逆性可能与其体内存在多种海藻糖合成的基因有关。在大多数生物体内,海藻糖主要生物合成途径包含6-磷酸海藻糖合成酶(TPS)和6-磷酸海藻糖酯酶(TPP)。由于TPP丰富的生物学功能及其在抗逆境胁迫中可能发挥的重要作用引起了人们极大的兴趣。然而目前有关TPP的研究主要集中在高温和中温微生物中,在低温微生物中还未见报道;而且对这些基因进行克隆、过表达、敲除以及合成途径的研究离不开高效的转化系统。因此,本研究采用节杆菌典型的组成型表达载体pART2对一株耐冷菌Arthrobacter sp. A3进行电转化条件的优化研究,并进一步对TPP的功能进行了深入研究。获得的主要研究结果如下:
     (1)通过对整个电转化过程中所涉及的因素进行系统分析,首次建立了一种简单、快速、转化水平最高的适用于节杆菌属的高效电转化方法。在所测定的因素中,在细胞对数生长初期加入青霉素处理,以及电击与复苏基质中0.5 M山梨醇的存在,可以导致转化效率增加幅度最大并使结果具有一致性;在最优化的电击条件下,Arthrobacter sp. A3的转化效率可达到6.8×107个转化子/μgpART2;可以保证一个转化实验在10分钟内完成;成功将该方法应用于节杆菌的其他5种典型物种,都得到了较高的转化效率。这一方法是节杆菌基因操作的有效工具,有助于推动这一具有重要经济意义的生物群体的研究。
     (2)克隆得到Arthrobacter sp. A3 6-磷酸海藻糖酯酶基因。通过热不对称交错RCR (TAIL-PCR),从Arthrobacter sp. A3中得到编码6-磷酸海藻糖酯酶的基因tpp,该基因含有801bp的开放阅读框,编码266个氨基酸;通过生物信息学分析其氨基酸序列,发现不具有信号肽序列和跨膜区,表明TPP为胞内酶;BLASTP结果显示TPP属于HAD超家族。
     (3)实现Arthrobacter sp. A3 tpp基因在大肠杆菌中的异源表达,并完成了重组TPP的纯化。重组酶在表观上与预测的分子量27.9 kDa一致。
     (4)阐明了来源于Arthrobacter sp. A3的重组TPP可能是一种新的适冷酶。研究发现该酶表现出对Mg~(2+)或Co~(2+)的绝对需求; Arthrobacter sp. A3 TPP最适pH值范围较宽(5.0~7.5),而其他验证功能的6-磷酸海藻糖酯酶却无此特征;TPP最适反应温度约为30℃,也是重组TPP酶达到最高Kcat/Km(催化效率)时的温度;TPP在4℃可以保持最大活性的75%,表明该酶在低温下稳定;在50℃热激处理6分钟就会失去70%的活性,说明该酶通常不耐热;重组TPP Kcat/Km最大值为37.5mM-1·s-1,远远高于已报道的来源于中温菌大肠杆菌的TPP。在20℃时,重组TPP Km值达到最小,但是,即使在4℃,相比于其他已经报道的微生物的TPP,该酶仍具有最低的Km值。所有这些特性都与适冷酶的特征相吻合。
     (5)揭示了tpp在Arthrobacter sp. A3抵御低温胁迫中具有重要作用。实现Arthrobacter sp. A3 tpp基因的同源表达;我们发现在Arthrobacter sp. A3体内过表达tpp,可以使该菌0℃时的生存率略有提高。tpp过表达菌株在0℃生存率的提高,以及TPP较低的最适温度水平和低温下保持高催化效率的特征,表明tpp与Arthrobacter sp. A3在低温下生存具有一定相关性。
     综上所述,本研究对来源于耐冷节杆菌属TPP进行了首次报道。不仅为节杆菌tpp功能研究提供了科学依据,而且为研究低温菌蛋白以及节杆菌适应低温环境的作用机制奠定了理论基础。
Strains of Arthrobacter are among the most frequently isolated, indigenous, aerobic bacteria found in soils. Members of the genus are known to biodegrade organic compounds in the environment and have the ability to withstand various environmental stresses, such as cold, desiccation, starvation, ionizing radiation, and osmotic stress. The presence of genes for trehalose synthesis in Arthrobacter might be important for this organism's resistance to environmental stresses. The major pathway for trehalose biosynthesis in most organisms involves two enzymes, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). TPP has received great interest because of its abundant biological functions and potential importance for resistance to environmental stresses. Although TPP has been studied in thermophiles and mesophiles, few of them were characterized in cold-adapted microorganisms. A prerequisite for genetic manipulations of these specific genes in Arthrobacter is a high efficiency transformation system that allows for gene cloning, overexpression, and knock-out, as well as for studying trehalose biosynthetic pathway. Thus, in this study, a constitutive gene expression vector pART2 was selected to optimize the electroporation conditions for Arthrobacter sp. A3. Furthermore, the biochemical properties of TPP were studied in this psychrotrophic bacterium. The main results of the present study are as follows:
     (1) A simple, rapid, and highly efficient electroporation method which was suitable for Arthrobacter species was established through a systematic examination of the factors involved in the entire electroporation process. Of the parameters assayed, the addition of penicillin to cells during the early log phase of growth and the presence of 0.5 M sorbitol in the electroporation and recovery media produced the greatest increases in transformation efficiency and consistency of results. Using optimum conditions, we generally achieved an efficiency of 6.8 x 10'transformants per microgram of pART2 for Arthrobacter sp. A3. To our knowledge, this level of electro-competence is the highest ever reported for the Arthrobacter genus. The proposed method allows a transformation trial to be accomplished in 10 minutes. This protocol was also successfully applied to other five Arthrobacter species. This method constitutes a useful tool for the genetic manipulations of Arthrobacter, and will facilitate research of this economically important group of organism.
     (2) The tpp gene encoding trehalose-6-phosphate phosphatase from Arthrobacter sp. A3 was obtained by thermal asymmetric interlaced PCR (TAIL-PCR). The gene contained a 801-bp open reading frame encoding 266 amino acids. The result of amino acid sequence analysis by bioinformatics showed that there was no signal peptide and transmembrane domain, which indicated that the TPP of Arthrobacter sp. A3 was an intracellular enzyme. BLASTP result revealed that TPP belonged to the HAD superfamily.
     (3) The tpp gene was expressed heterogenously in Escherichia coli, and the recombinant enzyme was purified to apparent homogeneity with a calculated molecular weight of 27.9 kDa.
     (4) The properties of recombinant TPP were characterized in detail. This enzyme showed an absolute requirement for Mg~(2+)or Co~(2+). The Arthrobacter sp. A3 TPP showed a broad pH optimum range (from pH 5.0 to 7.5), whereas other trehalose-6-phosphate phosphatase characterised do not possess this feature. The temperature optimum was about 30℃, which was also the point of the highest Kcat/Km value (catalytic efficiency) for the recombinant TPP enzyme. The enzyme was stable at low temperatures, as it could maintain 75%of the maximal activity at 4℃. On the other hand, the enzyme was generally heat-labile, losing 70%of its activity when subjected to heat treatment at 50℃for 6 min. The highest Kcat/Km value was 37.5 mM-1·s-1, which was much higher than values published for mesphilic E.coli TPP. The lowest Km value was at 20℃, however, even at 4℃, it possessed the lowest Km value compared to the counterparts from the other reported microorganisms. These characteristics may suggest that this TPP is a novel cold-adapted enzyme.
     (5) The tpp gene was expressed homologously in Arthrobacter sp. A3. Overexpression of tpp in Arthrobacter sp. A3 could increase the cell viability slightly at 0℃. The enhancement of viability of tpp-overproducing strain at 0℃, together with the low optimal temperature and the high-catalytic efficiency of TPP at low temperature may indicate that this TPP plays an important role in resistance of Arthrobacter sp. A3 to cold.
     This is the first report of the characterization of TPP from psychrotrophic Arthrobacter genus. The research of this paper would provide more knowledge to the functions of TPP, and provide basic information for cold-adapted enzymes, and also provide foundation for further understanding the survival strategies of Arthrobacter at low temperatures.
引文
[1]Koch, C, Schumann, P. and Stackebrandt, E. (1995). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the Genus Arthrobacter as Arthrobacter agilis comb. nov. and Emendation of the Genus Arthrobacter. Int. J. Syst. Bacteriol 45,837-839.
    [2]Hagedorn, C. and Holt, J.G. (1975). A nutritional and taxonomic survey of Arthrobacter soil isolates. Can. J. Microbiol.21,353-361.
    [3]Skyring, G.W. and Quadling, C. (1969). Soil bacteria:comparisons of rhizosphere and nonrhizosphere populations. Can. J. Microbiol.15,473-488.
    [4]Lowe, W.E. and Gray, T.R.G. (1972). Ecological studies on coccoid bacteria in a pine forest soil—I. Classification. Soil Biology and Biochemistry 4,459-467.
    [5]Soumare, S. and Blondeau, R. (1972). [Microbiological properties of soils in Northern France:Arthrobacter extent]. Ann. Inst. Pasteur (Paris) 123,239-249.
    [6]Jones, D. and Keddie, R. (2006) The Genus Arthrobacter. In The Prokaryotes (Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E., eds), pp.945-960. Springer New York.
    [7]Fong, N.J., Burgess, M.L., Barrow, K.D. and Glenn, D.R. (2001). Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol.56,750-756.
    [8]Margesin, R. and Schinner, F. (1996). Bacterial heavy metal-tolerance-extreme resistance to nickel in Arthrobacter spp. strains. J. Basic Microbiol.36,269-282.
    [9]Nordin, K, Unell, M. and Jansson, J.K. (2005). Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl. Environ. Microbiol.71,6538-6544.
    [10]Strong, L.C., Rosendahl, C, Johnson, G, Sadowsky, M.J. and Wackett, L.P. (2002). Arthrobacter aurescens TCI metabolizes diverse s-triazine ring compounds. Appl. Environ. Microbiol.68,5973-5980.
    [11]Fredrickson, J.K. et al. (2004). Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, Washington state. Appl. Environ. Microbiol.70,4230-4241.
    [12]Mongodin, E.F. et al. (2006). Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TCI. PLoS Genet.2,20214-20220.
    [13]Bernasconi, E., Valsangiacomo, C, Peduzzi, R., Carota, A., Moccetti, T. and Funke, G. (2004). Arthrobacter woluwensis subacute infective endocarditis:case report and review of the literature. Clin. Infect. Dis.38, e27-31.
    [14]Cacciari, I. and Lippi, D. (1987). Arthrobacters:Successful arid soil bacteria:A review. Arid Soil Res. Rehabil.1,1-30.
    [15]Keuth, S. and Rehm, H.-J. (1991). Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol.34, 804-808.
    [16]Horton, R.N., Apel, W.A., Thompson, V.S. and Sheridan, P.P. (2006). Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol.6,5.
    [17]BENYEHUDA et al. (2003) Metal resistance among aerobic chemoheterotrophic bacteria from the deep terrestrial subsurface, National Research Council of Canada. Ottawa, ON, CANADA.
    [18]Katayama, T. et al. (2007). Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl. Environ. Microbiol.73,2360-2363.
    [19]Boylen, C.W. (1973). Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J. Bacteriol.113,33-37.
    [20]Boylen, C.W. and Ensign, J.C. (1970). Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes. J. Bacteriol.103,578-587.
    [21]Labeda, D.P., Liu, K.C. and Casida, L.E., Jr. (1976). Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy. Appl. Environ. Microbiol.31, 551-561.
    [22]Zevenhuizen, L.P. (1992). Levels of trehalose and glycogen in Arthrobacter globiformis under conditions of nutrient starvation and osmotic stress. Antonie Leeuwenhoek 61, 61-68.
    [23]Karigar, C, Mahesh, A., Nagenahalli, M. and Yun, D.J. (2006). Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation 17,47-55.
    [24]Gounot, A.M. (1967). Biologic role of Arthrobacter in subterranean soils. Ann. Inst. Pasteur (Paris) 113,923-945.
    [25]Moiroud, A. and Gounot, A.M. (1969). An obligatory psychrophile bacteria isolated from glacial mud. C. R. Acad. Sci. Hebd. Seances. Acad. Sci. D.269,2150-2152.
    [26]Margesin, R., Schumann, P., Sproer, C. and Gounot, A.M. (2004). Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int. J. Syst. Evol. Microbiol. 54,2067-2072.
    [27]Nakagawa, T., Fujimoto, Y., Uchino, M., Miyaji, T., Takano, K. and Tomizuka, N. (2003). Isolation and characterization of psychrophiles producing cold-active β-galactosidase. Lett. Appl. Microbiol.37,154-157.
    [28]Cameron RE and HPConrow. (1971) Survival of antarctic desert soil bacteria exposed to various temperatures and three years of continuous medium high vacuum. Pasadena (California):Jet Propulsion Laboratory, California Institute of Technology 6p.
    [29]Lee, J.-S., Lee, K.C., Pyun, Y.-R. and Bae, K.S. (2003). Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int. J. Syst. Evol. Microbiol.53,1277-1280.
    [30]Funke, G, Hutson, R.A., Bernard, K.A., Pfyffer, G.E., Wauters, G. and Collins, M.D. (1996). Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J. Clin. Microbiol. 34,2356-2363.
    [31]Wauters, G., Charlier, J., Janssens, M. and Delmee, M. (2000). Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J. Clin. Microbiol.38,2412-2415.
    [32]Hou, X.G., Kawamura, Y, Sultana, F., Shu, S, Hirose, K., Goto, K. and Ezaki, T. (1998). Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. Int. J. Syst. Bacteriol 48,423-429.
    [33]Mages, I.S., Frodl, R., Bernard, K.A. and Funke, G. (2008). Identities of Arthrobacter spp. and Arthrobacter-like bacteria encountered in human clinical specimens. J. Clin. Microbiol.46,2980-2986.
    [34]Huang, Y., Zhao, N., He, L., Wang, L., Liu, Z., You, M. and Guan, F. (2005). Arthrobacter scleromae sp. nov. isolated from human clinical specimens. J. Clin. Microbiol.43, 1451-1455.
    [35]Imirzalioglu, C., Hain, T., Hossain, H., Chakraborty, T. and Domann, E. (2010). Erythema caused by a localised skin infection with Arthrobacter mysorens. BMC Infect. Dis.10, 352.
    [36]Shigekawa, K. and Dower, W.J. (1988). Electroporation of eukaryotes and prokaryotes:a general approach to the introduction of macromolecules into cells. BioTechniques 6, 742-751.
    [37]Neumann, E., Schaefer-Ridder, M., Wang, Y. and Hofschneider, P.H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J.1, 841-845.
    [38]Sorokin, A.P., Ke, X., Chen, D. and Elliott, M.C. (2000). Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci.156,227-233.
    [39]Knutson, J.C. and Yee, D. (1987). Electroporation:Parameters affecting transfer of DNA into mammalian cells. Anal. Biochem.164,44-52.
    [40]Becker, D.M. and Guarente, L. (1991). High-efficiency transformation of yeast by electroporation. Methods Enzymol.194,182-187.
    [41]Calvin, N.M. and Hanawalt, P.C. (1988). High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol.170,2796-2801.
    [42]Prasanna, G.L. and Panda, T. (1997). Electroporation:basic principles, practical considerations and applications in molecular biology. Bioprocess Biosyst. Eng.16, 261-264.
    [43]Wong, T.K. and Neumann, E. (1982). Electric field mediated gene transfer. Biochem. Biophys. Res. Commun.107,584-587.
    [44]Weaver, J.C. and Chizmadzhev, Y.A. (1996). Theory of electroporation:A review. Bioelectrochem. Bioenerg.41,135-160.
    [45]Tryfona, T. and Bustard, M.T. (2006). Enhancement of biomolecule transport by electroporation:a review of theory and practical application to transformation of Corynebacterium glutamicum. Biotechnol. Bioeng.93,413-423.
    [46]Dunny, G.M., Lee, L.N. and LeBlanc, D.J. (1991). Improved electroporation and cloning vector system for gram-positive bacteria. Appl. Environ. Microbiol.57,1194-1201.
    [47]Hammes, W., Schleifer, K.H. and Kandler, O. (1973). Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol.116,1029-1053.
    [48]McDonald, I.R., Riley, P.W., Sharp, R.J. and McCarthy, A.J. (1995). Factors affecting the electroporation of Bacillus subtilis. J. Appl. Bacteriol.79,213-218.
    [49]Kikuchi, M. and Nakao, Y. (1986). Glutamic acid. Prog. Ind. Microbiol.24,101-116.
    [50]Haynes, J.A. and Britz, M.L. (1989). Electrotransformation of Brevibacterium lactofermentum and Corynebacterium glutamicum:growth in tween 80 increases transformation frequencies. FEMS Microbiol. Lett.61,329-333.
    [51]Peng, D., Luo, Y., Guo, S., Zeng, H., Ju, S., Yu, Z. and Sun, M. (2009). Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J. Appl. Microbiol.106,1849-1858.
    [52]Lee, S.-H., Cheung, M., Irani, V., Carroll, J.D., Inamine, J.M., Howe, W.R. and Maslow, J.N. (2002). Optimization of electroporation conditions for Mycobacterium avium. Tuberculosis 82,167-174.
    [53]Wei, M.-Q., Rush, CM., Norman, J.M., Hafner, L.M., Epping, R.J. and Timms, P. (1995). An improved method for the transformation of Lactobacillus strains using electroporation. J. Microbiol. Methods 21,97-109.
    [54]Pigac, J. and Schrempf, H. (1995). A Simple and Rapid Method of Transformation of Streptomyces rimosus R6 and Other Streptomycetes by Electroporation. Appl. Environ. Microbiol.61,352-356.
    [55](1989) Biorad Laboratories Methods in electroporation-Bacterial electrotransformation and pulse controller instruction manual. Richmond, California, USA.
    [56]Trevors, J.T., Chassy, B.M., Dower, W.J. and Blaschek, H.P. (1992) Electrotransformation of bacteria by plasmid DNA. In Guide to Electroporation and Electrofusion (Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E., eds), pp.265-290. Academic Press. San Diego.
    [57]Rodriguez, M.C., Alegre, M.T. and Mesas, J.M. (2007). Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid 58,44-50.
    [58]Faurie, C, Golzio, M., Phez, E., Teissie, J. and Rols, M.P. (2005). Electric field-induced cell membrane permeabilization and gene transfer:theory and experiments. Eng. Life Sci. 5,179-186.
    [59]Dower, W.J., Chassy, B.M., Trevors, J.T. and Blaschek, H.P. (1992) Protocols for the transformation of bacteria by electroporation. In Guide to Electroporation and Electrofusion (Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E., eds), pp. 485-499. Academic Press. San Diego.
    [60]Xue, G.-P., Johnson, J.S. and Dalrymple, B.P. (1999). High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Methods 34,183-191.
    [61]Turgeon, N., Laflamme, C, Ho, J. and Duchaine, C. (2006). Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. J. Microbiol. Methods 67, 543-548.
    [62]Chen, D.Q., Huang, S.S. and Lu, Y.J. (2006). Efficient transformation of Legionella pneumophila by high-voltage electroporation. Microbiol. Res.161,246-251.
    [63]Igloi, G.L. and Brandsch, R. (2003). Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J. Bacteriol.185,1976-1986.
    [64]Parschat, K., Overhage, J., Strittmatter, A.W., Henne, A., Gottschalk, G. and Fetzner, S. (2007). Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Rii61a and transcriptional analysis of genes involved in quinaldine degradation. J. Bacteriol.189,3855-3867.
    [65]Shaw, P.-C. and Hartley, B.S. (1988). A Host-Vector System for an Arthrobacter Species. J. Gen. Microbiol.134,903-911.
    [66]Morikawa, M., Daido, H., Pongpobpibool, S. and Imanaka, T. (1994). Construction of a new host-vector system in Arthrobacter sp. and cloning of the lipase gene. Appl. Microbiol. Biotechnol.42,300-303.
    [67]Sandu, C, Chiribau, C.B., Sachelaru, P. and Brandsch, R. (2005). Plasmids for nicotine-dependent and-independent gene expression in Arthrobacter nicotinovorans and other Arthrobacter species. Appl. Environ. Microbiol.71,8920-8924.
    [68]Oguma, T., Kurokawa, T., Tobe, K.; Kitao, S. and Kobayashi, M. (1999). Cloning and sequence analysis of the gene for glucodextranase from Arthrobacter globiformis T-3044 and expression in Escherichia coli cells. Biosci. Biotechnol. Biochem.63,2174-2182.
    [69]Xiuli, W., Hongbiao, D., Ming, Y. and Yu, Q. (2009). Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens. Appl. Microbiol. Biotechnol.83,477-482.
    [70]Ohashi, H., Katsuta, Y, Nagashima, M., Kamei, T. and Yano, M. (1989). Expression of the Arthrobacter viscosus penicillin G acylase gene in Escherichia coli and Bacillus subtilis. Appl. Environ. Microbiol.55,1351-1356.
    [71]Parschat, K., Hauer, B., Kappl, R., Kraft, R., Huttermann, J. and Fetzner, S. (2003). Gene cluster of Arthrobacter ilicis Ru61a involved in the degradation of quinaldine to anthranilate. J. Biol. Chem.278,27483-27494.
    [72]Gartemann, K.H. and Eichenlaub, R. (2001). Isolation and characterization of IS1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis. J. Bacteriol.183,3729-3736.
    [73]Le Marrec, C, Michotey, V., Blanco, C. and Trautwetter, A. (1994). F AAU2, a temperate bacteriophage specific for "Arthrobacter aureus", whose integrative functions work in other corynebacteria. Microbiology 140,3071-3077.
    [74]Serbolisca, L, de Ferra, F. and Margarit, I. (1999). Manipulation of the DNA coding for the desulphurizing activity in a new isolate of Arthrobacter sp. Appl. Microbiol. Biotechnol.52,122-126.
    [75]Wiese, A., Syldatk, C, Mattes, R. and Altenbuchner, J. (2001). Organization of genes responsible for the stereospecific conversion of hydantoins to a-amino acids in Arthrobacter aurescens DSM 3747. Arch. Microbiol.176,187-196.
    [76]Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens-Berendsen, D.H., Shigoyuki, A. and Kurimoto, M. (2002). Trehalose:a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol.40,871-898.
    [77]Elbein, A.D. (1974). The metabolism of alpha,alpha-trehalose. Adv. Carbohydr. Chem. Biochem.30,227-256.
    [78]Arguelles, J.C. (2000). Physiological roles of trehalose in bacteria and yeasts:a comparative analysis. Arch. Microbiol.174,217-224.
    [79]Elbein, A.D., Pan, Y.T., Pastuszak,1. and Carroll, D. (2003). New insights on trehalose:a multifunctional molecule. Glycobiology 13,17R-27R.
    [80]Thevelein, J.M. (1984). Regulation of trehalose mobilization in fungi. Microbiol Rev 48, 42-59.
    [81]Becker, A., Schloder, P., Steele, J.E. and Wegener, G. (1996). The regulation of trehalose metabolism in insects. Experientia 52,433-439.
    [82]Crowe, J.H., Crowe, L.M. and Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms:the role of trehalose. Science 223,701-703.
    [83]Madin, K.A.C. and Crowe, J.H. (1975). Anhydrobiosis in nematodes:Carbohydrate and lipid metabolism during dehydration. J. Exp. Zool.193,335-342.
    [84]Watanabe, M., Kikawada, T., Minagawa, N., Yukuhiro, F. and Okuda, T. (2002). Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol.205,2799-2802.
    [85]Nicolaus, B., Gambacorta, A., Basso, A.L., Riccio, R., DeRosa, M. and Grant, W.D. (1988). Trehalose in Archaebacteria systems. Appl. Microbiol 10,215-217.
    [86]Crowe, J.H. and Crowe, L.M. (1990) Lyotropic effects of water on phospholipids. In Water Science Reviews 5 (Franks, E, ed. Cambridge University Press.
    [87]Rudolph, B.R., Chandrasekhar, I., Gaber, B.P. and Nagumo, M. (1990). Molecular modelling of saccharide-lipid interactions. Chem. Phys. Lipids.53,243-261.
    [88]Carpenter, J.F. and Crowe, J.H. (1989). An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28,3916-3922.
    [89]Kandror, O., DeLeon, A. and Goldberg, A.L. (2002). Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. U S A 99,9727-9732.
    [90]Kandror, O., Bretschneider, N., Kreydin, E., Cavalieri, D. and Goldberg, A.L. (2004). Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol. Cell 13,771-781.
    [91]De Virgilio, C, Simmen, U., Hottiger, T, Boiler, T. and Wiemken, A. (1990). Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Lett.273, 107-110.
    [92]Singer, M.A. and Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae:the Yin and Yang of trehalose. Trends Biotechnol.16,460-468.
    [93]Benaroudj, N., Lee, D.H. and Goldberg, A.L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem.276,24261-24267.
    [94]Styrvold, O.B. and Strom, A.R. (1991). Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains:influence of amber suppressors and function of the periplasmic trehalase. J. Bacteriol.173,1187-1192.
    [95]Galinski, E.A. and Herzog, R.M. (1990). The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris) Arch. Microbiol.153,607-613.
    [96]Welsh, D.T., Guyoneaud, R. and Caumette, P. (1998). Utilization of the compatible solutes sucrose and trehalose by purple sulfur and nonsulfur bacteria. Can. J. Microbiol. 44,974-979.
    [97]Strom, A.R. and Kaasen, I. (1993). Trehalose metabolism in Escherichia coli:stress protection and stress regulation of gene expression. Mol. Microbiol.8,205-210.
    [98]Brennan, P.J. and Nikaido, H. (1995). The envelope of mycobacteria. Annu. Rev. Biochem.64,29-63.
    [99]Vogel, G, Aeschbacher, R.A., Muller, J., Boller, T. and Wiemken, A. (1998). Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant. Plant J.13,673-683.
    [100]Eastmond, P.J. et al. (2002). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. The Plant Journal 29,225-235.
    [101]Avonce, N., Leyman, B., Mascorro-Gallardo, J.O., Van Dijck, P., Thevelein, J.M. and Iturriaga, G (2004). The Arabidopsis trehalose-6-P synthase AtTPSl gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol.136,3649-3659.
    [102]Avonce, N., Mendoza-Vargas, A., Morett, E. and Iturriaga, G. (2006). Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol.6,109.
    [103]De Smet, K.A.L., Weston, A., Brown, I.N., Young, D.B. and Robertson, B.D. (2000). Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146,199-208.
    [104]Kaasen, I., Falkenberg, P., Styrvold, O.B. and Strom, A.R. (1992). Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli:evidence that transcription is activated by katF (AppR). J. Bacteriol.174,889-898.
    [105]Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., De Virgilio, C, Wiemken, A. and Thevelein, J.M. (1998). Composition and Functional Analysis of the Saccharomyces cerevisiae Trehalose Synthase Complex. J. Biol. Chem.273,33311-33319.
    [106]Higashiyama, T. (2002). Novel functions and applications of trehalose. Pure Appl. Chem. 74,1263-1269.
    [107]Tsusaki, K., Nishimoto, T, Nakada, T., Kubota, M., Chaen, H., Sugimoto, T. and Kurimoto, M. (1996). Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim. Biophys. Acta 1290,1-3.
    [108]Tsusaki, K., Nishimoto, T, Nakada, T., Kubota, M., Chaen, H., Fukuda, S., Sugimoto, T. and Kurimoto, M. (1997). Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochim. Biophys. Acta 1334,28-32.
    [109]Lee, J.H., Lee, K.H., Kim, C.G, Lee, S.Y., Kim, G.J., Park, Y.H. and Chung, S.O. (2005). Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl. Microbiol. Biotechnol.68, 213-219.
    [110]Wolf, A., Kramer, R. and Morbach, S. (2003). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol. Microbiol.49,1119-1134.
    [111]Streeter, J.G. and Bhagwat, A. (1999). Biosynthesis of trehalose from maltooligosaccharides in Rhizobia. Can. J. Microbiol.45,716-721.
    [112]Nakada, T, Maruta, K, Tsusaki, K., Kubota, M., Chaen, H., Sugimoto, T, Kurimoto, M. and Tsujisaka, Y. (1995). Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem.59, 2210-2214.
    [113]Schiraldi, C., Di Lernia, I. and De Rosa, M. (2002). Trehalose production:exploiting novel approaches. Trends Biotechnol.20,420-425.
    [114]Wannet, W.J.B., Op den Camp, H.J.M., Wisselink, H.W., van der Drift, C., Van Griensven, L.J.L.D. and Vogels, G.D. (1998). Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim. Biophys. Acta 1425,177-188.
    [115]Saito, K., Kase, T., Takahashi, E. and Horinouchi, S. (1998). Purification and characterization of a trehalose synthase from the basidiomycete grifola frondosa. Appl. Environ. Microbiol.64,4340-4345.
    [116]Qu, Q., Lee, S.J. and Boos, W. (2004). TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem.279, 47890-47897.
    [117]Ryu, S.I., Park, C.S., Cha, J., Woo, E.J. and Lee, S.B. (2005). A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii:molecular cloning and characterization. Biochem. Biophys. Res. Commun.329,429-436.
    [118]Ryu, S.-I., Kim, J.-E., Huong, N.T., Woo, E.-J., Moon, S.-K. and Lee, S.-B. (2010). Molecular cloning and characterization of trehalose synthase from Thermotoga maritima DSM3109:Syntheses of trehalose disaccharide analogues and NDP-glucoses. Enzyme. Microb. Technol.47,249-256.
    [119]Lee, J.S., Hai, T., Pape, H., Kim, T.J. and Suh, J.W. (2008). Three trehalose synthetic pathways in the acarbose-producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component C. Appl. Microbiol. Biotechnol.80,767-778.
    [120]Makihara, F., Tsuzuki, M., Sato, K., Masuda, S., Nagashima, K.V., Abo, M. and Okubo, A. (2005). Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch. Microbiol.184,56-65.
    [121]Nobre, A., Alarico, S., Fernandes, C., Empadinhas, N. and da Costa, M.S. (2008). A unique combination of genetic systems for the synthesis of trehalose in Rubrobacter xylanophilus:properties of a rare actinobacterial TreT. J. Bacteriol.190,7939-7946.
    [122]Cardoso, F.S., Castro, R.F., Borges, N. and Santos, H. (2007). Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153,270-280.
    [123]Murphy, H.N. et al. (2005). The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem.280,14524-14529.
    [124]McIntyre, H.J., Davies, H., Hore, T.A., Miller, S.H., Dufour, J.-P. and Ronson, C.W. (2007). Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl. Environ. Microbiol.73,3984-3992.
    [125]Collet, J.F., Stroobant, V., Pirard, M., Delpierre, G. and Van Schaftingen, E. (1998). A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J. Biol. Chem.273,14107-14112.
    [126]Rao, K.N., Kumaran, D., Seetharaman, J., Bonanno, J.B., Burley, S.K. and Swaminathan, S. (2006). Crystal structure of trehalose-6-phosphate phosphatase-related protein: biochemical and biological implications. Protein Sci.15,1735-1744.
    [127]Morais, M.C., Zhang, W., Baker, A.S., Zhang, G, Dunaway-Mariano, D. and Allen, K.N. (2000). The Crystal Structure of Bacillus cereus Phosphonoacetaldehyde Hydrolase: Insight into Catalysis of Phosphorus Bond Cleavage and Catalytic Diversification within the HAD Enzyme Superfamily. Biochemistry 39,10385-10396.
    [128]Seo, H.S., Koo, Y.J., Lim, J.Y., Song, J.T., Kim, C.H., Kim, J.K., Lee, J.S. and Choi, Y.D. (2000). Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol.66,2484-2490.
    [129]Klutts, S., Pastuszak, I., Edavana, V.K., Thampi, P., Pan, Y.T., Abraham, E.C., Carroll, J.D. and Elbein, A.D. (2003). Purification, cloning, expression, and properties of mycobacterial trehalose-phosphate phosphatase. J. Biol. Chem.278,2093-2100.
    [130]Edavana, V.K., Pastuszak, I., Carroll, J.D., Thampi, P., Abraham, E.C. and Elbein, A.D. (2004). Cloning and expression of the trehalose-phosphate phosphatase of Mycobacterium tuberculosis:comparison to the enzyme from Mycobacterium smegmatis. Arch. Biochem. Biophys.426,250-257.
    [131]Silva, Z., Alarico, S. and da Costa, M.S. (2005). Trehalose biosynthesis in Thermus thermophilus RQ-1:biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Extremophiles 9,29-36.
    [132]Shima, S., Matsui, H., Tahara, S. and Imai, R. (2007). Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J.274,1192-1201.
    [133]Friedman, S. (1960). Occurrence of trehalose-6-phosphatase in Phormia regina Meig. Arch. Biochem. Biophys.88,339-343.
    [134]Bai, Y., Yang, D., Wang, J., Xu, S., Wang, X. and An, L. (2006). Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res. Microbiol.157,741-751.
    [135]Liu, Y.G., Chen, Y. and Zhang, Q. (2005). Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. Methods Mol. Biol.286,341-348.
    [136]Powell, I.B., Achen, M.G., Hillier, A.J. and Davidson, B.E. (1988). A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol.54,655-660.
    [137]Ito, M. and Nagane, M. (2001). Improvement of the electro-transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. Biosci. Biotechnol. Biochem.65,2773-2775.
    [138]Lofblom, J., Kronqvist, N., Uhlen, M., Stahl, S. and Wernerus, H. (2007). Optimization of electroporation-mediated transformation:Staphylococcus carnosus as model organism. J. Appl. Microbiol.102,736-747.
    [139]Berthier, F, Zagorec, M., Champomier-Verges, M., Ehrlich, S.D. and Morel-Deville, F. (1996). Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142,1273-1279.
    [140]Dorella, F.A., Estevam, E.M., Cardoso, P.G., Savassi, B.M., Oliveira, S.C., Azevedo, V. and Miyoshi, A. (2006). An improved protocol for electrotransformation of Corynebacterium pseudotuberculosis. Vet. Microbiol.114,298-303.
    [141]Augustin, J. and Gotz, F. (1990). Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol. Lett.66, 203-207.
    [142]Seo, H.S., Koo, Y.J., Lim, J.Y., Song, J.T., Kim, C.H., Kim, J.K., Lee, J.S. and Choi, Y.D. (2000). Characterization of a Bifunctional Enzyme Fusion of Trehalose-6-Phosphate Synthetase and Trehalose-6-Phosphate Phosphatase of Escherichia coli. Appl. Environ. Microbiol.66,2484-2490.
    [143]Cardoso, F.S., Castro, R.F., Borges, N. and Santos, H. (2007). Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153,270-280.
    [144]Weaver, J.C. (1995). Electroporation theory. Concepts and mechanisms. Methods Mol. Biol.55,3-28.
    [145]Szostkova, M. and Horakova, D. (1998). The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem. Bioenerg. 47,319-323.
    [146]Dower, W.J., Miller, J.F. and Ragsdale, C.W. (1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res.16,6127-6145.
    [147]Smalas, A.O., Leiros, H.K., Os, V. and Willassen, N.P. (2000). Cold adapted enzymes. Biotechnol Annu Rev 6,1-57.
    [148]Gerday, C. et al. (2000). Cold-adapted enzymes:from fundamentals to biotechnology. Trends Biotechnol.18,103-107.
    [149]Feller, G., Narinx, E., Arpigny, J.L., Aittaleb, M., Baise, E., Genicot, S. and Gerday, C. (1996). Enzymes from psychrophilic organisms. FEMS Microbiol. Rev.18,189-202.
    [150]Feller, G, Arpigny, J.L., Narinx, E. and Gerday, C. (1997). Molecular adaptations of enzymes from psychrophilic organisms. Comp. Biochem. Physiol.118,495-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700