用户名: 密码: 验证码:
营养盐浓度对海洋小球藻(Chlorella sp.)叶绿素荧光及生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水营养盐浓度的变化,影响微藻生长,引起海洋初级生产力变化。以海洋小球藻(Chlorella sp.)为研究对象,培养条件为:温度(22±1)℃,光照强度40001x,光暗比12 h:12 h,分别设置不同的磷浓度、浓度、磷交互作用及磷恢复实验。研究不同营养盐浓度对其主要叶绿素荧光参数,最大光能转化效率(Fv/Fm)、实际光能转化效率(FPSⅡ)、电子传递速率(ETR)、非光化学淬灭(qN、NPQ),细胞密度和色素含量变化的影响。以期找到海洋小球藻最适生长的磷浓度,同时为富营养条件下微藻生长的研究提供基础资料。结果表明:
     1.海洋小球藻对高浓度的耐受程度强,因为在高浓度(10.56mmol/L)培养下,海洋小球藻的荧光参数Fv/Fm、F PSⅡ、ETR处在较高水平,同时细胞密度、色素含量的增加也较其它组快,藻细胞具有较高的光合活性及细胞分裂能力。
     2.高磷对海洋小球藻的影响复杂。在高磷条件下培养(434.5μmol/L),海洋小球藻的荧光参数Fv/Fm、Fv/FO、F PSⅡ、ETR处在较高水平,但细胞密度、色素含量的增加速率小于对照组。
     3.低磷(3.6μmol/L)比低(0.088mmol/L)对海洋小球藻的光合活性影响更为剧烈。低条件下培养,海洋小球藻在培养的中后期荧光参数处在较低水平,但没有一直下降,而是维持在相对稳定的较低水平。低磷条件下培养的整个过程,荧光参数一直维持快速率下降。
     4.低比低磷对海洋小球藻的细胞分裂及色素含量变化影响更明显。低培养时,细胞分裂及色素含量的增加严重受抑制,明显低于其它组。低磷培养时,细胞密度及色素含量均略低于对照组。
     5.磷交互作用时,各浓度培养下参数分化清晰,高磷(N/P,10.56mmol/L/0.4345mmol/L)培养条件下荧光参数及传统指标均显示,藻细胞生长状态较好,低磷(N/P,0.088mmol/L/0.0036 mmol/L)培养时,荧光参数及传统指标的下降最迅速。
     6.本研究中的低磷胁迫是可恢复的,且荧光参数对恢复的响应更为迅速。在磷重新添加后,荧光参数即出现了恢复趋势,恢复可维持两天。而细胞密度及色素含量在添加后一天才出现恢复趋势,较荧光参数的变化滞后。
The change of nutrient effect primary productive.The effect of different nutrient and P recovery on the chlorophyll fluoreseence and growth and pigment content of Chlorella sp.,were investigated.The cultures were grown at (22±1)℃,the light intensity was 40001x., under a 12:12 light:dark cycle. In order to find out the optimum growth consistency. Result showed that:
     1. Chlorella sp.had better tolerated of high levels of N (10.56 mmol/L).For Chlorella sp.,the valres of chlorophyll florescence,cell growth and pigment content.all reached their highest values at 10.56 mmol/L.
     2. For Chlorella sp,the effect of high concentration of P(434.5μmol/L)is complex, the value of chlorophyll florescence increased with the increase of P concentrations,reached their highest at 434.5μmol/L,but cell growth and pigment content reached their highest at 36.2μmol/L.
     3. For chlorophyll florescence of Chlorella sp, the influence of low P (3.6μmol/L)more sharper than low N(0.088mmol/L). For in the condition of low P, the chlorophyll florescence maintain a high rate of decline.
     4. The effect of low N on the cell growth and pigment content more marked.low N,the cell growth and pigment content singificant increases serious than other groups.While there were not significant differences between low phosphate and others.
     5. In condition of high leave of NP(10.56 mmol/L/0.4345mmol/L), the chlorophyll florescence,cell growth and pigment content all increase higher than others.While,leave of low NP(0.088mmol/L/0.0036 mmol/L), the chlorophyll florescence,cell growth and pigment content significant lower than others.
     6. The low P stress could recover. The chlorophyll fluorescence parameters showed rapid recover following P addition,while the cell growth and pigment content showed recover after one day.So chlorophyⅡwere more perceptive than cell growth and pigment content.
引文
Anderson etal,2002. Anderson D.M.,Glibert P. M.,Burkholder J. M. Harmful algal blooms and eutrophication:nutrient sources,composition,and consequences. Estuaries,2002,25(4b):704-726.
    Berges J A, Charlebois D O, Mauzerall D C, et al. Differential effects of nitrogen limitation on photosyn-thetic efficiency of photosystems I and II in microalgae[J]. Plant Physiology,1996,110:689-696.
    Beardalll J, Young E. Roberts S. A pproaches for determining phytoplankton nutrient limitation[J]. Aquat Sci.2001(63):44-69.
    Bader M R, Ruuska S, Nakano H. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction(Mehler reaction)and rubisco oxygenase[J]. Biological Sciences,2000,1402:1433~1445.
    Chang, F. H and McClean M. Growth responses of Alexandrium minutum as a function of three different nitrogen sources and irriadiance. N Z J. Mar. Freshwater Res.,1997,31:1-7.
    Cloern J. E. Our evolving conceptual model of coastal eutrophication problem. Marine Ecology Progress and Series,2001,210:223-253。Dettmann E. H. Effect of water residence time on annual export and denitrification of nitrogen in estuaries:a model analysis. Estuaries,2001,24:481-490.
    Crawford N M. Nitrate:Nutrient and signal for plant growth[J]. Plant cell,1995, 7:859-868.
    Cleveland J S, Perry M J. Quantum yield, relative spe-cific absorption and fluorescence in nitrogen-limitedChaetoceros gracilis[J]. Marine Biology,1987,94: 489-49.
    ChenYL,2000. Comparisons of primary productivity and phytoplankton size structrue in the marginal regions of southern East China SeaCont.Shelf Res.20: 437-458.
    Driscoll C. T., Lawrence G. B., Bulger A. J., et al. Acidic deposition in the northeastern United States:Sources and inputs, ecosystem effects andmanagement strategies. BioScience,2001,51:180-198.
    Gill I, Valivety R. Polyunsaturated fatty acids:Part Ⅰ. Occurrence, bio-logical activities and application[J]. Trends in Biotech,1997,15:401-409.
    Geider R J, Roche J La, Greene R M, etal. Responseof the photosynthetic apparatus of Phaeodactylum tri-cornutum(Bacillariophyceae) to nitrate phosphate or iron starvation[J]. Journal of Phycology,1993,29:755-766.
    Geider R J, Macintyre L, Graziano L M, et al. Re-sponses of the photosynthetic apparatus of Dunaliella tertiolecta(Chlorophyceae) to nitrogen and phosphorus limitation[J]. European Journal of Phycology,1998,33:315-332.
    Guillard R R. Ryther J H. Studies of marine planktonic diatoms. Ⅰ. Cyclotella nana Hustedt and Detonula confervacea(Cleve)Gran[J]. Can J Microbiol.1962,8: 229-239.
    FREDEEN A L, RAAB T K, RAO I M, et, al. Effects of phos-phorus nutrition on photosynthesis inGLycine maxL. [J]. Merr Planta,1990,181:399-405.
    Holland D, Roberts S, Beardall J. Assessment of the nutrient status of phytoplankton:a comparison between conventional bioasssays and nutrient-induced fluorescence transients(NIFTs)[J]. Ecological Indicators,2004,4:149-159.
    Higashiyama T, Maki S, Yamade T. Molecular organization of Chlorellavulgaris chromosome[J]. Mol Gen Genet,1995,246(1):29-36.
    Ivorra N, Barranguet C, Jonker M, etal. M etal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum[J]. Environ Pollut,2002,116:147-157.
    Krause, G. H., and Weis, E. Chlorlphyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology and Plant Molecular Biology,1991, 42,313-349.
    Kyle D, Bingham S, Radmer R, et al. Long-chain omega-3 polyun-satu-rated fatty acids:Prospects for introduction in to horticultural food plants[J]. Hortscience,1990, 25:1523-1526.
    Li W K W and Harrison W G,2001. ChioroPhyll, bacteria and Pieophytoplankton in ecological provinces of the North Atlantic. Deep-Sea ResⅡ.,48:2271-2293.
    Larcher W, Wagner J, Thammathaworn A, Effects of superimposed temperature stress on in vivo chlorophy II fluorescence of Vigna unguiculata under saline stress.J Plant Physilo,1990.136:92-102.
    Lichterthaler H K, Vegetation stress:an introduction to the stress concept in plants. J Plant Physiol,,1996,148:4-14.
    Lippemeier S, Hintze R, Vanselow K H, etal. Inline recording of PAM fluorrscence of phytoplanton cultures as a nes tool for studying effcets of fluctuating nutrient supply on photosynthesis[J]. European Journal of Phycology,2001,36:89-100.
    Lippemeier, S, D, M. Framplon, S, L. Blackburn. Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum monitored by in-line detection of variable chlorophyll fluorescence[J]. J Phycol,2003,38:320-331.
    Milroy S P, Bange M P. Nitrogen and light responsesof cotton photosynthesis and implications for cropgrowth [J]. Crop Science,2003,43:904-913.
    Miyamoto K. FAO Agricultural Services Bulletin-128. Renewable biological systems for alternative sustainable energy production[R].1997:135.
    Nirupama Mallick, F. H. Mohn. Use of chlorophyll flurescence in metal-stress rese arch:a case study wity the green microalga Scenedesmus[J]. Ecotoxicology and Environmental Safety,2003,55:64-69.
    Nilawati J, Greenberg B M. Smith R E. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms [J]. J Phycol,1997,33(2):215-224.
    Smayda T J. Harmful algal blooms:their ecophysiology and general relevance tophytoplankton blooms in the sea[J]. Limnol. Oceanogr.,1997,42(5):1137-1153.
    Schrieber, U., Bilger, W., and Nenbauer, C. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo phogosynthesisi. In Ecophysiology of Photosynthesis, E-D. SchulzeandM. M. Caldwell, eds(Berlin: Springer-Verlag), pp.1994,49-70.
    Steglich C, Behrenfeld M, Koblizek M, et al. Nitrogen deprivation strongly affects Photosystem Ⅱ but not phy-coerythrin level in the divinyl-chlorophyll b-containing cyanobacteriumProchlorococcus marinus[J]. Biochimi-ca et Biophysica Acta,2001, 1503:341-349.
    Sayed O H, EL-shahed A M. Growth, Photosynthesis and circadian patterns in chlorella vulgaris(chlorophyta)in response to growth temperature[J]. Algoi,2000,21(3):283-290. Scientia Agricultura Sinica,2003,36:13-16.
    Tarran G A. Zubkov M V, Sleigh M A, Burkill P H and Yallop M, 2001. Microbial community structure and standing stocks in the NE Atlantic in June and July of 1996. Deep-Sea Res. Ⅱ.,448:963-985.
    Verhoeven A S, Demmirr Adams B, Adams I W. Enhanced employment of the xanthophylls cycle and thermal energy dissipation in spinach exposed to high light and N stress[J]. Plant Physiology,1997,113:817-824.
    V M. Bricelj, Cause and ecological consequences of brow tides in U. S. mid-Atlantic coastal waters. Limnol. Oceanogr.1997,42:1023-1038.
    Van Kooten, O, and Snel, J. F. H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Resarch,1990,25,147-150.
    Wang, Z. F. Zhang, M. Gong. The effects of nitrogen, phosphorus, rivamins and trace metals on the growth of the red tide organism Prorocentrum micans[J]. Chin J Oceanol Limnol,1995,13(4):338-342.
    Young, Photosynthetic function in Dunaliella tertiolecta(chlorophyta) during a nitrogen starvation and recovery cycle. [J]Phycol, 2003,39,897-905.
    Yong E B., Beardall J..Photosynthetic function in Dunaliella tertiolecta(Chlorothyta)during a nitrogen starvation and recovery cycle[J]. J Phycol.2003b,39(5):987-905.
    ZHANG Ming-sheng, XIE Bo, TAN Feng, etal. Relationship among solubleprotein, chlorophyll and ATP in sweet potato under water stress with drought resistance
    陈屏昭,王磊,代勋,缺磷强光下脐橙的过剩能量耗散机制,应用生态学报.2005,6,16,1061-1065.
    蔡恒江,唐学玺,张培玉,等.不同起始密度对3种赤潮微藻种间竞争的影响[J].生态学报,2005,25(6):1331-1336.
    蔡卓平,段舜山.微藻对污水中重金属的生物吸附.生态科学,2008,27(6):499-505.
    陈慈美,包建军,吴瑜端.纳污海域营养物质形态及含量水平与浮游植物增殖竞争关系.海洋环境科学,1990,9(1):6-12.
    陈颖,李文彬,孙勇如.小球藻生物技术研究应用现状及展望[J].生物工程进展,1998,18(6):12-14.
    陈莲花,刘雷,叶绿素荧光技术在藻类光合作用中的应用.江西科学,2007,25 (6):788-790.
    范立梅,类胡萝卜素的生物学功能.生物学通报.2001,36(4):10-11.
    丰茂武,吴云海,冯仕训,等.不同磷比对藻类生长的影响[J].生态环境2008,17(5):1759-1763.文世勇,赵冬至,赵玲,等.赤潮藻类的磷比耐受性响应模型[J].大连海事大学学报.2009,2:35(1):118-122.
    郭延平,陈屏昭,张良诚,等.不同供磷水平对温州蜜柑叶片光合作用的影响[J].植物营养与肥料学报,2002,8(2):186-191.
    郭连旺,沈允钢,高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    胡开辉,周山勇.小球藻细胞活性物质的提取及对啤酒酵母的生理效应[J].应用生态学报,2005,16(8):1173-1176.
    胡晗华,石岩峻,丛威,等.不同磷水平下中肋骨条藻对营养盐的吸收及光合特性[J].应用与环境生物学报,2004,10(6):735-739.
    江红霞,郑怡.微藻的药用、保健价值及研究开发现状。亚热带植物科学。2003,32(1):68-72.
    李雁宾,韩秀荣,胡跃诚,等.营养盐对东海浮游植物生长影响的现场培养实验[J].海洋环境科学.2008,27(2):113-117.
    李铁,史致丽,李俊等。营养盐对中肋骨条藻和新月藻部分生化组成和性质的影响.海洋与湖沼.2000,31(3):239-245.
    李绍长低磷胁迫对植物光合和作用的影响[J].石河子大学学报,2003,7(2):157-160.
    梁英,金月梅,田传远等. 磷浓度对绿色巴夫藻生长及叶绿素荧光参数的影响[J]. 海洋湖沼通报.2008,1:120-128.
    林学政,李光友.11种微藻脂类和EPA/DHA组成的研究[J].黄渤海海洋,2000,18(2):36-40.
    李师翁,李虎乾.植物单细胞蛋白资源:小球藻开发利用研究的现状[J].生物技术,1997,7(3):45-48.
    吕颂辉,欧美珊.不同N源及N/P对东海原甲藻生长的影响.海洋环境科学.2006,25,2,33-36.
    李晶,李娟,郭世荣,康云艳,光照强度对菠菜光合色素的影响.上海交通大学学报(农业科学版)2008,26(5):387-389.
    孟紫强.环境毒理学基础[M]. 北京:高等教育出版社,2003.215.
    梅洪、张成武,殷大聪,耿亚红,利用微藻生产可再生能源研究概况,武汉植物学研究,2008,26(6):650-660.
    齐雨藻,黄长江,应浙鸿,紫外光对有毒甲藻塔玛亚历山大藻的生态学效应[J]。海洋与湖沼,1997,28(2):113-120.
    钱鲁闽,徐永健,王永胜.营养盐因子对龙须菜和菊花江蓠磷吸收速率的影响.台湾海峡,2005,24(4):546-552.
    闰海。张宾,王素琴,小球藻异养培养的研究进展。2007,18-21。现代化工。
    石岩峻,胡晗华,马润宇,丛威,蔡昭铃,不同磷水平下微小原甲藻对营养盐的吸收及光合特性.过程工程学报,2004,4(6):554-560.
    孙曦.植物营养原理[M].北京:中国农业出版社,1997.
    石岩峻,胡晗华,马润宇.塔玛亚历山大藻对和磷的吸收及其生长特性.应用生态学报.2003,14(7):1143-1146.
    武海,许大全.依赖叶黄素循环非辐射能耗散在防御珊瑚树叶片光抑制破坏中的作用[J],植物生理学报,1993,19(2):181-187.
    吴守璇,光辐射对太湖浮游植物初级生产力的影响研究,暨南大学,硕士毕业论文,2005.
    王英典,刘宁主编.植物生物学实验指导[M].北京:高等教育出版社,2004.
    王素琴,闫海,张宾,吕乐,林海.不同源形态和植物激素对小球藻USTB01生长及叶黄素含量的效应.2005,23(12):36-40.
    徐智广.2种大型经济海藻对海水中营养盐供应的生理响应.2004,硕士论文.
    尹翠玲.营养盐限制对6株微藻叶绿素荧光特性的影响[D].青岛:中国海洋大学,2006.
    尹翠玲,梁英,张秋丰.磷浓度对球等边金藻3011和8701叶绿素荧光特性及生长的影响[J].海洋湖沼通报.2007,3:88-95.
    颜天,周名江,邹景忠等,香港及珠江口海域有害赤潮发生机制初步探讨.生态学报,2001,21(10):1634-1641.
    杨世平,刘慧玲,李活,陈妃业,黄翔鹄.两种微藻在无菌和带菌状态下生长特点比较研究.渔业现代化,2009,36(5):45-49.
    赵艳芳,俞志明,宋秀贤,等. 营养盐对长江口2种主要赤潮原因藻光合色素和光合作用影响的比较研究[J]. 环境科学,2009,30(3):700-706.
    张玉娟,曹宇,王朝晖,等.NP营养盐对塔玛亚历山大藻生长的影响[J].热带亚热带植物学报.2006,14(6):482-486.
    张玮,林一群,郭定芳,等.不同磷浓度对铜绿微囊藻生长,光合及产毒的影响[J].水生生物学报.2006,30(3):318-321.
    赵会娥,贺立源,章爱群,门玉英,铝胁迫对植物光合作用的影响及其机理的研究进展.华中农业大学学报.2008,27(1):155-160.
    赵平,孙谷畴,彭少麟,植物素营养的生理生态学研究.生态科学,1998,17,2:37-42.
    张建民,刘新宁.可利用微藻的种类及其应用前景[J].资源开发与市场,2005,21(1):65-66.
    周华伟,林炜铁,陈涛.小球藻的异养培养及应用前景,氨基酸和生物资源,2005,27(4):69-73.
    周俊丽,刘征涛,孟伟,李政,李霁.长江口营养盐浓度变化及分布特征.环境科学研究,2006,19(6):139-144.
    张青田,董双林,胡桂坤.不同源对微藻增殖的影响.海洋科学,2005,29(2):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700