用户名: 密码: 验证码:
还原酶的醌还原活性及其介导脱色应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料的生物降解已得到广泛研究,目前已考察了多种不同来源的偶还原酶,并利用这些偶还原酶基因构建了基因工程菌;但这些胞内过量表达了偶还原酶的基因工程茵并没有明显表现出较野生菌更强的脱色能力。本文对偶还原酶的醌还原活性及其在偶染料介导脱色中的应用展开了研究。
     利用NAD(P)H提供电子,AZR可还原醌类化合物。以甲萘醌为底物,AZR醌还原酶的最适pH=8,最适温度为50℃。50℃以下的热处理对AZR的醌还原酶活性基本没有影响。AZR还原甲萘醌的酶促反应遵循双底物乒乓反应机制。研究发现AZR对甲萘醌、2-羟基-1,4-萘醌(lawsone,LQ)、蒽醌-2-磺酸和蒽醌-2,6-二磺酸等萘醌和蒽醌类化合物都具有还原活性,其中甲萘醌为最适底物,但对苯醌没有活性。比较2种辅酶发现,NADPH存在下,AZR的酶活性更高。外加双香豆素是NADPH和甲萘醌的竞争性抑制剂,是甲基红和硝基呋喃的反竞争性抑制剂,抑制常数K_i分别为87.6、51.4、117.7和105.9μmol L~(-1)。
     AZR还原醌类化合物遵循两电子的醌还原途径,其在Escherichia coli YB胞内的过量表达可提高细菌对氧化应激的耐受性
     氧化还原介体能加速电子从最初电子供体传递到最终电子受体,从而使反应速率增大一到几个数量级。介体LQ的存在对胞内过量表达醌还原酶AZR的E.coli YB的脱色能力有显著的促进作用,0.2mmol L~(-1)LQ存在下,E.coli YB仅需2h就可使苋菜红(1mmol L~(-1))脱色75%。与LQ相比,甲萘醌对脱色的促进效果较差,2.5mmol L~(-1)甲萘醌存在下脱色70%需12h。LQ作介体时,E.coli YB介导脱色偶染料的最佳碳源为葡萄糖,菌的最佳投加量为0.7g L~(-1),E.coli YB对苋菜红的重复介导脱色能力稳定,12h内菌体能连续完成4次脱色。LQ的存在对于结构较复杂的2种偶染料酸性大红GR和活性艳红K-2BP的脱色也有促进作用。
     酸性红B的脱色代谢物可替代醌类化合物作为氧化原介体加速偶染料的脱色。外加10%(v/v)酸性红B(2mmol L~(-1))的脱色代谢物时,7h可脱色苋菜红80%以上。
     甲基氢醌预处理对E.coli JM109和厌氧污泥的介导脱色能力都有促进作用。0.5mmol L~(-1)甲基氢醌预处理10min后在0.2mmol L~(-1)LQ存在下,E.coli JM109 3h可脱色苋菜红70%左右,而污泥可在11h内脱色75%以上。
Biodegradation of azo dyes has been widely studied for years. Azoreductases have been identified from various sources. And genes encoding these azoreductases were used to construct gene-engineered strains. However, compared with wild-type strains, no significantly higher decolorization ability was found with these gene-engineered strains overexpressing cellular azoreductases. Quinone-reducing activity of azoreductases and their application in mediated decolorization of azo dyes were studied in this dissertation.
     Using NAD(P)H as electron donor, quinone compounds can be reduced by AZR. With menadione as substrate, the optimal pH value and temperature for its quinone reductase activity are 8 and 50℃, respectively. Heat treatment below 50℃has no effect on quinone reductase activity of AZR. The reduction of menadione catalyzed by AZR follows Ping-Pong Bi Bi kinetic mechanism. It was found that AZR can reduce naphthoquinones and anthraquinones including menadione, lawsone, anthraquinone-2-sulfonate and anthraquinone-2,6-disulfonate. Menadione resulted to be the best substrate for AZR of all the quinones assayed. However, no activity was detected with benzoquinone. Compared with NADH, NADPH is a better electron donor. Externally added dicoumarol is a competitive inhibitor of NADPH and menadione, but an uncompetitive inhibitor of methyl red and nitrofurazone. The inhibition constants for them are 87.6, 51.4, 117.7 and 105.9μmol L~(-1), respectively.
     Quinones are reduced by AZR via two-electron reduction. Compared with the control strain, Escherichia coli YB overexpressing cellular AZR demonstrated better oxidative stress resistance.
     Redox mediators can accelerate the electron transfer from a primary electron donor to a terminal electron acceptor, which may increase the reaction rates by one to several orders of magnitude. Lawsone is an effective accelerator for azo dye decolorization by E. coli YB overexpressing cellular quinone reductase AZR. In presence of 0.2 mmol L~(-1) lawsone, 75% amaranth (1 mmol L~(-1)) was decolorized in 2 h by E. coli YB. Compared to lawsone, menadione is a less effective mediator. In presence of 2.5 mmol L~(-1) menadione, 70% decolorization was reached in 12 h by E. coli YB. With lawsone as redox mediator, the optimal carbon source and biomass are glucose and 0.7 g L~(-1) respectively for the mediated decolorization by E. coli YB. Repeated mediated decolorization investigation demonstrated that E. coli YB has stable decolorizing ability. Four rounds of repeated decolorization was completed in 12 h. Lawsone can also accelerate the decolorization of azo dyes with complex structures such as acid scarlet GR and reactive brilliant red K-2BP.
     Decolorization metabolite of acid red B can replace quinone compounds to act as a redox mediator and accelerate azo dye decolorization. Addition of 10% (v/v) acid red B (2 mmol L~(-1)) decolorization metabolite, more than 80% amaranth was decolorized in 7 h.
     Decolorization performances of E. coli JM109 and anaerobic sludge are improved when pretreated with methylhydroquinone. After 0.5 mmol L~(-1) methylhydroquinone pretreatment for 10 min, in presence of 0.2 mmol L~(-1) lawsone, 70% amaranth was decolorized in 3 h by E. coli JM109, while more than 75% amaranth was removed in 11 h by sludge.
引文
[1]Vaidya A A,Datye K V.Environmental pollution during chemical processing of synthetic fibers.Colourage,1982,14(1):3-10.
    [2]Stolz A.Basic and applied aspects in the microbial degradation of azo dyes.Applied Microbiology and Biotechnology,2001,56(1-2):69-80.
    [3]Gonealves I M C,Gomes A,Brá R.Biological treatment of effluent containing textile dyes.Coloration Technology,2000,116(12):393-397.
    [4]Blümel S,Knackmuss H J,Stolz A.Molecular cloning and characterization of the gene coding for the aerobic azoreduetase from Xenophilus azovorans KF46F.Applied and Environmental Microbiology,2002,68(8):3948-3955.
    [5]Blümel S,Stolz A.Cloning and characterization of the gene coding for the aerobic azoreduetase from Pigmentiphaga kullae K24.Applied Microbiology and Bioteehnology,2003,62(2-3):186-190.
    [6]Mazumder R,Logan J R,Mikell A T Jr et al.Characteristics and purification of an oxygen insensitive azoreduetase from Caulobacter subvibrioides strain C7-D.Journal of Industrial Microbiology and Biotechnology,1999,23(6):476-483.
    [7]Moutaouakkil A,Zeroual Y,Dzayri F Z et al.Purification and partial characterization of azoreduetase from Enterobacer agglomerans.Archives of Bioehemisty and Biophysics,2003,413(1):139-146.
    [8]Chen H,Wang R,Cerniglia C E.Molecular cloning,overexpression,purification,and characterization of an aerobic FMN-dependent azoreduetase from Enterococcus faecalis.Protein Expression and Purification,2004,34(2):302-310.
    [9]Chen H,Hopper S L,Cerniglia C E.Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus,a tetramerie NADPH-dependent flavoprotein.Microbiology,2005,151(5):1433-1441.
    [10]Suzuki Y,Yoda T,Ruhul A et al.Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp.OY1-2 isolated from soil.Journal of Biological Chemistry,2001,276(12):9059-9065.
    [11]严滨.球形红细菌偶还原酶的表达与特性研究:(博士学位论文).大连:大连理工大学,2004.
    [12]Russ R,Rau J,Stolz A.The function of cytoplasmic flavin reductases in the reduction ofazo dyes by bacteria.Applied and Environmental Microbiology,2000,66(4):1429-1434.
    [13]Semdé R,Pierre D,Geuskens G et al.Study of some important factors involved in azo derivative reduction by Clostridium perfringens.International Journal of Pharmaceuties,1998,161(1):45-54.
    [14]Rau J,Knaekmuss H J,Stolz A.Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria.Environmental Science and Technology,2002,36(7):1497-1504.
    [15]Field J A,Brady J.Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge.Water Science and Technology,2003,48(6):187-193.
    [16]Dos Santos A B,Bisschops I A E,Cervantes F J et al.Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30℃) and thermophilic (55℃) treatments for decolourisation of textile wastewaters. Chemosphere, 2004, 55(9): 1149-1157.
    [17] Dos Santos A B, Madrid M P de, Stams A J M et al. Azo dye reduction by mesophilic and thermophilic anaerobic consortia. Biotechnology Progress, 2005,21(4): 1140-1145.
    [18] Encinas-Yocupicio A A, Razo-Flores E, Sanchez-Diaz F et al. Catalytic effects of different redox mediators on the reductive decolorization of azo dyes. Water Science and Technology, 2006, 54(2): 165-170.
    [19] Kudlich M, Keck A, Klein J et al. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Applied and Environmental Microbiology, 1997,63(9): 3691-3694.
    [20] Rau J, Stolz A. Oxygen-insensitive nitroreductase NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductase. Applied and Environmental Microbiology, 2003,69(6): 3448-3455.
    [21] Keck A, Rau J, Reemtsma T et al. Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6. Applied and Environmental Microbiology, 2002,68(9): 4341-4349.
    [22] Van der Zee F P. Anaerobic azo dye reduction: [dissertation]. Wageningen: Wageningen University, 2002.
    
    [23] 侯毓汾,朱振华,王任之. 染料化学. 北京:化学工业出版社, 1994.
    
    [24] Zollinger H. Color chemistry. New York: VCH Weinheim, 1991.
    [25] Ganesh R, Boardman G D, Michelson D. Fate of azo dyes in sludges. Water Research, 1994, 28(6): 1367-1376.
    [26] O'Neill C, Hawkes F R, Hawkes D L et al. Color in textile effluents sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology and Biotechnology, 1999, 74(11): 1009-1018.
    [27] Houk V S. The genotoxicity of industrial wastes and effluents-a review. Mutation Research, 1992, 277(2): 91-138.
    [28] Rajaguru P, Vidya L, Baskarasethupathi B et al. Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutation Research, 2002, 517(1-2): 29-37.
    [29] Urnbuzeiro G A, Freeman H, Warren S H et al. The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 2005,60(1): 55-64.
    [30] Little L W, Chillingworth M A. Reports on selected dyes and their effect. New York: American Dye Manufacturers Institute, 1974.
    [31] Greene J C, Baughman G L. Effects of 46 dyes on population growth of freshwater green alga Selenastrum capricornutum. Textile Chemistry Color, 1996, 28(4): 23-30.
    
    [32] Clarke A E, Anliker R. The handbook of environmental chemistry. Berlin: Springer-Verlag, 1980.
    [33] Specht K, Platzek T. Textile dyes and finishes-remarks to toxicological and analytical aspects. Deutsche Lebensmittel-Rundschau, 1995,91: 352-359.
    [34] Brown M A, DeVito S C. Predicting azo dye toxicity. Critical Reviews in Environmental Science and Technology, 1993,23(3): 249-324.
    [35] Cartwright R A. Historical and modern epidemiological studies on populations exposed to N-substituted aryl compounds. Environmental Health Perspective, 1983,49:13-19.
    [36] Chung K, Cerniglia C E. Mutagenicity of azo dyes: structure-activity relationships. Mutation Research, 1992,277(3): 201-220.
    [37] Jung R, Steinle D, Anliker R. A compilation of genotoxicity and carcinogenicity data on aromatic aminosulphonic acids. Food and Chemical Toxicology, 1992, 30(7): 635-660.
    [38] Churchley J H. Removal of dyewaste color from sewage effluent-the use of a full scale ozone plant. Water Science and Technology, 1994,30(3): 275-284.
    [39] Vandevivere P C, Binachi R, Verstrate W. Treatment of wastewater from textile wet processing industry: review of emerging technologies. Journal of Chemical Technology and Biotechnology, 1998, 72(4): 289-302.
    [40] Swaminathan K, Sandhya S, Carmalin Sophia A et al. Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere, 2003,50(5): 619-625.
    [41] Behnajady M A, Modirshahla N, Shokri M. Photodestruction of Acid Orange 7 (AO7) in aqueous solution by UV/H_2O_2: influence of operational parameters. Chemosphere, 2004,55(1): 129-134.
    [42] Wang A, Qu J, Liu H et al. Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electrooxidation process. Chemosphere, 2004,55(9): 1189-1196.
    [43] Golab V, Vinder A, Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dye bath effluent. Dyes and Pigments, 2005,67(2): 93-97.
    [44] Lopez-Grimau V, Gutierrez M C. Decolorization of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere, 2006,62(1): 106-112.
    [45] Alaton I A, Balcioglu I A, Bahnemann D W. Advanced oxidation of a reactive dyebath effluent: comparison of O_3, H_2O_2/UV-C and TiO_2/UV-A process. Water Research, 2002,36(5): 1143-1154.
    [46] Al-Kdasi A, Idris A, Saed K et al. Treatment of textile wastewater by advanced oxidation processes-a review. Global NEST: the International Journal, 2004,6(3): 221-229.
    [47] Grill M, Strauch R J. Constitutents of Agaricus xanthodermus Genevier: the first naturally endogenous azo compound and toxic phenolic metabolites. Zeitschrift fur Naturforschung C: Journal of Biosciences, 1984,39(11-12): 1027-1029.
    [48] Kaspar H F, Wuhrmann K. Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Applied and Environmental Microbiology, 1978,36(1): 1-7.
    [49] Chinwetkitvanich S, Tuntoolvest M, Panswad T. Anaerobic decolorization of reactive dyebath effluents by a two-stage UASB system with tapioca as a co-substrate. Water Research, 2000, 34(8): 2223-2232.
    [50] Willetts J R M, Ashbolt N J, Moosbrugger R E et al. Water Science and Technology, 2000, 42(5-6): 309-316.
    [51] Talarposhti A M, Donnelly T, Anderson G K. Colour removal from a simulated dye wastewater using a two phase anaerobic packed bed reactor. Water Research, 35(2): 425-432.
    [52] Yoo E S, Libra J, Adrian L. Mechanism of decolorization of azo dyes in an anaerobic mixed cultures. Journal of Environment Engineering (ASCE), 2001,127(9): 844-849.
    [53] Isik M, Sponza D T. Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Bioresource Technology, 2005,96(5): 633-643.
    [54] Van der Zee F P, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes: a short review of bioreactor studies. Water Research, 2005, 39(8): 1425-1440.
    [55] Carliell C M, Barclay N, Buckley C A. Treatment of exhausted reactive dye bath effluent using anaerobic digestion laboratory and full-scale trials. Water SA, 1996,22(3): 225-233.
    [56] Razo-Flores E, Luijten M, Donlon B et al. Biodegradation of selected azo dyes under methanogenic conditions. Water Science and Technology, 1997,36(6): 65-72.
    [57] Bras R, Isabel M, Ferra A et al. Batch tests for assessing decolorization of azo dyes by methanogenic and mixed cultures. Journal of Biotechnology, 2001,89(2-3): 155-162.
    [58] Plumb J J, Bell J, Stuckey D C. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Applied and Environmental Microbiology, 2001, 67(7): 3226-3235.
    [59] Bromley-Challenor K C A, Knapp J S, Zhang Z et al. Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Research, 2000, 34(18): 4410-4418.
    [60] Van der Zee F P, Lettinga G, Field J A. Azo dye decolorization by anaerobic granular sludge. Chemosphere, 2001,44(5): 1169-1176.
    [61] Isik M, Sponza D T. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorizing simulated textile wastewater. Process Biochemistry, 2005,40(3-4): 1189-1193.
    [62] Van der Zee F P, Lettinga G, Field J A. The role of (auto)catalysis in the mechanism of anaerobic azo reduction. Water Science and Technology, 2000,42(5-6): 301-308.
    [63] Mendez-Paz D, Omil F, Lema J M. Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water Research, 2005,39(2-3): 771-778.
    [64] Nigam P, Banat I M, Singh D et al. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 1996,31(5): 435-442.
    [65] Kapdan I K, Kargi F, McMullan G et al. Decolorization of textile dye stuffs by a mixed bacterial consortium. Biotechnology Letters, 2000, 22(14): 1179-1181.
    [66] Padmavathy S, Sandhya S, Swaminathan K et al. Comparison of decolorization of reactive azo dyes by microorganisms isolated from various sources. Journal of Environmental Science (China), 2003, 15(5): 628-633.
    [67] Khehra M S, Saini H S, Sharma D K. Decolorization of various azo dyes by bacterial consortia. Dyes and Pigments, 2005, 67(1): 55-61.
    [68] Moosvi S, Keharia H, Madamawar D. Decolorization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology, 2005, 21(5): 667-672.
    [69] Chang J, Chou C, Lin Y et al. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research, 2001, 35(12): 2041-2850.
    [70] Chen K, Huang W, Wu J et al. Microbial decolorization of azo dyes by Proteus mirabilis. Journal of Industrial Microbiology and Biotechnology, 1999, 23(1): 686-690.
    [71]Chen K,Wu J,Liou D et al.Decolorization of the textile dyes by newly isolated bacterial strains.Journal of Biotechnology,2003,101(1):57-68.
    [72]Hang W,Schmidt A,Nortemann B et al.Mineralization of the sulfonated azo dye Mordant Yellow 3by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium.Applied and Environmental Microbiology,1991,57(11):3144-3149.
    [73]Nachiyar C V,Rajkumar G S.Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa.Enzyme and Microbial Technology,2005,36(4):503-509.
    [74]Zimmermann T,Kulla H,Leisinger T.Properties of purified orange II-azoreduetase,the enzyme initiating azo dye degradation by Pseudomonas KF46.European Journal of Biochemistry,1982,129(1):197-203.
    [75]Kulla H G,Klausener F,Meyer O et al.Interference of aromatic sulfo groups in the microbial degradation of the azo dyes orange Ⅰ and orange Ⅱ.Archives of Microbiology,1983,135(1):1-7.
    [76]Blümel S,Contzen M,Lutz Met al.Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-earboxy-4'-sulfoazobenzene as sole source of carbon and energy.Applied and Environmental Microbiology,1998,64(6):2315-2317.
    [77]Coughlin M F,Kinkle B K,Bishop P L.Degradation of azo dyes containing aminonaphthol by Sphingomonas sp.strain ICX.Journal of Industrial Microbiology and Bioteehnology,1999,23(4-5):341-346.
    [78]Coughlin M F,Kinkle B K,Bishop P L.High performance degradation of azo dye acid orange 7 and sulfanilie acid in a laboratory scale reactor after seeding with cultured bacterial strains.Water Research,2003,37(11):2757-2763.
    [79]Sugiura W,Miyashita T,Yokoyama T et al.Isolation of azo-dye-degrading microorganisms and their application to white discharge printing of fabric.Journal of Bioseience and Bioengineering,1999,88(5):577-581.
    [80]Adedayo O,Javadpour S,Taylor C et al.Decolorization and detoxifieation of methyl red by aerobic bacteria from a wastewater treatment plant.World Joumal of Microbiology and Biotechnology,2004,20(6):545-550.
    [81]MeMullan G,Meehan C,Conneely A et al.Microbial decolourisation and degradation of textile dyes.Applied Microbiology and Biotechnoiogy,2001,56(1-2):81-87.
    [82]Cameron M D,Timofeevski S,Aust S D.Enzymology ofPhanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics.Applied Microbiology and Biotechnology,2000,54(6):751-758.
    [83]Nyanhongo G S,Gomes J,Gubitz G M et al.Decolorization of textile dyes by lacease from a newly isolated strain of Trametes modesta.Water Research,2002,36(6):1449-1456.
    [84]He F,Hu W,Li Y.Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium.Chemosphere,2004,57(4):293-301.
    [85]Cripps C,Bumpus J A,Aust S D.Biodegradation of azo and heteroeyclic dyes by Phanerochaete chrysosporium.Applied and Environmental Microbiology,1990,56(4):1114-1118.
    [86] Lopez C, Valade A G, Combourieu B et al. Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ ~1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry. Analytical Biochemistry, 2004, 335(1): 135-149.
    [87] Tien M, Kirk T K. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, charaterization, and catalytic properties of a unique H_2O_2-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 1984,81(8): 2280-2284.
    [88] Glenn J K, Morgan M A, Mayfield M B et al. An extracellular H_2O_2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 1983,114(3): 1077-1083.
    [89] Glenn J K, Gold M H. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete. Archives of Biochemistry and Biophysics, 1985, 242(2): 329-341.
    [90] Hattakka A. Lignin-modifying enzymes from selected white rot fungi: production and role in lignin degradation. FEMS Microbiology Review, 1994,13:125-135.
    [91] Ruttimann C, Vicuna R, Mozuch M D et al. Limited bacterial mineralization of fungal degradation intermediates from synthetic lignin. Applied and Environmental Microbiology, 1991, 57(12): 3652-3655.
    [92] Eggert C, Temp U, Eriksson K L. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology, 1996, 62(4): 1151-1158.
    [93] Chivukula M, Renganathan V. Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Applied and Environmental Microbiology, 1995,61(12): 4374- 4377.
    [94] Ramalho P A, Cardoso M H, Cavaco-Paulo A et al. Characterization of azo reduction activity in a novel ascomycete yeast strain. Applied and Environmental Microbiology, 2004,70(4): 2279-2288.
    [95] Ramalho P A, Paiva S, Cavaco-Paulo A et al. Azo reductase activity of intact Saccharomyces cerevisiae cells is dependent on the Frelp component of plasma membrane ferric reductase. Applied and Environmental Microbiology, 2005,71(7): 3882-3888.
    [96] Rafii F, Franklin W, Cerniglia C E. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Applied and Environmental Microbiology, 1990, 56(7): 2146-2151.
    [97] Roxon J J, Ryan A J, Wright S E. Enzymatic reduction of tartrazine by Proteus vulgaris from rats. Food and Cosmetics Toxicology, 1967, 5(5): 645-656.
    [98] Chung K, Stevens S E Jr. Degradation of azo dyes by environmental microorganisms and helminths. Environmental Toxicology and Chemistry, 1993,12(11): 2121-2132.
    [99] Rafii F, Cerniglia C E. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environmental Health Perspectives, 1995, 103(suppl 5): 17-19.
    [100] Rafii F, Coleman T. Cloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringenes and comparison with azoreductases genes from other bacteria. Journal of Basic Microbiology, 1999,39(1): 29-35.
    
    [101] Levine W G. Metabolism of azo dyes: implication for detoxification and activation. Drug Metabolism Review, 1991,23:253-309.
    [102] Keck A, Klein J, Kudlich M et al. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. Strain BN6. Applied and Environmental Microbiology, 1997,63(9): 3684-3690.
    [103] Van der Zee F P, Burwman R H, Strik D P et al. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactor. Biotechnology and Bioengineering, 2001, 75(6): 691-701.
    [104] Dos Santos A B, Cervantes F J, Yaya-Beas R E et al. Effect of redox mediator, AQDS, on the decolorization of a reactive azo dye containing triazine group in a thremophilic anaerobic EGSB reactor. Enzyme and Microbial Technology, 2003,33(7): 942-951.
    [105] Chang J, Chen B, Lin Y. Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresource Technology, 2004,91(3): 243-248.
    [106] Van der Zee F P, Bisschops I A E, Lettings G et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science and Technology, 2003,37(2): 402-408.
    [107] Hong Y, Chen X, Guo J et al. Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Applied Microbiology and Biotechnology, 2007, 74(1): 230-238.
    [108] Hong Y, Xu M, Guo J et al. Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Applied and Environmental Microbiology, 2007, 73(1): 64-72.
    [109] Hong Y, Guo J, Xu M et al. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. Journal of Microbiology and Biotechnology, 2007,17(3): 428-437.
    [110] Yoo E S, Libra J, Wiesmannn U. Reduction of azo dyes by Desulfovibrio desulfuricans. Water Science and Technology, 2000,41(12): 15-22.
    [111] Diniz P E, Lopes A T, Lino A R et al. Anaerobic reduction of a sulfonated azo dye Congo Red by sulphate reducing bacteria. Applied Biochemistry and Biotechnology, 2002,97(3): 147-163.
    [112] Chesis P L, Levin D E, Smith M T et al. Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(6): 1696-1700.
    [113] Schuetzle D, Siegl W O, Jensen T E et al. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs. Environmental Health Perspectives, 1994,102(4): 3-12.
    [114] Brunmark A, Cadenas E. Redox and addition chemistry of quinoid compounds and its biological implications. Free Radical Biology and Medicine, 1989,7(4): 435-477.
    [115] Ernster L, Narazio F. Soluble diaphorase in animal tissue. Acta Chemica Scandinavica, 1958, 12: 595-602.
    [116] Martin A, Cerain A, Hamilton E et al. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumors. British Journal of Cancer, 1997, 76(7): 923-929.
    [117] Smith M T. Benzene, NQO1, and genetic susceptibility to cancer. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(14): 7624-7626.
    [118] Radjendirane V, Jaiswal A K. Coordinated induction of the c-jun gene with genes encoding quinone oxidoreductase in response to xenobiotics and antioxidants. Biochemical Pharmacology, 1999, 58(4): 597-603.
    [119] Jaiswal A K, Burnett P, Adesnik M. Nucleotide and deduced amino acid sequence of a human cDNA (NQO2) corresponding to a second member of the NAD(P)H: quinone oxidoreductase gene family: extensive polymorphism at the NQO2 gene locus on chromosome 6. Biochemistry, 1990, 29(7): 1899-1906.
    [120] Sollner S, Nebauer R, Ehammer H et al. Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. FEBS Journal, 2007,274(5): 1328-1339.
    [121] Patridge E V, Ferry J G. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H: quinone oxidoreductase. Journal of Bacteriology, 2006,188(10): 3498-3506.
    [122] Zenno S, Koike H, Tanokura M et al. Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri. Journal of Biochemistry, 1996, 120(4): 736-744.
    [123] Inouye S. NAD(P)H-flavin oxidoreductase from the bioluminescent bacterium, Vibrio fischeri ATCC 7744, is a flavoprotein. FEBS Letters, 1994,347(2-3): 163-168.
    [124] Koike H, Sasaki H, Kobori T et al. 1.8 A crystal structure of the major NAD(P)H: FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure , cofactor and substrate-analog binding, and comparison with related flavoproteins. Journal of Molecular Biology, 1998,280(2): 259-273.
    [125] Gonzalez C F, Ackerley D F, Lynch S V et al. ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H_2O_2. Journal of Biological Chemistry, 2005,280(24): 22590-22595.
    [126] Deller S, Sollner S, Trenker-El-Toukhy R et al. Characterization of a thermostable NADPH: FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry, 2006, 45(23): 7083-7091.
    [127] Sugiura W, Yoda T, Matsuba T et al. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophlius. Bioscience, Biotechnology and Biochemistry, 2006, 70(7): 1655-1665.
    [128] Mazoch J, Tesarik R, Sedlacek V et al. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. FEBS Journal, 2004, 271(3): 553-562.
    [129] Wang G, Alamuri P, Maier R J. The diverse antioxidant systems of Helicobacter pylori. Molecular Microbiology, 2006, 61(4): 847-860.
    [130] Wang G, Maier R J. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infection and Immunity, 2004, 72(3): 1391-1396.
    [131] Ackerley D F, Gonzalez C F, Park C H et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 2004, 70(2): 873-882.
    [132]Park C H,Keyhan M,Wielinga Bet al.Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase.Applied and Environmental Microbiology,2000,66(5):1788-1795.
    [133]Iyanagi T,Yamazaki I.One-electron-transfer reactions in biochemical systems.V.Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase).Biochimiea et Biophysica Acta,1970,216:282-294.
    [134]Dinkova-Kostova A T,Talalay P.Persuasive evidence that quinone reduetase type 1(DT-diaphorase)protects cells against the toxicity of electrophiles and reactive forms of oxygen.Free Radical Biology and Medicine,2000,29(3-4):231-240.
    [135]Prochaska H J,Talalay P,Sies H.Direct protective effect of NAD(P)H:quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver.Journal of Biological Chemistry,1987,262(5):1931-1934.
    [136]Munday R,Smith B L,Munday C M.Effects of butylated hydroxyanisole and dieoumarol on the toxicity of menadione to rats.Chemieo-Biologieal Interactions,1998,108(3):155-170.
    [137]Iskander K,Jaiswal A K.Quinone oxidoreduetases in protection against myelogenous hyperplasia and benzene toxicity.Chemieo-Biologieal Interactions,2005,153-154:147-157.
    [138]Lind C,Hochstein P,Ernster L.DT-diaphorase as a quinone reduetase:a cellular control device against semiquinone and superoxide radical formation.Archives of Biochemistry and Biophysics,1982,216(1):178-185.
    [139]Beyer R E.The relative essentiality of the antioxidative function of coenzyme Q-the interactive role of DT-diaphorase.Molecular Aspects of Medicine,1994,15(suppl 1):117-129.
    [140]Beyer R E,Segura-Aguilar J,Di Bemardo Set al.The role of DT-diaphorase in the maintenance of the reduced antioxidant form of eoenzyme Q in membrane systems.Proceedings of the National Academy of Sciences of the United States of America,1996,93(6):2528-2532.
    [141]Siegel D,Bolton E M,Burr J Aet al.The reduction of alpha-tocopherolquinone by human NAD(P)H:quinone oxidoreduetase:the role of alpha-tocopherolhydroquinone as a cellular antioxidant.Molecular Pharmacology,1997,52(2):300-305.
    [142]梁超,常春.环境治理与保护中的工程菌研究进展.环境技术,2003,21(5):31-35.
    [143]沈向阳.基因工程在海拉尔地区环境污染治理中的应用前景.呼伦贝尔学院学报,2003,11(6):94-96.
    [144]Duque E,Haidour A,Godoy F et al.Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene.Journal of Bacteriology,1993,175(8):2278-2283.
    [145]Rowland S S,Speedie M K,Pogell B M.Purification and characterization of a secreted recombinant phosphotriesterase(parathion hydrolase) from Streptomyces lividans.Applied and Environmental Microbiology,1991,57(2):440-444.
    [146]Walker A W,Keasling J D.Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source.Biotechnology and Bioengineering,2002,78(7):715-721.
    [147]蔡颖,赵肖为,邓旭等.基因工程菌生物富集废水中重金属镉.水处理技术,2006,32(1):26-29.
    [148]赵肖为,李清彪,卢英华等.高选择性基因工程菌生物富集水体中的镍离子.环境科学学报,2004,24(2):231-236.
    [149]邓旭,李清彪,孙道华等.具超强汞富集能力基因工程菌生长情况的研究.工业微生物,2003,33(3):11-15.
    [150]陈俊,程树培,王洪丽等.基因工程菌在精对苯二甲酸废水处理中的应用.工业用水与废水,2006,37(1):32-35.
    [151]Liu G,Zhou J,Lv H et al.Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononueleotide reduetase.Applied Microbiology and Biotechnology,2007,76(6):1271-1279.
    [152]Liu G,Zhou J,Qu Y et al.Decolodzation of sulfonated azo dyes with two photosynthetic bacterial strains and a genetically engineered Escherichia coli strain.World Journal of Microbiology and Biotechnology,2007,23(7):931-937.
    [153]Nakanishi M,Yatome C,Ishida N.Putative ACP phosphodiestertase gene(acpD) encodes an azoreductase.Journal of Biological Chemistry,2001,276(49):46394-46399.
    [154]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,1976,72:248-254.
    [155]Zhou Z,Fisher D,Spidel J et al.Kinetic and docking studies of the interaction of quinones with the quinone reduetase active site.Biochemistry,2003,42(7):1985-1994.
    [156]Hollander P M,Ernster L.Studies on the reaction mechanism of DT diaphorase:action of dead-end inhibitors and effects of phospholipids.Archives of Biochemistry and Biophysics,1975,169(2):560-567.
    [157]王镜岩,朱圣庚,徐长法等.生物化学:第三版(上册).北京:高等教育出版社,2002.
    [158]Liu G,Zhou J,Wang J et al.Site-directed mutagenesis of substrate binding sites of azoreductase from Rhodobacter sphaeroides.Biotechnology Letters,2008,30(5):869-875.
    [159]YU P.Enhancing survival of Escherichia coil by increasing the periplasmic expression of Cu,Zn superoxide dismutase from Saccharomyces cerevisiae.Applied Microbiology and Biotechnology,2007,76(4):867-871.
    [160]宣瑛,闵航,吕镇梅等.Azotobacter beijerinckii C4对镉和乙草胺复核污染的氧化应激反应研究.浙江大学学报(农业与生命科学版),2006,32(5):489-494.
    [161]段学军,闵航.稻田土壤细菌对重金属镉的氧化应激反应研究.安全与环境学报,2005,5(2):50-53.
    [162]Francisco P C,Heinrich L,Carlos A J.Growth of polychlorinated-biphenyl- degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate.Applied and Environmental Microbiology,2004,70(5):3064-3072.
    [163]Cervantes F J.Quinones as electron acceptors and redox mediators for the anaerobic biotransformation of priority pollutants:[dissertation].Wageningen:Wageningen University,2002.
    [164]Dunnivant F M,Schwarzenbach R P,Macalady D L.Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter.Environmental Science and Technology,1992,26(11):2133-2141.
    [165]O'Loughlin E J,Burris D R,Delcomyn C A.Reductive dechlorination of trichloroethene mediated by humic-metal complexes.Environmental Science and Technology,1999,33(7):1145-1147.
    [166]Walker R,Ryan A J.Some molecular parameters influencing rate of reductions of azo compounds by intestinal microflora.Xenobiotica,1971,1(4):483-486.
    [167]Wang X,Cheng X,Sun D.Autocatalysis in Reactive Black 5 biodecolofization by Rhodopseudomonas palustris W1.Applied Microbiology and Biotechnology,2008,80(5):907-915.
    [168]T(o|¨)we S,Leelakriangsak M,Kobayashi K et al.The MarR-type represser MhqR(YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and eateehol in Bacillus subtilis.Molecular Microbiology,2007,66(1):40-54.
    [169]Leelakriangsak M,Huyen N T,T(o|¨)we S et al.Regulation of quinone detoxifieation by the thiol stress sensing DUF24/MarR-like represser,YodB in Bacillus subtilis.Molecular Microbiology,2008,67(5):1108-1124.
    [170]Vaillaneourt F H,Bolin J T,Eltis L D.The ins and outs of ring-cleaving dioxygenases.Critical Reviews in Biochemistry and Molecular Biology,2006,41(4):241-267.
    [171]Ito K,Nakanishi M,Lee W C et al.Three-dimensional structure of AzoR from Escherichia coli:an oxidereduetase conserved in microorganisms.Journal of Biological Chemistry,2006,281(29):20567-20576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700